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1 Introduction
There exist two types of radically different pension funds methods: the ”de-
fined benefit” method where the contributions are the random variables but
the final benefit is fixed, and the ”defined contribution” method where ran-
domness comes from the benefit. Historically, pension funds used mainly the
first method which is preferred by the client (see e.g. Davis 1995). How-
ever, due to the demographic evolution and the development of the equity
markets, new systems have been introduced. Nowadays, the pension funds
propose mainly defined contribution schemes which transfer the equity mar-
ket risk to the clients.
A simple way to moderate this inconvenience for the clients, is to intro-

duce a minimum guarantee on the future benefit that will be paid out to the
clients. However, this guarantee can be very complex and the question is to
find the optimal form that it should take in order to maximize the utility of
the client.
In a general complete financial market framework, we assume that the

pension fund’s retribution is equal to a fixed part of the surplus (that is the
difference between the final value of the portfolio managed by the pension
fund and the guarantee). Moreover, the manager of the pension fund will
invest the wealth in order to optimize the expected value of the utility of its
share of the surplus. Having proved that an auxiliary process is self-financed,
we determine the analytic form of the guarantee as the solution of the client’s
optimization program. This expression is analyzed with respect to the main
parameters and expecially with respect to the sharing rule that fixes the
repartition of the final surplus between the pension fund and the client. We
find that highest guarantees are linked to sharing rules giving all the surplus
to the pension fund. Then the choice of the sharing rule is a trade-off between
protection (the level of the guarantee) and return (impacted by the part left
to the pension fund).
In related literature, Boulier, Huang and Taillard (2001) and Deelstra,

Grasselli and Koehl (2001) study the optimal management of a defined con-
tribution plan where the guarantee depends on the level of interest rates at
the fixed retirement date. Jensen and Sørensen (1999) measure the effect of
a minimum interest rate guarantee constraint through the wealth equivalent
in case of no constraints and show numerically that guarantees may induce a
significant utility loss for relatively risk tolerant investors. Both the papers
by Boulier et al. (2001) and Jensen and Sørensen (2000) choose the Vasiček
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(1977) specification of the term structure in the spirit of Bajeux-Besnainou,
Jordan and Portait (1998), while Deelstra et al. (2001) choose the affine term
structure by using the methodology of Deelstra, Grasselli and Koehl (2000).
The paper is organized as follows: in Section 2, we define the market

structure and introduce the optimization problems. In Section 3, we obtain
the main property of the auxiliary process and deduce a market efficiency test.
In Section 4, we derive the optimal form of the guarantee and comparative
statics with respect to the expected value of the benefit. Section 5 is devoted
to the analysis of the influence of the sharing rule, and Section 6 provides an
example when the client has a power utility function. Section 7 concludes
the paper.

2 The model
In this section, we describe the financial market and the optimization pro-
grams.

2.1 The financial market

Randomness is described by W (t) =
©
(W1(t), ...,Wn(t))

0 ; t ∈ [0, T ]}, an
n-dimensional Brownian motion defined on a complete probability space
(Ω,F ,P), where P is the real world probability and T is supposed to be finite.
The filtration F = (Ft)t≥0, represents the information structure generated
by the Brownian motion and is assumed to satisfy the usual conditions.
Hereafter Et stands for E(. | Ft), the conditional expected value under

the real world probability.
The market is composed of n+1 financial assets, that the agent can buy or

sell continuously without incurring any restriction as short sales constraints
or any trading cost.
The first asset is the riskless asset (i.e. the bank account) whose price,

denoted by B(t), evolves according to:

dB(t)

B(t)
= r(t)dt, B(0) = 1,

where r(t) represents the short interest rate.
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The remaining n assets are the risky assets, whose prices are denoted by
Pi(t), i = 1, ..., n. The dynamics of Pi(t) are given by:

dPi(t) = Pi(t)

"
bi(t)dt+

nX
j=1

σij(t)dWj(t)

#
, Pi(0) = pi ∈ (0,+∞). (1)

We assume that the interest rate process {r(t), 0 ≤ t ≤ T}, the drift pro-
cess

©
b(t) = (b1(t), ..., bn(t))

