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Abstract

In the context of a general multi-variate financial market with transaction costs, we
consider the problem of maximizing expected utility from terminal wealth. In contrast
with the existing literature, where only the liquidation value of the terminal portfolio is
relevant, we consider general utility functions which are only required to be consistent
with the structure of the transaction costs. An important feature of our analysis is
that the utility function is not required to be C1. Such non-smoothness is suggested
by major natural examples. Our main result is an extension of the well-known dual
formulation of the utility maximization problem to this context.
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1 Introduction

We consider a general multi-variate financial market with transaction costs as in Kabanov

(1999), and we analyze the stochastic control problem of maximizing expected utility from

terminal wealth.

The existing literature in this framework only considers an utility function defined on

the liquidation value of the terminal portfolio, see e.g. Davis, Panas and Zariphopoulou

(1993), Cvitanić and Karatzas (1996), Kabanov (1999), Cvitanić and Wang (1999). This is

of course not consistent with economic intuition which suggests that agents prefer holding

the portfolio to its liquidation value. Indeed, once the portfolio is liquidated, its liquidation

value does not allow to finance it because of the presence of transaction costs.

Instead, we introduce an utility function U defined on IRd+1, where d+ 1 is the number

of tradable assets in the financial market. For sake of consistency with the structure of

transaction costs, function U is required to be increasing in the sense of the partial ordering

induced by the transaction costs. This natural economic condition turns out to be crucial.

Also by examining some natural examples of such utility functions, it turns out that the

usual smoothness condition fails to hold.

The main result of this paper is to obtain a dual formulation of the utility maximization

problem as it was established in the frictionless markets literature by Cox and Huang (1989),

Karatzas, Lehoczky and Shreve (1987) and the recent paper by Kramkov and Schachermayer

(1999). In particular, we require a natural extension, to our multi-variate framework, of the

important condition on the asymptotic elasticity introduced by Kramkov and Schacher-

mayer.

In the presence of transaction costs, such a dual formulation has been derived by Cvi-

tanić and Karatzas (1996) and Kabanov (1999) under the assumption of existence for the

dual problem. Recently, Cvitanić and Wang (1999) proved the dual formulation, without

appealing to such existence assumption. This was achieved by suitably enlarging the set

of controls of the dual problem, as in Kramkov and Schachermayer (1999). However, as

mentioned above, Cvitanić and Wang only considered the one-dimensional (d = 1) problem

of maximizing expected utility of the liquidation value of the terminal wealth, with smooth

utility function defined on IR+.

An important feature of our analysis is that neither the utility function U , nor the

Legendre-Fenchel transform Ũ of −U(−·) are required to be smooth. We then use different

arguments from those of Kramkov and Schachermayer (1999). In particular, we introduce

an approximation of function Ũ by quadratic inf-convolution, and then pass to the limit.

Let us mention that Cvitanić (1999) dealt with a non-smooth utility maximization prob-

lem of the form infx∈C F (x) for some convex subset C of a Banach space, and lower semi-

continuous convex function F . In his case, it was possible to apply directly the classical
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Kuhn-Tucker conditions in Banach spaces established in the context of non-smooth convex

problems, see e.g. Aubin and Ekeland (1984). Our dual optimization problem is naturally

set in the Banach space L1. However, the classical result of this theory requires that 0 lies

in the interior of the set dom(F )−C, which fails to hold for our dual optimization problem.

The paper is organized as follows. Section 2 contains the exact formulation of the utility

maximization problem. Section 3 introduces the main polar transformations of the variables

and functions involved in the problem. It also contains some preliminary results on these

transformations. The main duality result together with the precise assumptions are stated

in section 4. Section 5 contains three natural examples of utility functions consistent with

the structure of transaction costs, which are naturally non-smooth. The proof of the main

theorem is reported in section 9 after some preparation in sections 6, 7 and 8. Finally, we

report some useful results concerning the notion of asymptotic elasticity in Appendix.

2 The utility maximization problem

In this section, we formulate the utility maximization problem under proportional transac-

tion costs. In contrast with the usual literature in this area (see e.g. Cvitanić and Karatzas

1996, Kabanov 1999), the utility function will be defined on the vector terminal wealth, and

not on the liquidation value of the terminal wealth.

2.1 The financial market

Let T be a finite time horizon and let (Ω,F , IF = (Ft)t≤T , P ) be a stochastic basis with

the trivial σ-algebra F0. Let S := (S0, . . . , Sd) be a semimartingale with strictly positive

components; the first component is assumed to be constant over time S0(·) = 1. With the

interpretation of S as a price process, this means that the first security (“cash”) is taken as

the numéraire.

A trading strategy is an adapted, right-continuous, (componentwise) non-decreasing pro-

cess L taking values in IMd+1
+ , the set of (d+ 1)× (d+ 1)-matrices with non-negative entries;

Lijt is the cumulative net amount of funds transferred from the asset i to the asset j up to the

date t; this process may have a jump at the origin ∆Lij0 = Lij0 corresponding to the initial

transfer. Constant proportional transaction costs are described by a matrix (λij) ∈ IMd+1
+

with zero diagonal. Given an initial holdings vector x ∈ IRd and a strategy L, the portfolio

holdings X = Xx,L are defined by the dynamics:

X i
t = x+ X̂ i

− · Sit +
d∑
j=0

(
Ljit − (1 + λij)Lijt

)
(2.1)
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where X̂ i := X i/Si (i.e. X̂ is the process X divided by the process S componentwise), and

X i
− · Sit is the stochastic integral of X i

− with respect to Si.

2.2 Admissible strategies

Following Kabanov (1999), we define the solvency region :

K :=

 x ∈ IRd+1 : ∃ a ∈ IMd+1
+ , xi +

d∑
j=0

(aji − (1 + λij)aij) ≥ 0; i = 0, . . . , d

 .

The elements of K can be interpreted as the vectors of portfolio holdings such that the no-

bankruptcy condition is satisfied: the liquidation value of the portfolio holdings x, through

some convenient transfers, is nonnegative. In particular, K contains the positive orthant

IRd+1
+ .

Clearly, the set K is a closed convex cone containing the origin. We can then define the

partial ordering � induced by K :

x1 � x2 if and only if x1 − x2 ∈ K .

Let κ ≥ 0 be some given constant. A trading strategy L is said to be κ−admissible for the

initial holdings x ∈ K if the no-bankruptcy condition

Xx,L(.) � −κS(.) (2.2)

holds. We shall denote by Aκ(x) the set of all κ−admissible trading strategies for the initial

holdings x ∈ K, and we introduce the set

X (x) :=
{
X ∈ L0(IRd+1,FT ) : X = Xx,L

T for some L ∈ ∪κ≥0Aκ(x)
}
.

2.3 The problem formulation

Throughout this paper, we consider a utility function U mapping IRd+1 into IR with effective

domain dom(U) ⊂ K, and satisfying the conditions :

U(0) = 0

U is concave on K , (2.3)

U(x1) ≥ U(x2) for all x1 � x2 � 0 .

The third condition says that the agent preferences are monotonic in the sense of the partial

ordering �. The second condition is the concavity of the preferences of the agent. As it will

be clear from the definition of the utility maximization problem, the first condition can be

relaxed by only requiring U(0) > −∞. The case U(0) = −∞ was solved by Kramkov and
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Schachermayer (1999) in the one-dimensional frictionless framework. We leave this problem

for future research in order to simplify the (already complex) framework of this paper.

Notice that the utility function is neither required to be differentiable, nor strictly concave

and strictly increasing.

Our interest is on the stochastic control problem

V (x) := sup
X∈X (x)

EU(X)

of maximizing expected utility from terminal wealth. Since dom(U) ⊂ K, the above maxi-

mization can be restricted to the � −non-negative elements of X (x) :

V (x) := sup
X∈X (x)

EU(X) with X (x) := {X ∈ X (x) : X � 0 P − a.s. } .

Chief goal of this paper is to derive a dual formulation of this problem in the spirit of Cox

and Huang (1989), Karatzas, Lehoczky and Shreve (1987) and the recent paper of Kramkov

and Schachermayer (1999, KS99 hereafter).

Remark 2.1 In the frictionless case, the above problem can be reduced to the framework

of a classical utility function defined on the positive real line. Indeed, if λ = 0, the solvency

region K = {x ∈ IRd+1 : x̄ :=
∑d
i=0 x

i ≥ 0}. Clearly, x � (x̄, 0, . . . , 0) and (x̄, 0, . . . , 0) � x.

From the increase of U in the sense of the partial ordering � in Condition (2.3), this proves

that U(x) = u(x̄) := U(x̄, 0, . . . , 0). ♦

3 Preliminaries : polar transformations

3.1 Solvency region

We shall frequently make use of the positive polar cone associated to K defined as usual by

K∗ = {y ∈ IRd+1 : xy ≥ 0, for all x ∈ K}; here xy is the canonical scalar product of IRd+1.

It is easily checked that K∗ is the polyhedral cone defined by :

K∗ =
{
y ∈ IRd+1

+ : yj − (1 + λij)yi ≤ 0 for all 0 ≤ i, j ≤ d
}
, (3.1)

see Kabanov (1999). In particular, this shows that :

K∗ \ {0} ⊂ (0,∞)d ⊂ K .

An alternative characterization of K relies on the function

`(x) := inf
y∈K∗0

xy where K∗0 := {y ∈ K∗ : y0 = 1} .