0 , 0 ≤ t ≤ Tª, and the volatility matrix processn
σ(t) = (σij(t))1≤i,j≤n , 0 ≤ t ≤ T

o
are progressively measurable w.r.t. F

and satisfy the conditionZ T

0

Ã
|r(t)|+ kb(t)k+

nX
i=1

kσi(t)k2
!
dt <∞ a.s.

where k.k denotes the Euclidean norm in Rn and where σi(t) denotes the i-th
row of σ(t).
We assume also that the financial market is arbitrage-free and complete,

i.e. there is only one process θ(.) satisfying

θ(t) = σ−1(t) [b(t)− r(t)1n] , 0 ≤ t ≤ T,

with 1n = (1, ..., 1)0 ∈ Rn, where σ(t,ω) is non-singular, for (λ⊗ P)−a.e.
(t,ω) ∈ [0, T ]× Ω.
The exponential process

Z(t) = exp

·
−
Z t

0

θ0(s)dW (s)− 1
2

Z t

0

kθ(s)k2 ds
¸
, 0 ≤ t ≤ T,

is assumed to be a martingale, and the risk-neutral equivalent martingale
measure, denoted by Q, is defined by

Q(A) = E [Z(T )1A] , A ∈ F(T ).

We further define the state-price density process by

H(t) =
Z(t)

B(t)
= exp

·
−
Z t

0

r(s)ds−
Z t

0

θ0(s)dW (s)− 1
2

Z t

0

kθ(s)k2 ds
¸
. (2)
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2.2 The optimization program of the contributor

The contributor pays a flow to the pension fund. This flow consists in a
lump sum at date 0, denoted by X0, and a continuously paid premium, at a
rate denoted by c(t), t ∈ [0, T ]; the flow of contributions is assumed to be a
non-negative, progressive measurable process such that:Z T

0

c2(t)dt <∞, a.s.

The value at date 0 of the cash given by the contributor to the pension
fund is equal to:

X 0
0 = X0 + E

·Z T

0

H(s)c(s)ds

¸
.

In exchange, the fund manager will provide at date T a benefit which
consists of two parts: The first part GT is guaranteed, which means that
the benefit will be greater than GT almost surely. We do not constrain
the guarantee to be constant, it is only required to be a positive random
variable FT measurable which is Lp integrable with p > 2. In particular,
this assumption allows for the case of a stochastic guarantee (for example
salary-indexed) whose value will be known at time T . The second part of
the benefit is a fixed fraction of the surplus YT (GT ) (the difference between
the terminal wealth XT of the managed portfolio and the guarantee GT ).
Indeed, we suppose that the fund manager receives a fixed fraction of the
surplus, as a way to incite him. For example Holstrom and Milgrom (1987)
have studied the problem of providing incentives over time for an agent with
constant absolute risk aversion. They found in their model that the optimal
compensation scheme turns out to be a linear function.
Let us denote by β the fixed fraction of the surplus that will be kept

by the fund manager. Then, the total benefit of the contributor at date T
equals:

BT = GT + (1− β) (XT −GT ) . (3)

The problem of the contributor is to choose the best contract between those
offered by the pension funds, everything else being fixed - that is the value
of the cash given by the contributor X 0

0, the fraction β of the surplus kept
by the fund manager, and its risk aversion that we introduce more in detail
in the next section. The guarantee is then the only remaining variable and
the problem is to find its optimal form. This problem is a static one from
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the contributor point of view since he has a decision to make at date 0 only
for a benefit that will be delivered at date T .
For β = 0, the fund manager does not keep any profit from the surplus, so

the presence of the guarantee is more an obstacle than a convenience for the
client, since guarantees may induce a significant utility loss for relatively risk
tolerant investors (see Jensen and Sørensen 1999). On the other hand, β = 1
means that the contributor will receive the guarantee only, no matter the
final surplus. In order to avoid these trivial cases, we will assume β ∈ (0, 1)
from now on.
We formalize the optimality of the guarantee by assuming that the con-

tributor has an increasing concave utility function u; then, the guarantee
must lie in the set G defined as follows:
G = {GT : ∃k ∈ [0, X 0

0[ such that GT is solution of (4) defined for k} ,
where (4) is the following optimization program:

max
GT

E [u ((1− β)YT (GT ) +GT )] (4)

under the constraints:½
E [H(T ) ((1− β)YT (GT ) +GT )] = k
GT ≥ 0 a.s.