Then, we have clearly :

x � 0 if and only if `(x) ≥ 0 .
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Remark 3.1 It follows from the definition of K∗0 and (3.1) that, for all y ∈ K∗0 , we have :

λ := max
0≤i≤d

(1 + λi0)−1 ≤ yj ≤ min
0≤i≤d

(1 + λ0i) =: λ .

♦

Let 10 be the vector of IRd+1 with components 1i0 = 0 for all i = 1, . . . , d and 10
0 = 1. It

is proved in Bouchard (1999) that :

`(x) = sup {w ∈ IR : x � w10} ,

i.e. `(x) is the liquidation value (on the bank account) of the portfolio x. We shall refer to

` as the liquidation function.

Remark 3.2 Existence holds for the last formulation of the liquidation function `(x), i.e.

x � `(x)10 for all x ∈ IRd+1. This follows from the fact that the set {w ∈ IR : x � w10} =

{w ∈ IR : (x− w10)y ≥ 0 for all y ∈ K∗} is closed. ♦

Another interesting property of the liquidation function is the following characterization

of the boundary ∂K of K.

Lemma 3.1 ∂K = {x ∈ K : `(x) = 0}.

Proof. Let x be in int(K). From Remark 3.1, there exists some positive scalar ε > 0 such

that x− εy ∈ K for all y ∈ K∗0 . Then, (x− εy)y ≥ 0. Using again Remark 3.1, we see that

xy ≥ ε|y|2 ≥ ε(d+ 1)λ2, and therefore `(x) > 0.

Conversely assume that `(x) > 0 and set r := `(x)/[(d + 1)λ
2
]1/2. By definition of the

liquidation function, it follows from the Cauchy-Schwartz inequality that, for all z ∈ B(x, r),

zx = xy + (z − x)y ≥ `(x)− |z − x|.|y| ≥ 0 for all y ∈ K∗0 .

This proves that `(z) ≥ 0. Then B(x, r) ⊂ K and x ∈ int(K). ♦

We shall also make use of the partial ordering �∗ induced by K∗ defined by :

y1 �∗ y2 if and only if y1 − y2 ∈ K∗ .

Then, by introducing the function

`∗(y) := inf
x∈K,|x|=1

xy ,

we obtain an alternative characterization of the partial ordering �∗ (or equivalently, of the

polar cone K∗) :

y �∗ 0 if and only if `∗(y) ≥ 0 .

By similar arguments as in the proof of Lemma 3.1, we prove the following characterization

of the boundary ∂K∗ of K∗.
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Lemma 3.2 ∂K∗ = {y ∈ K∗ : `∗(y) = 0}.

We shall need the following easy result on function `∗.

Lemma 3.3 Let b > 0. Then, there exists y(b) ∈ int(K∗) such that :

for all y ∈ K∗ , `∗(y) ≥ b =⇒ y �∗ y(b) .

Proof. Suppose to the contrary. This means that for all z ∈ int(K∗), there exists y(z) ∈
K∗, with `∗(y(z)) ≥ b, such that y(z)− z /∈ K∗, i.e. `∗(y(z)− z) < 0. Now by definition of

function `∗, we easily see that `∗(y(z)) ≤ `∗(y(z) − z) + |z|. We obtain therefore : b < |z|
for all z ∈ int(K∗). Sending z to 0 leads to a contradiction. ♦

3.2 Utility function

Define the Legendre-Fenchel transform

Ũ(y) := sup
x∈K

(U(x)− xy) for all y ∈ IRd+1 .

Then Ũ is a convex function from IRd+1 into the extended real line IR ∪ {+∞}. We shall

denote by ∂Ũ the subgradient of Ũ .

¿From the definition of K∗, for all y ∈ IRd+1 \K∗, there exists some x0 ∈ K such that

x0y < 0. Then, for all integer n, we have Ũ(y) ≥ −nx0y and therefore

dom(Ũ) ⊂ K∗ . (3.2)

Moreover, whenever U is unbounded, we clearly have Ũ(0) = +∞. More information on the

domain of Ũ will be obtained later on (see Lemma 4.2).

We now state an important property of function Ũ which follows immediately from its

definition as the Legendre-Fenchel transform of the � −increasing function U .

Lemma 3.4 Function Ũ is decreasing in the sense of the partial ordering �∗, i.e.

for all y1 �∗ y2 �∗ 0 , we have Ũ(y2) ≥ Ũ(y1) .

Proof. Let y1 �∗ y2 �∗ 0. Then y1 − y2 ∈ K∗ and U(x)− xy1 ≤ U(x)− xy2 for all x ∈ K.

The required result follows by taking supremum over x ∈ K in the last inequality. ♦
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4 The main result

4.1 Assumptions

For ease of exposition, we collect and comment the assumptions of the main result of the

paper in this subsection. Recall that conditions (2.3) are assumed to hold throughout the

paper. We first start by the following technical condition which is needed for the proof of

Lemma 8.3.

Assumption 4.1 For all convex subset C of K, the set ∂U(C) is convex.

Notice that Assumption 4.1 is always true for convex functions defined on the real line.

Example 5.3 provides an interesting utility function which does not satisfy the last assump-

tion. Unfortunately, we are not able to prove whether this assumption is necessary for the

main theorem of this paper to hold.

We shall also appeal to the following stringent condition.

Assumption 4.2 sup
x∈K

U(x) = +∞.

Under this assumption, Ũ(0) = +∞, and the solution of the dual problem W (x) defined

in (4.2) is guaranteed to be strictly positive P -a.s. We shall see that, whenever Assumption

4.2 does not hold, our main duality result remains valid provided that function Ũ satisfies

the Inada condition :

Assumption 4.3 sup
x∈K

U(x) < ∞ and lim inf
|y|→0

inf
q∈∂Ũ(y)

|q| = +∞.

Remark 4.1 In the one-dimensional smooth case with strictly concave utility function U ,

the second requirement of Assumption 4.3 is equivalent to the condition U ′(∞) = 0 (assumed

in KS99), and holds whenever U is bounded. When U is not strictly concave, this is no longer

true, as one can check it easily in the example U(x) = x ∧ a + χ[0,∞) for some a > 0, Ũ(y)

= a(1− y)+ + χ[0,∞), where χ is the indicator function in the sense of convex analysis. ♦

Another technical condition needed for the proof of our main result (precisely in Lemma

8.3) is the following.

Assumption 4.4 Function Ũ satisfies one of the following conditions :

(A1) Ũ(y) = ∞ for all y ∈ ∂K∗. In this case, set H := K∗.

(A2) Ũ can be extended to an open convex cone H of IRd+1, with K∗ \ {0} ⊂ H ⊂ K, in

such a way that the extended Ũ on H is convex, bounded from below by 0 and decreasing in

the sense of the partial ordering �∗.
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Observe that the above Condition (A2) is trivially satisfied in the one-dimensional case

d+ 1 = 1. Indeed, in this case K = K∗ = IR+, and the only possible choice for H is (0,∞)

= int(K).

Unfortunately, we have not been able to remove this technical condition in the general

multi-dimensional case, and we leave this issue as another challenging open problem. In

Section 5, we shall see that Examples 5.2 and 5.3 satisfy (A1), while Example 5.1 satisfies

(A2).

Our last assumption is a natural extension to the multi-dimensional framework of the

Asymptotic Elasticity condition introduced by KS99. Consider the function :

δ−∂Ũ(y) := sup
q∈−∂Ũ(y)

(qy) ,

and define the asymptotic elasticity of the convex function Ũ by :

AE(Ũ) = lim sup
`∗(y)→0

δ−∂Ũ(y)

Ũ(y)
.

Assumption 4.5 AE(Ũ) < ∞.

We postpone the discussion of this assumption after the proof of Lemma 4.2 below, and

we start by providing its relevant implications for the subsequent analysis of the paper.

Lemma 4.1 AE(Ũ) < ∞ if and only if there exist two parameters b, β > 0 such that :

Ũ(µy) < µ−βŨ(y) , for all µ ∈ (0, 1] and y ∈ K∗ with `∗(y) ≤ b . (4.1)

Proof. See Appendix. ♦

Combining Lemmas 3.3 and 4.1, we obtain the following easy consequence.

Corollary 4.1 Let condition AE(Ũ) < ∞ hold. Then, there exist constants C ≥ 0 and

β > 0 such that, for all µ ∈ (0, 1],

Ũ(µy) ≤ µ−β[C + Ũ(y)] for all y ∈ K∗ .

Characterization (4.1) of Assumption 4.5 provides more specific information about the

domain of Ũ :

Lemma 4.2 Let Assumption 4.5 hold. Then,

(i) int(K∗) ⊂ dom(Ũ) and therefore int[dom(Ũ)] = int(K∗),

(ii) For all y ∈ int(K∗), we have ∂Ũ(y) ⊂ −K.
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Proof. (i) Since U is a proper convex function, so is Ũ . Let y0 ∈ K∗ \ {0} be such that

Ũ(y0) < ∞. Consider an arbitrary y ∈ int(K∗). For all ε > 0, observe that `∗(y − εy0) ≥
`∗(y) + ε`∗(y0) so that lim infε↘0 `

∗(y − εy0) ≥ `∗(y) > 0 by Lemma 3.2. This proves that

y �∗ εy0 for sufficiently small ε > 0. Then, from Lemma 3.4, we see that Ũ(y) ≤ Ũ(εy0).