In order to solve this problem, we need to look more deeply at the way
used by the pension fund to manage the portfolio, in order to get the principal
features of YT (GT ).

2.3 The optimization program of the pension fundman-
ager

In this subsection, we describe the portfolio problem faced by the pension
fund manager. More precisely, we assume:
(i) that the risk aversion of the fund manager is described by a power

utility function

U(y) =
yγ

γ
, γ ∈ (−∞, 1)\{0}, (5)

(ii) that he maximizes the expected utility of his terminal wealth (that
is, his part of the surplus).
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The choice of the power utility is motivated by two reasons.
First, pension funds are in general large companies who define their strate-

gies with respect to the amount of money they are managing, more or less in
a scaling way. This feature is well captured by the use of the power utility
function.
Secondly, pension funds are regulated in such a way that they can not

reach negative values. This is true also in the power utility case, thanks to
the infinite marginal utility at zero.
Denoting by X(t) the wealth of the fund at date t ∈ [0, T ], and by π(t)

the proportion of wealth invested into the n risky assets (in such a way that
1 −Pn

i=1 πi(t) is the proportion of wealth invested into the riskless asset
B(t)), the optimization program of the pension fund will be:

max
(π(t))t∈[0,T ]∈AX

1

γ
E (X(T )−GT )γ (6)

under the constraints:

dX(t) = (X(t)r(t) +X(t)π0(t) (b(t)− r(t)) + c(t)) dt+X(t)π0(t)σ(t)dW (t)
(7)

with X(0) = X0 > 0 and

AX = ©
π(t) = (π1(t), ...,πn(t))

0 , t ∈ [0, T ] , F − adapted process such that:R T
0
kX(t)π0(t)σ(t)k2 dt <∞ a.s.

X(T )−GT ≥ 0 a.s.} .
From now on, we assume that:

E [H(T )GT ] < X0 + E
·Z T

0

H(t)ctdt

¸
= X 0

0, (8)

which is equivalent to say that the set of admissible strategies AX is non
empty. This assumption is a reasonable assumption as it means that the
market value of the contributions is supposed to be larger than the market
value of the guarantee.

3 Main features of the surplus process
In this section, we define the surplus process. Inspired by the actuarial
prospective approach, this surplus process takes into account the future rights
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of the pension fund, i.e. the contributions that will enter, and the future
obligations of the pension fund, i.e. the guarantee that has to be payed at
the final date T . We prove that the surplus process is self-financing, and
deduce a market efficiency test for the pension fund.

Definition 1 The surplus process Y (t), t ≥ 0 is defined by:
Y (t) = X(t) +D(t)−G(t),

where

D(t) = Et
Z T

t

H(s)

H(t)
c(s)ds, G(t) = Et

·
H(T )

H(t)
GT

¸
.

This process can be interpreted as a surplus process, in the sense that, at
date t, it is equal to:

• the value of the portfolio X(t)
• plus the discounted value of the future engagements coming from the
contributor D(t),

• minus the discounted value of the pension fund future engagement (that
is the guarantee) G(t).

Note also that the value of the process at date T is equal to the surplus
X(T )−GT .

Proposition 2 The surplus process is self-financing, that is there exists a
progressive measurable random process y(t) = (y1(t), ..., yn(t))

0, t ∈ [0, T ]
such that:

dY (t) = Y (t) (r(t)dt+ y0(t) (b(t)− r(t)) dt+ y0(t)σ(t)dW (t)) (9)

Proof. Following Deelstra et al. (2001), for a given process K(t) let denoteeK(t) := H(t)K(t). Then
deY (t) = d eX(t) + d eD(t)− d eG(t).

From (1), (2), and (7), easy computations lead to:

d eX(t) = eX(t) (π0(t)σ(t)− θ0(t)) dW (t) + ec(t)dt.
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Using the martingale representation theorem for the Brownian motion,
(see e.g. Karatzas and Shreve 1990), it turns out that there exists a unique
square integrable process ζ(t)t∈[0,T ], satisfyingZ T

0

kζ(t)k2 dt < +∞ a.s. (10)

such that
d eD(t) = −ec(t)dt+ ζ 0(t)dW (t). (11)

Analogously, there exists a unique square integrable process ρ(t)t∈[0,T ],
satisfying Z T

0

kρ(t)k2 dt < +∞ a.s. (12)

such that
d eG(t) := d³Et h eGTi´ = ρ0(t)dW (t).

Finally, we get:

deY (t) = ³ eX(t) (π0(t)σ(t)− θ0(t)) + ζ 0(t)− ρ0(t)
´
dW (t)

and therefore the process Y (t) is self-financing. Indeed, in order to prove (9),
it suffices to define y(t) as follows:

Y (t)y(t) = X(t)π(t)+(D(t)−G(t)) [σ0(t)]−1θ(t)+H−1(t)[σ0(t)]−1 (ζ(t)− ρ(t))
(13)

which ends the proof.
The following corollary provides an exponential expression for the final

surplus YT , that will be used extensively in the rest of the paper.

Corollary 3 The final surplus YT satisfies the following equation:

YT = Y0 exp

µZ T

0

(r(t) + y0(t) (b(t)− r(t))) dt+
Z T

0

y0(t)σ(t)dW (t)

−1
2

Z T

0

ky0(t)σ(t)k2 dt
¶

(14)

with

Y0 = X0 + E
·Z T

0

H(s)c(s)ds

¸
− E [H(T )GT ] ≥ 0.
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Note that YT depends on GT through Y0 only. From now on we will stress
this dependence by denoting YT as a function of GT .
Defining the random variable ϕT (ω) as follows

ϕT = exp

µZ T

0

(r(t) + y0(t) (b(t)− r(t))) dt+
Z T

0

y0(t)σ(t)dW (t)

−1
2

Z T

0

ky0(t)σ(t)k2 dt
¶
, (15)

(14) can be rewritten as

YT (GT ) = (X
0
0 − E [H(T )GT ])ϕT . (16)

For two different minimum guarantees G1T and G
2
T , we can write

YT (G
2
T ) = YT (G

1
T )
X 0
0 − E [H(T )G2T ]

X 0
0 − E [H(T )G1T ]

. (17)

If we compare the surplus in case with a guarantee GT with the no-
guarantee-case, we have a strong relationship between the variance of the
surplus and the expectation. This relationship can be used as a market
efficiency test: the variance of the surplus turns out to be proportional to
the square of the expectation. This comes from the decreasing quadratic
relation between the variance of the surplus and the market value of the
minimum guarantee (see (18)).

Proposition 4 (Market efficiency test) There exists a (positive) constant k
such that

V ar [YT (GT )] = k (E [YT (GT )])
2 .

Proof. From (17) it follows that

V ar [YT (GT )] = V ar [YT (0)]

µ
1− E [H(T )GT ]

X 0
0

¶2
(18)

and

E [YT (GT )] = E [YT (0)]

µ
1− E [H(T )GT ]

X 0
0

¶
,

and therefore
V ar [YT (GT )]

V ar [YT (0)]
=

µ
E [YT (GT )]

E [YT (0)]

¶2
.
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This result is strongly linked to the power utility of the pension fund
which, as well known in literature since Merton (1992), provides this kind of
mean-variance relationships. However, the last proposition delivers a strong
test to check with data from some pension funds whether their investment
strategies follow the model proposed in this paper, which is an interesting
application of Merton’s results.

4 The optimal guarantee for the contributor
By the analysis of the pension fund manager problem, we have obtained the
principal features of the final surplus. Now, we come back to the initial
problem of the contributor (4), that is:

max
GT

E [u ((1− β)YT (GT ) +GT )]

under the constraints:½
E [H(T ) ((1− β)YT (GT ) +GT )] = k
GT ≥ 0 a.s.