By use of Corollary 4.1, this proves that Ũ(y) ≤ µ−β[C + Ũ(y0)] < ∞. Hence int(K∗) ⊂
dom(Ũ). In view of (3.2), this proves that int[dom(Ũ)] = int(K∗).

(ii) Let p be any element in ∂Ũ(y) for some y ∈ int[dom(Ũ)]. By definition, this means

that : Ũ(z) ≥ Ũ(y) + p(z − y) for all z ∈ IRd+1. Set z := y + h for some h �∗ 0. Then, it

follows from (i) that :

0 ≥ Ũ(y + h)− Ũ(y) ≥ ph for all h ∈ K∗ ,

which ends the proof. ♦

We now turn to the discussion of Assumption 4.5. By analogy to Ũ , we define the

asymptotic elasticity of the concave function U by :

AE(U) := lim sup
`(x)→∞

δ∂U(x)

U(x)
where δ∂U(x) := sup

p∈∂U(x)
(px) .

Remark 4.2 From Remark 2.1, it is clear that above notion of asymptotic elasticity coin-

cides with that of KS99 in the smooth case. ♦

As in KS99, the following result states the equivalence between the conditions AE(Ũ) <

∞ and AE(U) < 1, under Inada-type conditions on U and Ũ .

Proposition 4.1 (i) Suppose that lim sup
`(x)→∞

sup
p∈∂U(x)

|p| = 0. Then

AE(Ũ) < ∞ =⇒ AE(U) < 1 .

(ii) Suppose that lim inf
|y|→0

inf
q∈∂Ũ(y)

|q| = ∞. Then

AE(U) < 1 =⇒ AE(Ũ) < ∞ .

Proof. See Appendix. ♦

In the smooth one-dimensional framework, we have lim sup
`(x)→∞

sup
p∈∂U(x)

|p| = U ′(∞), and

lim inf
|y|→0

inf
q∈∂Ũ(y)

|q| = Ũ ′(0). If in addition U is strictly concave, we have Ũ ′ = (U ′)−1, and the

conditions U ′(∞) = 0 and Ũ ′(0) = ∞ are equivalent. Hence, Proposition 4.1 provides the

equivalence between AE(U) < 1 and AE(Ũ) < ∞ under the Inada condition U ′(∞) = 0.
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4.2 Dual formulation

We first recall an important result on the problem of super-replication. Denoting byM(P )

the set of all P -martingales, we introduce the set

D :=
{
Z ∈M(P ) : Ẑt ∈ K∗, 0 ≤ t ≤ T P − a.s.

}
.

which plays the same role as the set of equivalent martingale measures in frictionless financial

markets. For some (positive) contingent claim C ∈ L0(K,FT ), let

Γ(C) :=
{
x ∈ IRd+1 : X � C for some X ∈ X (x)

}
.

Theorem 4.1 (Kabanov and Last 1999). Let S be a continuous process in M(Q) for some

Q ∼ P . Suppose further that λij + λji > 0 for all i, j = 0, . . . , d. Then :

Γ(C) = D(C) :=
{
x ∈ IRd+1 : EẐTC − Ẑ0x ≤ 0 for all Z ∈ D

}
.

Remark 4.3 It is an easy exercise to check that the condition λij + λji > 0 for all i, j =

0, . . . , d is equivalent to int(K∗) 6= ∅, which is assumed in Kabanov and Last (1999). ♦

For the purpose of this paper, we need to define a suitable extension of the set D. Given

some y ∈ K∗, we define the set :

Y(y) :=
{
Y ∈ L0(K∗,FT ) : EXY ≤ xy for all x ∈ K and X ∈ X (x)

}
.

Remark 4.4 ¿From the no-bankruptcy condition (2.2), it is easily checked that {ẐT : Z ∈
D and Ẑ0 = y} ⊂ Y(y). ♦

We can now define the candidate dual problem :

W (x) := inf
y∈K∗,Y ∈Y(y)

(
EŨ(Y ) + xy

)
. (4.2)

Since

Ũ(Y ) ≥ U(X)−XY for all X ∈ X (x), y ∈ K∗ and Y ∈ Y(y) ,

it follows from the definition of the dual control set Y(y) that :

V (x) ≤ W (x) . (4.3)

This proves in particular that the condition W (x) < ∞ guarantees that V (x) < ∞. The

following is the main result of this paper.
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Theorem 4.2 Let U be a utility function satisfying (2.3) together with Assumptions 4.1,

4.2, 4.4 and 4.5. Suppose further that the conditions of Theorem 4.1 hold.

Let x be any initial wealth in int(K) with W (x) < ∞. Then :

(i) existence holds for the optimization problem (4.2), i.e.

W (x) = EŨ(Y∗) + xy∗ for some y∗ ∈ K∗ and Y∗ ∈ Y(y∗) ;

moreover, P [Y∗ = 0] = 0,

(ii) there exists some X∗ valued in −∂Ũ(Y∗) such that :

X∗ ∈ X (x) and V (x) = EU(X∗) ,

(iii) V (x) = W (x).

(iv) Suppose that

Y(y+) ∩ L0 (int(K∗),FT ) 6= ∅ for some y+ ∈ K∗ . (4.4)

Then the above claims (i)-(ii)-(iii) are still valid if Assumption 4.3 is substituted to Assump-

tion 4.2.

Remark 4.5 The conditions of Theorem 4.1 are needed in Theorem 4.2 only in order to

apply directly Theorem 4.1. It is still a challenging open problem to derive Theorem 4.1

under weaker assumptions. ♦

Remark 4.6 Consider the following stronger version of (ii) :

(ii’) For all random variable X∗ valued in −∂Ũ(Y∗) :

X∗ ∈ X (x) and V (x) = EU(X∗) .

It is again a challenging open problem to prove that (ii’) holds. We thank D. Ocone for this

interesting comment. ♦

Remark 4.7 In the frictionless case, i.e. λ = 0, (4.4) is implied by the existence of an

equivalent local martingale measure for the price process S, i.e.

S ∈Mloc(Q) for some Q ∼ P . (4.5)

This condition is also sufficient in order for the result Γ(C) = D(C) of Theorem 4.1 to hold;

see Delbaen and Schachermayer (1998). Therefore, under (4.5), Theorem 4.2 is valid without

the conditions of Theorem 4.1. Finally, recall that the utility function can be reduced to a

function defined on the positive real line (see Remark 2.1), and therefore

- Assumptions 4.1 and 4.4 are trivially satisfied,
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- In the case of a strictly concave utility function, either Assumption 4.2 or Assumption

4.3 is trivially satisfied.

In summary, when λ = 0, U is a strictly concave function satisfying (2.3), and S sat-

isfies (4.5), statements (i)-(ii)-(iii) of Theorem 4.2 are valid under Assumption 4.5 on the

asymptotic elasticity of Ũ . ♦

The details of the proof will be reported in the following sections. For the convenience

of the reader, we present here its main steps. The main difficulty arises from the non-

smoothness of the utility function and its Legendre-Fenchel transform. We then start in

section 6 by introducing a suitable approximation Ũn of Ũ . By substituting Ũn to Ũ , we

define a sequence of approximate dual problems W n. Let S(x) (resp. Sn(x)) denote the set

of all possible solutions of the optimization problem W (x) (resp. W n(x)). We proceed as

follows :

(i) For each n, we prove in section 7 that Sn(x) 6= ∅, i.e. W n(x) = EŨn(Y n) + xyn for some

yn ∈ K∗ and Y n ∈ Y(yn).

(ii) By means of a calculus of variations technique, we find in section 8 that the optimality

of (yn, Y n) leads to the existence of a sequence (Zn)n, and the r.v. Xn = −DŨn(Y n)

∈
(
∂Ũ +NH̄

)
(Zn) such that Xn is ’approximately’ in X (x). After passing to appropriate

convex combinations, we prove that the sequence (Zn)n converges to some Y∗ ∈ S(x), and

Xn −→ X∗ ∈ −∂Ũ(Y∗) P -a.s.. We then show that X∗ lies in X (x) by using Theorem 4.1.

(iii) Now, the proof of Theorem 4.2 is easily completed in the last section. Indeed, optimality

of X∗ for the initial optimization problem V (x) is now a direct consequence of the Kuhn-

Tucker system. Thus equality between V (x) and W (x) follows and duality holds.

5 Main examples

We now provide three natural examples of utility functions consistent with the condition of

� −increase. The first example is the usual utility of the liquidation value of the terminal

wealth process, in which U is not smooth. The second one shows that the presence of

constraints in the definition of Ũ produces a lack of regularity even in the case where U is

smooth. In the third example, both U and Ũ are smooth. The first two examples will be

shown to satisfy all the conditions of Theorem 4.2, while the last example does not satisfy

Assumption 4.1.

We shall use the characterization of function Ũ by means of Lagrange multipliers. De-

noting by −∂U the subgradient of the convex function −U , it follows from the classical
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Kuhn-Tucker theory that, for all y ∈ dom(Ũ), the supremum in the definition of Ũ(y) is

attained at some x∗y ∈ K characterized by the following system :

y − µ∗ ∈ ∂U(x∗y) for some µ∗ ∈ K∗ with µ∗x∗y = 0 . (5.1)

Conversely, if x∗y ∈ K satisfies (5.1), then it is a point of maximum in the definition of Ũ(y),

and :

Ũ(y) = U(x∗y)− yx∗y .

For ease of exposition, we only work out these examples for the one-dimensional case

d = 1. Then, it is easily checked that the solvency region is the closed convex cone generated

by the IR2 vectors

v1 := α1

(
1,−(1 + λ10)−1

)
and v2 := α2

(
−1, 1 + λ01

)
,

where α1 := [1− (1 + λ10)−1(1 + λ01)−1]
−1

and α2 := [−1 + (1 + λ10)(1 + λ01)]
−1

. We denote

by (v∗1, v
∗
2) the dual basis of (v1, v2) in IR2, i.e. v∗i vj = δij. Direct computation provides :

v∗1 =
(
1, (1 + λ01)−1

)
and v∗2 =

(
1, 1 + λ10

)
.

Clearly, the positive polar cone K∗ is generated by (v∗1, v
∗
2). We shall assume that K∗ has

non-empty interior or, equivalently, λ10 + λ01 > 0.

Example 5.1 Let u : IR+ −→ IR be a C1 increasing and strictly concave function with

u(0) = 0, u(+∞) = +∞, u′(0) = +∞ and u′(+∞) = 0. Following Cvitanić and Karatzas

(1996), Kabanov (1999) and Cvitanić and Wang (1999), we consider the utility function :

U(x) := u(`(x)) = u (min(xv∗1, xv
∗
2)) = u

(
xv∗11{x1≥0} + xv∗21{x1<0}

)
for all x ∈ K .

Observe that U is not differentiable along the half line {x ∈ K : x1 = 0} = {(x0, 0) :

x0 ≥ 0}. In order to compute explicitly the Legendre-Fenchel transform Ũ , we solve the

Kuhn-Tucker system (5.1), i.e. find (x, µ1, µ2) ∈ K × IR2
+ such that :

y − µ1v
∗
1 − µ2v

∗
2 ∈ ∂U(x) and µ1xv

∗
1 + µ2xv

∗
2 = 0 .

(i) Suppose that µ1 6= 0 and µ2 6= 0. Then, xv∗1 = xv∗2 = 0 and then x = 0, which leads to

a contradiction since `(0) = 0 and u′(0) = +∞.

(ii) Suppose that µ1 = 0 and µ2 6= 0. Then xv∗2 = 0 and therefore x ∈ cone(v1) ⊂ ∂K.

It follows that `(x) = 0 and the Kuhn-Tucker system cannot be satisfied because of the

condition u′(0) = +∞.
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(iii) The case µ2 = 0 and µ1 6= 0 is similar to the previous one and leads to the same

conclusion.

(iv) From the previous cases, we see that we must have µ1 = µ2 = 0 in order for the pair

(x, µ) to solve the Kuhn-Tucker system. We now consider three cases depending on the sign

of x1.

- Suppose that x1 > 0. Then U is differentiable at the point x and the Kuhn-Tucker

system reduces to y = u′(`(x))v∗1. Then, direct calculation shows that :

y = y0v∗1 and Ũ(y) = ũ(y0) for all y0 > 0 ,

where ũ is the one-dimensional Legendre-Fenchel transform as in the previous example.

- The case x1 < 0 is treated by analogy with the previous one and provides :

y = y0v∗2 and Ũ(y) = ũ(y0) for all y0 > 0 ,

where ũ is the one-dimensional Fenchel-Legendre transform as in the previous example.

- Finally suppose that x1 = 0. Then ∂`(x) = {(1, ρ) : (1 + λ10)−1 ≤ ρ ≤ 1 + λ01}. By

direct calculation, we see that :

y = y0(1, ρ) and Ũ(y) = ũ(y0) for all y0 > 0 .

In conclusion, the function Ũ is finite on K∗ \ {0}, and

Ũ(y) = ũ(y0) for all y ∈ K∗ \ {0} .

Clearly, Assumptions 4.1, 4.2 and 4.4-(A2) are satisfied. To see that Assumption 4.5 holds,

we compute that Ũ has a singular gradient given by :

DŨ(y) = ũ′(y0) 10 .

This shows that AE(Ũ) is finite since AE(ũ) is finite or equivalently AE(u) is strictly smaller

than one.

Let us conclude the discussion of this example by comparing our main Theorem 4.2 to

Theorem 2.1 in Cvitanić and Wang (1999, CW hereafter). CW derived the dual formulation

of the utility maximization problem under the condition (?) wu′(w) ≤ a + (1 − b)u(w) for

all w > 0, for some a > 0 and 0 < b ≤ 1. From Lemmas 6.2 and 6.3 in KS99, observe

that condition (?) implies that AE(u) = 1 − b < 1. Hence Assumption 4.5 is weaker than

condition (?) in the one-dimensional case (d = 1) studied by CW.

Example 5.2 Let r be an arbitrary element of int(K∗) and let

ρi := (rvi)
−1 ; i = 1, 2 so that r = ρ−1

1 v∗1 + ρ−1
2 v∗2 .
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Consider the utility function

U(x) = u(rx) for all x ∈ K ,

where u : IR+ −→ IR is a C1 increasing, strictly concave function satisfying u′(0+) = +∞
and u′(+∞) = 0. Clearly, U is strictly concave and increasing in the sense of the partial

ordering �, and Assumption 4.1 holds. We further impose the conditions u(0) = 0 and

u(∞) = ∞ in order to satisfy the requirement of (2.3) and Assumption 4.2.

It remains to check that Assumptions 4.4 and 4.5 hold. In order to compute explicitly

the Legendre-Fenchel transform Ũ , we solve the Kuhn-Tucker system (5.1). Denote by ũ

the one-dimensional Legendre-Fenchel transform ũ(ζ) = supξ≥0 (u(ξ)− ξζ).

(i) If µ1 and µ2 are both nonzero, then x∗yv
∗
1 = x∗yv

∗
2 = 0, which can not happen unless

x∗y = 0, but this does not solve the first order condition.

(ii) If µ1 = µ2 = 0, then y = λr for some λ > 0 and Ũ(y) = ũ(λ) = ũ(|r|−2yr).

(iii) If µi = 0 and µi−1 > 0 for i = 1, 2, then x∗y = ξvi for some ξ > 0, and y = µi−1v
∗
i−1 +

u′(rx∗y)r. This proves that y ∈ cone(r, v∗i−1), and provides ξ = ρi(u
′)−1(ρiyvi), by taking

scalar product with vi.

Hence,

Ũ(y) = ũ (ρiyvi) for all y ∈ K∗ \ cone(r, v∗i ) .

By continuity, this clearly defines function Ũ for all y ∈ K∗ \ {0}. In particular, Ũ(λr) =

ũ (|r|−2yr) for all λ > 0. Observe that :

• Ũ(y) = +∞ for all y ∈ ∂K∗ so that Condition (A1) of Assumption 4.4 holds.

• Ũ is not differentiable at any element of cone(r), and

∂Ũ(y) =

 ũ′ (ρiyvi) ρivi for y ∈ int (K∗ \ cone(r, v∗i ))

ũ′(λ)[ρ1v1, ρ2v2] for y = λr; λ > 0 ,

where [ρ1v1, ρ2v2] = {µρ1v1 + (1− µ)ρ2v2 : 0 ≤ µ ≤ 1}. Since

sup
q∈−∂Ũ(λr)

qλr = sup
0≤µ≤1

−ũ′(λ)(µρ1v1 + (1− µ)ρ2v2)λr = −ũ′ (λ)λ for all λ > 0 ,

it follows that :

AE(Ũ) = AE(ũ) = lim sup
ζ→0

−ζũ′(ζ)

ũ(ζ)
.

Hence, from Lemma 6.3 in KS99, Assumption 4.5 is satisfied in this example whenever

AE(u) < 1.
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Example 5.3 Consider the utility function

U(x) = u1(xv∗1) + u2(xv∗2) for all x ∈ K ,

where for j = 1, 2, uj : IR+ −→ IR is a C1 increasing, strictly concave function satisfying

u′j(0+) = +∞, u′j(+∞) = 0, uj(0) = 0, and uj(∞) = ∞. Clearly, U is strictly concave

and increasing in the sense of the partial ordering �, and Conditions (2.3) together with

Assumption 4.2 are satisfied.

We compute explicitly the Legendre-Fenchel transform Ũ by solving the Kuhn-Tucker

system (5.1). It turns out that the Lagrange multiplier is zero so that the Kuhn-Tucker

system reduces to

y =
∑
j=1,2

u′j
(
xv∗j

)
v∗j .

Since (v∗∗1 , v
∗∗
2 ) = (v1, v2), it follows from uniqueness of the representation of y in the basis

(v∗1, v
∗
2) of IR2 that u′j(xv

∗
j ) = yvj, and therefore :

Ũ(y) = ũ1 (yv1) + ũ2 (yv2) .

where ũj is the one-dimensional Legendre-Fenchel transform of −uj(−·).
Clearly, Condition (A1) of Assumption 4.4 is satisfied. Moreover, Ũ is differentiable and

Ũ ′(y) =
∑
j=1,2

ũ′j (yvj) vj

so that Assumption 4.5 is satisfied whenever AE(uj) < 1 for j = 1, 2. However, Assumption

4.1 is not satisfied. Indeed, take two arbitrary vectors x1 and x2 in int(K), and compute for

λ ∈ (0, 1) :

λU ′(x1) + (1− λ)U ′(x2) =
∑
j=1,2

[
λu′j(x1v

∗
j ) + (1− λ)u′j(x2v

∗
j )
]
v∗j

Suppose to the contrary that Assumption 4.1 holds. Then∑
j=1,2

[
λu′j(x1v

∗
j ) + (1− λ)u′j(x2v

∗
j )
]
v∗j = U ′ (µx1 + (1− µ)x2)

=
∑
j=1,2

u′j
(
µx1v

∗
j + (1− µ)x2v

∗
j

)
v∗j .

Setting ξij := v∗jxi, and recalling that xi = ξi1v1 + ξi2v2, this provides

λu′j(ξ1j) + (1− λ)u′j(ξ2j) = u′j (µξ1j + (1− µ)ξ2j) for j = 1, 2 .

Since µ does not depend on j, it is easy to build examples of functions uj so that these

equalities can not hold simultaneously.
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6 Approximation by quadratic inf-convolution

Let H be the open convex cone introduced in Assumption 4.4, i.e. H = int(K∗) under (A1)

and K∗ ⊂ H under (A2).

Let n ≥ 1 be an arbitrary integer. Following Aubin (1984) or Clarke et al. (1998), we

define the quadratic inf-convolution approximation of Ũ by :

Ũn(y) := inf
z∈H̄

(
Ũ(z) +

n

2
|z − y|2

)
for all y ∈ IRd+1 ,

where H̄ is the closure of H in IRd+1. For each n ≥ 1, Ũn is finite on IRd+1, and strictly

convex in there. Since Ũ is non-negative, we have

0 ≤ Ũn(y) ≤ Ũ(y) for all y ∈ IRd+1 . (6.1)

In order to handle the non-smoothness of the utility function U , we define the approxi-

mate dual problems :

W n(x) := inf
y∈K∗,Y ∈Y(y)

(
EŨn(Y ) + xy

)
.

¿From (6.1), we have :

W n(x) ≤ W (x) for all x ∈ K .

In the remaining part of this section, we state several properties of Ũn which are extremely

important for the subsequent analysis.

Property 1 For all y ∈ IRd+1, there exists a unique zn(y) ∈ H̄ such that :

Ũn(y) = Ũ (zn(y)) +
n

2
|zn(y)− y|2 .

Proof. This follows by direct application of Theorem 2.2 p21 in Aubin (1984) to the

function F (z) = Ũ(z)+χH̄(z) where χH̄(z) = 0 on H̄ and +∞ otherwise, is the characteristic

function of H̄ in the sense of convex analysis. ♦

Property 2(i) For all x ∈ K and y ∈ dom(Ũn), we have |zn(y)−y|2 ≤ 4
n

[
Ũn(y) + xy + C

]
,

for some constant C.

(ii) Let (yn)n be a sequence converging to y ∈ dom(Ũ). Then

zn(yn) −→ y .

(iii) Let (yn)n be a sequence converging to y. Suppose further that zn(yn) −→ y. Then

Ũn(yn) −→ Ũ(y) .
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Proof. See Appendix. ♦

Property 3 Function Ũn is continuously differentiable on IRd+1 and :

DŨn(y) = n (y − zn(y)) ∈
(
∂Ũ +NH̄

)
(zn(y)) ,

where NH̄(z) := {ξ ∈ IRd+1 : ξz ≥ ξy for all y ∈ H̄} is the normal cone to H̄ at point z.

Proof. Applying Theorem 5.2 page 66 of Aubin (1984) to the function f(y) = Ũ(y)+χH̄(y),

it follows that

DŨn(y) = n (y − zn(y)) ∈ ∂
(
Ũ + χH̄

)
(zn(y)) ,

The required result follows from Theorem 4.4 p52 in Aubin (1984) and the definition of

normal cones. ♦

Property 4 Suppose that AE(Ũ) < ∞. Then, there exist positive constants C ≥ 0 and

β > 0 such that, for all n ≥ 1,

Ũn(µy) ≤ µ−β
(
C + Ũn(y)

)
for all µ ∈ (0, 1] and y ∈ IRd+1 .

Proof. By a trivial change of variable, it follows from the cone property of H that :

Ũn(µy) = µ inf
z∈H̄

(
µ−1Ũ(µz) +

n

2
|z − y|2

)
.

Using Corollary 4.1, this provides :

Ũn(µy) ≤ µ−βC + µ−β inf
z∈H̄

(
Ũ(z) + µβ+1n

2
|z − y|2

)
,

and the required result from the fact that µβ+1 ≤ 1. ♦

7 Existence for the dual problems

We recall the notation Sn(x) and S(x) for the set of all possible solutions of the optimization

problems W n(x) and W (x). We first show in Lemma 7.1 that for all n ≥ 0, there exists a

solution to problem W n(x). We then show in Lemma 7.2 the existence for the dual problem

W (x). In Corollary 7.2, we establish the convergence of the value functions W n(x) towards

W (x). We conclude this section by stating a stronger technical convergence result that will

be needed in the following section.
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Lemma 7.1 Consider some initial wealth x in int(K) satisfying W (x) < ∞. Then Sn(x)

6= ∅ for all n ≥ 1.

Proof. Let n ≥ 1 be a fixed integer. Let (yk, Y k)k be a minimizing sequence of W n(x). If

the set {k ≥ 0 : yk = 0} is infinite, then (yk, Y k) −→ (ỹ, Ỹ ) = 0 along a subsequence, and

the result of the lemma is trivial. We then specialize the discussion to the non-trivial case

where {k ≥ 0 : yk = 0} is finite. By passing to a subsequence, we can assume this set to be

empty.

Since Ũn ≥ 0, it follows from (6.1) that ∞ > W (x) ≥ W n(x) ≥ xyk − 1 ≥ wk`(x)− 1,

where wk := (yk)0 is the first component of the IRd+1 vector yk. Recall that x ∈ int(K).

Then it follows from Lemma 3.1 that `(x) > 0 and therefore the sequence (wk)k is bounded.

Now observe that {y ∈ K∗ : y0 = 1} is a compact subset of IRd+1, which proves that the

sequence (yk/wk)k is bounded, and therefore the sequence (yk)k is bounded. By possibly

passing to a subsequence, this implies the existence of ỹ ∈ K∗ such that

yk −→ ỹ as k →∞ .

Next, since ST = XS0,0
T ∈ X (S0), it follows from the definition of the set Y(yk) that E|Y kST |

= EY kST ≤ S0y
k. Then, the sequence (Y kST )k is bounded in L1 norm. By Komlòs theorem

(see e.g. Hall and Heyde 1980), we deduce the existence of a sequence Ỹ k ∈ conv(Y j, j ≥ k)

such that

Ỹ k −→ Ỹ P − a.s. ;

recall that SiT > 0 P -a.s. for all i = 1, . . . , d. Clearly, Ỹ is valued in K∗ and Ỹ k ∈ Y(ỹk),

where ỹk is the corresponding convex combination of (yj, j ≥ 0). By Fatou’s lemma, we also

have EXỸ ≤ xỹ for all X ∈ X (x); recall that X ∈ K and Ỹ k ∈ K∗. Hence Ỹ ∈ Y(ỹ). Now,

from the convexity of (y, Y ) 7−→ Ũn(Y ) + xy, it follows that (ỹk, Ỹ k)k is also a minimizing

sequence of W n. Since Ũ ≥ 0, we get by Fatou’s lemma :

W n(x) ≤ EŨn(Ỹ ) + xỹ ≤ lim inf
k→∞

EŨn(Ỹ k) + xỹk = W n(x) .

This proves that (ỹ, Ỹ ) ∈ Sn(x). ♦

Lemma 7.2 Consider some initial wealth x in int(K) satisfying W (x) < ∞. For each

n ≥ 1, let (yn, Y n) be an arbitrary element of Sn(x). Then, there exists a sequence (ȳn, Ȳ n)

∈ conv
(
(yk, Y k), k ≥ n

)
such that :

(ȳn, Ȳ n) −→ (y∗, Y∗) ∈ S(x) P − a.s. and EŨn(Ȳ n) −→ EŨ(Y∗) .
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Proof. Since Ũn ≥ 0, it follows from (6.1) that ∞ > W (x) ≥ W n(x) ≥ xyn ≥ wn`(x),

where wn := (yn)0 is the first component of the IRd+1 vector yn. By the same argument as

in the previous proof, yn −→ y∗ ∈ K∗ along a subsequence, and there exists a sequence Ȳ n

∈ conv(Y j, j ≥ n) such that Ȳ n −→ Y∗ P -a.s. and Y∗ ∈ Y(y∗).

Let (λn,j)j≥n be the coefficients of the above convex combination. From the convexity of

Ũn and the increase of Ũn in n, we see that

Ũn(Ȳ n) ≤
∑
j≥n

λn,jŨn(Y j) ≤
∑
j≥n

λn,jŨ j(Y j) .

Taking expectations, and using Property 1 of the quadratic inf-convolution approximation, as

well as (6.1), we see that for Ȳ n and the corresponding convex combination ȳn of (yj; j ≥ n):

EŨ
(
zn(Ȳ n)

)
+ xȳn = EŨn(Ȳ n)− n

2

∣∣∣zn(Ȳ n)− Ȳ n
∣∣∣2 + xȳn

≤ EŨn(Ȳ n) + xȳn

≤
∑
j≥n

λn,j[EŨ j(Y j) + xyj]

=
∑
j≥n

λn,jW j(x) ≤ W (x) . (7.1)

Using Property 2 (i) of the inf-convolution approximation, we see that :

E
∣∣∣zn(Ȳ n)− Ȳ n

∣∣∣2 ≤ 4

n
[C +W (x)] ,

for some constant C. Therefore, zn(Ȳ n)− Ȳ n −→ 0 in L2 norm. Since Ȳ n −→ Y∗ P -a.s. this

proves that zn(Ȳ n) −→ Y∗ P -a.s. along some subsequence. We now take limits in (7.1). In

view of Property 2 (iii), it follows from Fatou’s Lemma that EŨ(Y∗) + xy∗ ≤ W (x). Since

y∗ ∈ K∗ and Y∗ ∈ Y(y∗), this proves that (y∗, Y∗) ∈ S(x). The previous inequalities also

provide the convergence of EŨn(Ȳ n) towards EŨ(Y∗). ♦

Corollary 7.1 Let x in int(K) be such that W (x) < ∞. Then, the sequence W n(x) con-

verges towards W (x).

Proof. Observe that the sequence (W n(x))n is increasing. Since W n(x) ≤ W (x) by (6.1),

we have W n(x) −→ W∞(x) for some W∞(x) ≤ W (x). We now use the same argument as

in the previous proof to get :

EŨn(Ȳ n) + xȳn ≤
∑
k≥n

λn,kW k(x) ≤ W (x) .

Taking limits, it follows from the previous lemma that W (x) ≤ W∞(x) ≤ W (x). Then

W∞(x) = W (x). ♦
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Corollary 7.2 Consider some initial wealth x in int(K) satisfying W (x) < ∞. For each

n, let (yn, Y n) be an arbitrary element in Sn(x), and let (y∗, Y∗) ∈ S(x) be the limit defined

in Lemma 7.2. Set Jn := Ũn(Y n).

Then there exists a sequence (yn∗ , Y
n
∗ , J

n
∗ ) ∈ conv

(
(yk, Y k, Jk), k ≥ n

)
such that :

(yn∗ , Y
n
∗ ) −→ (y∗, Y∗) P − a.s. and Jn∗ −→ Ũ(Y∗) in L1(P ) .

Proof. From Lemma 7.2, there exists a sequence (ȳn, Ȳ n) ∈ conv((yk, Y k), k ≥ n) which

converges P -a.s. to (y∗, Y∗) ∈ S(x). Denote by (λn,k, k ≥ n) the coefficients defining the

convex combination, and set J̄n :=
∑
k≥n λ

n,kJk.

First, observe that EJ̄n + xȳn =
∑
k≥n λ

n,kW k(x) −→ W (x) by Corollary 7.1, and then

EJ̄n −→ EŨ(Y∗). Since J̄n ≥ 0 for all n, this proves that the sequence (J̄n)n is bounded

in L1(P ). From Komlòs theorem, we can then deduce the existence of a sequence Jn∗ ∈
conv(J̄k, k ≥ n) = conv(Jk, k ≥ n) and an integrable r.v. J∗, such that

Jn∗ −→ J∗ P − a.s. and EJn∗ −→ EŨ(Y∗) ,

where we used again Corollary 7.1. We shall denote by (λn,k∗ , k ≥ n) the coefficients defin-

ing this new convex combination. Set (yn∗ , Y
n
∗ ) :=

∑
k≥n λ

n,k
∗ (yk, Y k). Since (yn∗ , Y

n
∗ ) ∈

conv
(
(ȳk, Ȳ k), k ≥ n

)
, we have

(yn∗ , Y
n
∗ ) −→ (y∗, Y∗) P − a.s. .

Next, it follows from the increase of Ũn in n, as well as the convexity of Ũn that :

Jn∗ =
∑
k≥n

λn,k∗ Ũk(Y k) ≥
∑
k≥n

λn,k∗ Ũn(Y k) ≥ Ũn(Y n
∗ ) .

Using Property 2 of the quadratic inf-convolution (as in the end of the proof of Lemma 7.2),

this proves that J∗ ≥ Ũ(Y∗) P -a.s.. On the other hand it follows from Fatou’s lemma that

EŨ(Y∗) = limnEJ
n
∗ ≥ EJ∗. This proves that J∗ = Ũ(Y∗) P -a.s..

We have then established that Jn∗ −→ Ũ(Y∗) P -a.s. and EJn∗ −→ EŨ(Y∗). Since Jn∗ ≥ 0

P -a.s., this proves that Jn∗ −→ Ũ(Y∗) in L1(P ), see e.g. Shiryaev (1995). ♦

8 Attainability

We first start by characterizing the optimality of (yn, Y n) ∈ Sn(x) by the classical technique

of calculus of variation.

Lemma 8.1 Let Assumption 4.5 hold, and consider some initial wealth x ∈ int(K) satis-

fying W (x) < ∞. For each n, let (yn, Y n) be an arbitrary element of Sn(x). Set Xn :=

−DŨn(Y n) = n (zn(Y n)− Y n); see Property 3. Then,

EXn(Y − Y n) ≤ x(y − yn) for all y ∈ K∗ and Y ∈ Y(y) .
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Proof. Let y ∈ K∗ and Y ∈ Y(y) be fixed. Set

(ζnε , ξ
n
ε ) := (1− ε)(yn, Y n) + ε(y, Y ) , Zn

ε := zn (ξnε )

and Xn
ε := −DŨn (ξnε ) = n (Zn

ε − ξnε ) .

Clearly, as ε↘ 0, ξnε −→ Y n, Zn
ε −→ Zn := zn(Y n) and Xn

ε −→ Xn P -a.s.

By the optimality of (yn, Y n) for the problem W n(x) and the convexity of Ũn, we have :

0 ≥ E
[
Ũn(Y n)− Ũn(ξnε )

]
+ x(yn − ζnε ) ≥ −EXn

ε (Y n − ξnε ) + x(yn − ζnε ) .

Dividing by ε, this provides :

EXn
ε (Y − Y n)− x(y − yn) ≤ 0 .

In order to prove the required result, it remains to check that :

lim inf
ε↘0

EXn
ε (Y − Y n) ≥ EXn(Y − Y n) .

To prove this, we intended to show that the sequence (Xn
ε (Y − Y n))ε is bounded from below

by some integrable random variable independent of ε, which allows to apply Fatou’s lemma.

Let α > 0 be a given parameter. By convexity of Ũn, we see that :

Ũn ((1− ε− α)Y n) ≥ Ũn (ξnε + α(Y − Y n))− (ε+ α)Y DŨn (ξnε + α(Y − Y n)) .

From Property 3 of the quadratic inf-convolution,

DŨn (ξnε + α(Y − Y n)) ∈
(
∂Ũ +NH̄

)
(zn(ξnε + α(Y − Y n))) ⊂ −K

since Ũ is decreasing in the sense of �∗ on H (see Lemma 3.4 and Assumption 4.4) and by

the definition of H. Then Y DŨn (ξnε + α(Y − Y n)) ≤ 0. Using again the convexity of Ũn,

we get :

Ũn ((1− ε− α)Y n) ≥ Ũn (ξnε + α(Y − Y n))

≥ Ũn(ξnε ) + αDŨn(ξnε )(Y − Y n) ≥ −αXn
ε (Y − Y n) ,

where we used the non-negativity of Ũn. Now, Let 4α ≤ 1 and ε ≤ 1 − 2α. Then, from

Property 4, which is inherited from Assumption 4.5, this provides :

Xn
ε (Y − Y n) ≥ −1

α
Ũn ((1− ε− α)Y n) ≥ −(1− ε− α)−β

α
[C + Ũn(Y n)]

≥ −α−β−1[C + Ũn(Y n)] . (8.1)

Now, observe that EŨn(Y n) + xyn = W n(x) −→ W (x), so that Ũn(Y n) is integrable for

large n, and the proof is complete. ♦

The following result is an easy consequence of Komlòs theorem. We report it for com-

pleteness.
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Lemma 8.2 Let (φn)n be a sequence of r.v. in L0(IRp,F). Suppose that

sup
n
|φn| < ∞ P − a.s.

Then, there exists a r.v. φ ∈ L0(IRp,F) such that, after possibly passing to a subsequence,

1

n

n∑
j=1

φj −→ φ P − a.s.

Proof. Set ϕ := supn |φn| and define the probability measure P ′ by the density dP ′/dP

= e−ϕ/Ee−ϕ. Then, P ′ ∼ P , and the sequence (φn)n is bounded in L1(P ′). The required

result follows from Komlòs theorem. ♦

Lemma 8.3 Let Assumptions 4.1, 4.2, 4.4 and 4.5 hold, and consider some x ∈ int(K)

with W (x) < ∞.

Let (Xn)n be the sequence introduced in Lemma 8.1, and (y∗, Y∗) be the solution in S(x)

introduced in Lemma 7.2. Then P [Y∗ = 0] = 0, and there exist a sequence Xn
∗ ∈ conv(Xj, j ≥

n) and X∗ such that :

X∗ ∈ −∂Ũ(Y∗) and Xn
∗ −→ X∗ P − a.s.

Moreover, under Condition (4.4), the above statement still holds if Assumption 4.3 is sub-

stituted to Assumption 4.2.

Proof. (i) We first prove the required result when Condition (A1) of Assumption 4.4 is

satisfied. We shall use the notations of Lemma 8.1. Define the sequence Zn
∗ =

∑
k≥n λ

n,kZk,

where (λn,k, k ≥ n)n are the coefficients of the convex combination relating (Y n
∗ )n to (Y n)n,

and observe that EŨn(Y n) = EŨ(Zn) + n
2
|Zn − Y n|2 −→ EŨ(Y∗), so that Zn − Y n −→ 0

P -a.s. after possibly passing to a subsequence. Then Zn
∗ = Y n

∗ +
∑
k≥n λ

n,k(Zk − Y k) −→
Y∗ P -a.s. Since W (x) = EŨ(Y∗) + xy∗ is finite, it follows from condition (A1) that Y∗ ∈
int(K∗) P -a.s and the sequence (Zn

∗ (ω))n is valued in a compact subset J(ω) of int(K∗) for

a.e. ω ∈ Ω. In particular, we have NH(Zn
∗ ) = {0} for large n.

By definition, −Xn ∈ ∂Ũ(Zn) P -a.s., or equivalently, Zn ∈ ∂U(Xn) P -a.s.. From As-

sumption 4.1, there exists X̄n =
∑
k≥n µ

n,kXk ∈ conv(Xk, k ≥ n) such that −X̄n ∈ ∂Ũ(Zn
∗ ).

Since the sequence (Zn
∗ (ω))n is valued in a compact subset of int(K∗), it follows from the

convexity of Ũ that the sequence X̄n ∈ −∂Ũ(Zn
∗ ) is bounded P -a.s.. We now use Lemma 8.2

to find a sequence X̄n
∗ ∈ conv(X̄k, k ≥ n) which converges P -a.s. to some random variable

X∗.

It remains to prove that −X∗ ∈ ∂Ũ(Y∗). Since X̄n ∈ −∂Ũ(Zn
∗ ), the definition of the

subgradient provides

Ũ(z) ≥ Ũ(Zn
∗ ) + X̄n(Zn

∗ − z) for all z ∈ K∗ .
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Let (λn,j)j≥n be the coefficients of the convex combination defining (X̄n
∗ ) from (X̄n), and set

Z̄n
∗ :=

∑
j≥n λ

n,jZj
∗ . By convexity of Ũ , the previous inequality implies that :

Ũ(z) ≥ Ũ(Z̄n
∗ ) +

∑
j≥n

λn,jX̄j(Zj
∗ − z)

= Ũ(Z̄n
∗ ) + X̄n

∗ (Z̄n
∗ − z) +

∑
j≥n

λn,jX̄j(Zj
∗ − Z̄n

∗ ) .

Now, recall that Zn
∗ −→ Y∗ P -a.s. Then, Zj

∗ − Z̄n
∗ −→ 0 P -a.s.. Since the sequence (X̄n) is

P -a.s. bounded, it follows that X̄j(Zj
∗ − Z̄n

∗ ) −→ 0 P -a.s. and the same result prevails for

the convex combination. Hence, by taking limits in the last inequality, we get :

Ũ(z) ≥ Ũ(Y∗) +X∗(Y∗ − z) for all z ∈ K∗ ,

proving that −X∗ ∈ ∂Ũ(Y∗).

(ii) Now suppose that Condition (A2) of Assumption 4.4 is satisfied. As in part (i) of this

proof, Zn
∗ −→ Y∗ P -a.s.. We first prove that

P [Y∗ = 0] = 0 . (8.2)

Consider first the case where Assumption 4.2 is satisfied, i.e. supx∈K U(x) = +∞. Then,

since Ũ(0) = +∞, and we obtain immediately (8.2) from the fact that W (x) < ∞. Next,

suppose that Condition (4.4) holds, and Assumption 4.3 is satisfied instead of Assumption

4.2. Let Y+ be an element in Y(y+) ∩ L0 (int(K∗),FT ), and define the event set A :=

{Y∗ = 0}. From Assumption 4.3, the sequence (Xn)n converges P -a.s. to +∞ on A, since

by definition Xn := −DŨn(Y n) ∈
(
∂Ũ +NH̄

)
(zn(Y n)). But, from the first order condition

of Lemma 8.1, we have :

EXn(Y+ − Y n) ≤ x(y+ − yn) .

Furthermore, since AE(Ũn) <∞ by Assumption 4.5, and Ũ is bounded (as a consequence of

the boundedness of U), we see that supnEX
nY n < ∞. Therefore, whenever P [A] > 0, the

left hand-side of the last inequality explodes to +∞, whereas the right hand-side remains

bounded. This is the required contradiction, and the proof of (8.2) is complete.

Then, for n sufficiently large Zn
∗ is valued in the open domain H, and therefore NH̄(Zn

∗ ) =

{0}. We then proceed as above to obtain the existence of a sequence X̄n
∗ ∈ conv(X̄k, k ≥ n)

= conv(Xk, k ≥ n) such that X̄n
∗ −→ X∗ P -a.s..

We now prove that −X∗ ∈ ∂Ũ(Y∗). Let us be more specific, and call Ū the extension

of Ũ to the open convex domain H. By the same argument as in (i), we see that −X∗ ∈
∂Ū(Y∗). By definition, Ũ = Ū + χK∗ , where χK∗ = 0 on K∗ and +∞ otherwise. Then, ∂Ũ

= ∂Ū +NK∗ , and ∂Ū(Y∗) ⊂ ∂Ũ(Y∗). ♦
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Proposition 8.1 Let Assumptions 4.1, 4.2, 4.4 and 4.5 hold, and consider some x ∈ int(K)

with W (x) < ∞. Let (y∗, Y∗) be the solution of W (x) introduced in Lemma 7.2. Then

P [Y∗ = 0] = 0 (Lemma 8.3), and there exists a r.v. X∗ valued in −∂Ũ(Y∗) such that :

EX∗(Y − Y∗) + x(y∗ − y) ≤ 0 for all y ∈ K∗ and Y ∈ Y(y) . (8.3)

Moreover, under Condition (4.4), the above statement still holds if Assumption 4.3 is sub-

stituted to Assumption 4.2.

Proof. Let (yn, Y n) ∈ Sn(x), Xn := −DŨn(Y n), Jn := Ũn(Y n), and Zn := zn(Y n). Let

(yn∗ , Y
n
∗ , X

n
∗ , J

n
∗ , Z

n
∗ ) ∈ conv

(
(yk, Y k, Xk, Jk, Zk), k ≥ n

)
be as in Lemmas 7.2 and 8.3 and

Corollary 7.2 : (yn∗ , Y
n
∗ , X

n
∗ ) −→ (y∗, Y∗, X∗) P -a.s. and Jn∗ −→ Ũ(Y∗) in L1(P ). We shall

denote by (λn,k, k ≥ n)n the coefficients of the last convex combination. From Lemma 8.1,

we have

lim inf
n→∞

E
∑
k≥n

λn,kXk(Y − Y k) ≤ x(y − y∗) . (8.4)

By the same argument as in the proof of Lemma 8.1, we get the lower bound (8.1) :∑
k≥n

λn,kXk(Y − Y k) ≥ Const[1 + Jn∗ ] . (8.5)

The sequence (Jn∗ )n is uniformly integrable as it converges in the L1(P ) norm. Then we can

apply Fatou’s lemma in (8.4) and we get :

E lim inf
n→∞

∑
k≥n

λn,kXk(Y − Y k) ≤ x(y − y∗) . (8.6)

Now observe that
∑
k≥n λ

n,kXkZk−Xn
∗Z

n
∗ =

∑
k≥n λ

n,kXk(Zk−Zn
∗ ) ≤ 0 since Xk ∈ −∂Ũ(Zk)

and Ũ is convex. Then, inequality (8.6) provides :

x(y − y∗) ≥ E lim inf
n→∞

Xn
∗ (Y − Zn

∗ ) +
∑
k≥n

λn,kXk(Zk − Y k)


= E

X∗(Y − Y∗) + lim inf
n→∞

∑
k≥n

λn,kXk(Zk − Y k)

 . (8.7)

Notice that EŨn(Y n) = EŨ(Zn) + n
2
|Zn − Y n|2 −→ EŨ(Y∗). Then, E|Zn − Y n|2 −→ 0,

and therefore Zn − Y n −→ 0 P -a.s. after possibly passing to a subsequence. Since∣∣∣∣∣∣
∑
k≥n

λn,kXk(Zk − Y k)

∣∣∣∣∣∣ ≤
∑
k≥n

λn,k|Xk| sup
k≥n
|Zk − Y k| = |Xn

∗ | sup
k≥n
|Zk − Y k| ,

this implies that
∑
k≥n λ

n,kXk(Zk − Y k) −→ 0 P -a.s. Reporting this in (8.7) provides the

result announced in the statement of the proposition. ♦

We now use Theorem 4.1 in order to derive a characterization of attainable contingent

claims.
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Lemma 8.4 Let the conditions of Theorem 4.1 hold. Let C ∈ L0(K,FT ) and x ∈ K be

such that :

sup
y∈K∗

sup
Y ∈Y(y)

(ECY − xy) = ECY◦ − xy◦ = 0

for some y◦ ∈ K∗ \ {0} and Y◦ ∈ Y(y◦) with P [Y◦ = 0] = 0. Then C ∈ X (x), i.e. the

contingent claim C is attainable from the initial wealth x.

Proof. From Remark 4.4, we have ECẐT − xẐ0 ≤ 0 for all Z ∈ D. This proves that x ∈
D(C) = Γ(C) by Theorem 4.1. Hence, X � C (i.e. X −C ∈ K) P -a.s. for some X = Xx,L

T

∈ X (x). Since Y◦ ∈ K∗ P -a.s., it follows from the definition of Y(y◦) and the condition of

the lemma that :

0 ≤ E(X − C)Y◦ = EXY◦ − xy◦ ≤ 0 .

This proves that (X − C)Y◦ = 0 P -a.s. and therefore X − C ∈ ∂K P -a.s. by the fact that

Y◦ 6= 0 P -a.s.. Finally, from Lemma 3.1, we have `(X − C) = 0, and by Remark 3.2, there

exists some random transfer matrix a ∈ L0(Md+1
+ ,FT ) such that :

Ci = X i +
d∑
j=0

[
aji − (1 + λij)aij

]
for all i = 0, . . . , d .

Now set L̃ = L+ a1{T}. Clearly, L̃ ∈ A(x) and C = Xx,L̃
T ∈ X (x). ♦

Corollary 8.1 Let the conditions of Proposition 8.1 and Theorem 4.1 hold. Let (y∗, Y∗) be

the solution of W (x) introduced in Lemma 7.2. Then P [Y∗ = 0] = 0, and there exists a r.v.

X∗ valued in −∂Ũ(Y∗) such that

X∗ ∈ X (x) and EX∗Y∗ = xy∗ .

Proof. By Proposition 8.1, P [Y∗ = 0] = 0 and X∗ is valued in −∂Ũ(Y∗). Then, X∗ takes

values in K P -a.s. by Lemma 4.2 (ii). We now apply inequality (8.3) of Proposition 8.1 for

y = 2y∗ and Y = 2Y∗ (resp. y = y∗/2 and Y = Y∗/2). This provides immediately EX∗Y∗ =

xy∗. Then, applying again inequality (8.3) provides :

EX∗Y − xy∗ ≤ 0 = EX∗Y∗ − xy∗ for all Y ∈ Y(y∗) .

Since X∗ ∈ L0(K,FT ), we are in the context Lemma 8.4, and the proof is complete. ♦
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9 Proof of Theorem 3.2.

Part (i) of the theorem is proved in Lemma 7.2. Let X∗ be the contingent claim introduced

in Corollary 8.1. We intend to prove the optimality of X∗ for problem V (x). Since X∗ is

valued in −∂Ũ(Y∗), it follows from the definition of the subgradient of the convex function

Ũ that :

Ũ(Y∗) +X∗Y∗ ≤ Ũ(y) +X∗y for all y ∈ K∗ .

Then, from the duality relation between U and Ũ (see e.g. Rockafellar 1970) :

U(x) = inf
y∈K∗

(
Ũ(y) + xy

)
,

we deduce that :

Ũ(Y∗) +X∗Y∗ ≤ U(X∗) .

We now take expectations, and use Corollary 8.1 to get :

W (x) = EŨ(Y∗) + xy∗ = E
[
Ũ(Y∗) +X∗Y∗

]
≤ EU(X∗) ≤ V (x) . (9.1)

In view of (4.3), this provides

W (x) = V (x) = EU(X∗) ,

as announced in parts (ii), (iii) and (iv) of the Theorem.

10 Appendix

10.1 Proof of Proposition 2.1

We only prove part (i) since the second statement can be proved similarly. Assume that

lim sup
`(x)→∞

sup
p∈∂U(x)

|p| = 0 and AE(Ũ) < ∞ , (10.1)

and let us prove that AE(U) < 1.

Since AE(Ũ) < ∞, we have, for some b, β > 0,

qy − βŨ(y) < 0 for all q ∈ −∂Ũ(y) and y ∈ K∗ with `∗(y) ≤ b . (10.2)

From the positive homogeneity of `∗, there exists some y0 ∈ int(K∗) satisfying `∗(y0) = b.

We now observe that there exists a constant c > 0 such that

for all x � c10 and p ∈ ∂U(x) , y0 �∗ p .
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Indeed, if such a positive constant does not exist, then

for all n, there exist xn � n10 and pn ∈ ∂U(xn) such that y0 − pn 6∈ K∗ .

Since y0 ∈ int(K∗), this leads to a contradiction with (10.1).

Now, take x � c10, i.e. `(x) ≥ c. Let p be an arbitrary element in ∂U(x). By the

definition of Ũ from U , we have x ∈ ∂Ũ(p) and

U(x) = inf
y∈IRd+1

(
Ũ(y) + xy

)
= Ũ(p) + xp . (10.3)

Then, applying (10.2) with y = p and q = x, we see that Ũ(p) > xp/β. Plugging the last

inequality in (10.3), we get :

U(x) >
(
1 + β−1

)
xp for all x ∈ K with `(x) ≥ c .

The required result follows from the arbitrariness of p in ∂U(x). ♦

10.2 Proof of Lemma 2.5

(i) We first prove the necessary condition. The condition AE(Ũ) < ∞ means that there

exist b, β > 0 such that :

py − βŨ(y) < 0 for all y ∈ B and p ∈ −∂Ũ(y), (10.4)

where B = {y ∈ K∗ : `∗(y) ≤ b}. Now fix some y ∈ B, and observe that µy ∈ B for all µ

∈ (0, 1]. Let F be the convex function defined on (0, 1] by F (µ) := Ũ(µy). Then it follows

from (10.4) that :

−µq − βF (µ) < 0 for all µ ∈ (0, 1] and q ∈ ∂F (µ) . (10.5)

Set G(µ) := µ−βŨ(y). In order to complete the proof, we have to check that

(F −G)(µ) ≤ 0 for all µ ∈ (0, 1] . (10.6)

Clearly, function G satisfies the first order differential equation :

−µG′(µ)− βG(µ) = 0 for all µ ∈ (0, 1] . (10.7)

Since F (1) = G(1), it follows from (10.5) and (10.7) that q > G′(1) for all q ∈ ∂F (1). Then

by closedness of the subgradient of the convex function F (see Clarke et al. 1998), there

exists a small parameter ε > 0 such that :

q > G′(1) for all q ∈ ∪1−ε≤µ≤1∂F (µ) .
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Now, by convexity of F , we see that for all µ ∈ [1− ε, 1) and q ∈ ∂F (µ) :

F (µ) ≤ F (1)− q(1− µ) = G(1)− q(1− µ) < G(1)−G′(1)(1− µ) ≤ G(µ) ,

where the last inequality follows from the convexity of G. Hence

F < G on [1− ε, 1) . (10.8)

Next, set µ0 := sup{µ ∈ (0, 1) : (F − G)(µ) = 0} with the usual convention sup∅ = −∞.

In view of (10.8) and the continuity of F and G, the statement (10.6) is equivalent to µ0 ≤
0. We then argue by contradiction, and assume that µ0 ∈ (0, 1). By definition of µ0 and

(10.8), we have (F −G)(µ0) = 0 and F −G < 0 on (µ0, 1). This implies that, ∂(F −G)(µ0)

⊂ IR− and therefore

q0 ≤ G′(µ0) for all q0 ∈ ∂F (µ0) .

On the other hand, turning back to (10.5) and (10.7) for µ = µ0, we see that q0 > G′(µ0)

which is the required contradiction.

(ii) We now prove sufficiency. Fix some y ∈ K∗ such that `∗(y) ≤ b, and set F (µ) := Ũ(µy),

G(µ) := µ−βŨ(y). Let q be an arbitrary element in ∂F (1). Since F is convex, it follows

from the definition of the subgradient and the fact that F (1) = G(1) that :

εq ≥ F (1)− F (1− ε) > G(1)−G(1− ε), for all ε ∈ (0, 1). (10.9)

Dividing by ε and sending ε to zero provides G′(1) ≤ q for all q ∈ ∂F (1). This can be

written equivalently in terms of Ũ as :

−βŨ(y) ≤ −py, ∀p ∈ −∂Ũ(y),

which ends the proof. ♦

10.3 Proof of Property 2

This is an easy adaptation from Aubin (1984). By definition of Ũn and Ũ , it follows that :

Ũn(y) = Ũ (zn(y)) +
n

2
|zn(y)− y|2

≥ U(x)− xy − x (zn(y)− y) +
n

2
|zn(y)− y|2 for all x ∈ K

≥ U(x)− xy − |x|
2

n
+
n

4
|zn(y)− y|2 ,

where we used the trivial inequality ab ≤ n−1|a|2 + 4−1n |b|2. Collecting terms and recalling

that U is non-negative, this provides :

|zn(y)− y|2 ≤ 4

n

[
Ũn(y) + xy +

|x|2

n

]
,
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This proves (i). The same inequality together with the observation that Ũn ≤ Ũ provide

(ii) by continuity of Ũ on its domain.

It remains to prove (iii). To see this, observe that

Ũ (zn(yn)) = Ũn(yn)− n

2
|zn(yn)− yn|2 ≤ Ũn(yn) ,

and therefore

Ũ(y) ≤ lim inf
n→∞

Ũn(yn) .

On the other hand, since Ũn ≤ Ũ ,

lim sup
n→∞

Ũn(yn) ≤ lim
n→∞

Ũ(yn) = Ũ(y)

by continuity of Ũ . ♦
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Aubin, J.-P. and Ekeland, I. (1984), Applied Nonlinear Analysis, Wiley-Interscience.

Bouchard, B. (1999), “Option pricing via utility maximization in the presence of trans-

action costs”, preprint.

Clarke, F.H., Ledyaev, Yu.S., Stern R.J. and Wolenski, P.R. (1998), Non-

smooth Analysis and Control Theory, Springer-Verlag, New York Berlin Heidelberg.

Cox, J. and Huang, C.F.E. (1989), “Optimal consumption and portfolio policies when

asset prices follow a diffusion process”, Journal of Economic Theory 49, 33-83.
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