4.1 The main result

Substituting the expression (16) of YT (GT ) into the constraint of the opti-
mization program, we find

E [H(T ) ((1− β)ϕT (X
0
0 − E [H(T )GT ]) +GT )] = k,

which is equivalent to the constraint

E [H(T )GT ] =
k − E [H(T )(1− β)ϕTX

0
0]

1− E [H(T )(1− β)ϕT ]
,

or using the fact that the surplus process is self-financing and thus E [H(T )YT ] =
Y0 and E [H(T )ϕT ] = 1:

E [H(T )GT ] =
k − (1− β)X 0

0

β
.
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Noticing that under this constraint,

YT (GT ) = ϕT (X
0
0 − E [H(T )GT ]) =

X 0
0 − k
β

ϕT ,

one sees that the YT (GT ) is a constant in this minimization problem with
respect to GT . Therefore, it will be denoted in this section YT only.
The problem is then

max
GT

E
·
u

µ
1− β

β
(X 0

0 − k)ϕT +GT
¶¸

under the constraints:(
E
h
H(T )

³
1−β
β
(X 0

0 − k)ϕT +GT
´i
= k

GT ≥ 0 a.s.
or equivalently

max
BT

E [u (BT )] (19)

s.to: ½
E [H(T )BT ] = k
BT ≥ 1−β

β
(X 0

0 − k)ϕT a.s.
where BT is the final benefit defined by (3). Now the problem (19) can be
solved by using variational calculus.

Proposition 5 The solution of the contributor problem takes the following
form:

G∗T =
µ
I (λH(T ))− 1− β

β
(X 0

0 − k)ϕT
¶
1I(λH(T ))−1−β

β (X0
0−k)ϕT>0 (20)

where I(.) = (u0)−1 , and the real number λ is defined implicitly by:

E
·
HT

µ
G∗T +

1− β

β
(X 0

0 − k)ϕT
¶¸

= k (21)

Proof. See Appendix.
Notice that the expression of the solution is close to the one obtained

without considering the positivity constraint on the guarantee, which is sim-
ply equal to I (λH(T ))− 1−β

β
(X 0

0 − k)ϕT .

12



4.2 Comparative statics with respect to the expected
value of the benefit

Having the explicit expression of the optimal guarantee, we analyze now the
sensibility with respect to the key parameters, namely the expected value of
the benefit k, and the sharing rule entirely defined by the parameter β. The
former is done in this subsection. Basicaly the result is quite intuitive: the
guarantee is increasing ω by ω with the expected value of the benefit.
We begin with two technical Lemmas and then state formally the result

in the Proposition.
Let us denote by Bλ,k

T the solution of the problem (19), where λ is the
corresponding Lagrangian multiplier implicitly defined by (21). Notice that
the benefit depends on k only (β is kept constant), while λ is an auxiliary

parameter implicitly defined through the equality E
h
H(T )Bλ,k

T

i
= k. How-

ever, a shift on k changes the value of the corresponding λ, so we need to
investigate first the relationship between k and λ, everything else being fixed.

Lemma 6 Let us consider the problem (19).
a) If λ1 < λ2, then B

λ1,k
T ≥ Bλ2,k

T a.s. for k ∈ [0,X 0
0[.

b) If k1 < k2, then B
λ,k1
T ≥ Bλ,k2

T a.s. for a fixed λ.

Proof. See Appendix.

Corollary 7 Let Bλ1,k1
T , Bλ2,k2

T satisfy

E
h
H(T )Bλ1,k1

T

i
= k1,

E
h
H(T )Bλ2,k2

T

i
= k2.

If k1 < k2, then λ2 < λ1.

Proof. From the previous lemma, E
h
H(T )Bλ2,k1

T

i
> k2 > k1 = E

h
H(T )Bλ1,k1

T

i
,

then λ2 < λ1.
We can now state the comparative static result of the guarantee with

respect to the expected value of the benefit.

Proposition 8 Let β be fixed, k1 < k2 and G1T , G
2
T the correponding optimal

guarantees given by (20). Then, G1T ≤ G2T almost surely.
Proof. See Appendix.
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5 Influence of the sharing rule
In this section, we study the impact of the parameter β which describes the
sharing rule of the surplus.
We follow the same procedure than the one adopted in the previous sec-

tion; the main difference is that we now write the benefit Bλ,β
T as a function

of λ and β (and no more of λ and k).

Lemma 9 Let us denote by Bλ,β
T the solution of the problem (19) where k is

fixed. If β1 < β2, then B
λ,β1
T ≥ Bλ,β2

T a.s.

Proof. See Appendix.

Corollary 10 Let Bλ1,β1
T , Bλ2,β2

T satisfy

E
h
H(T )B

λ1,β1
T

i
= k = E

h
H(T )B

λ2,β2
T

i
.

If β1 < β2, then λ1 > λ2.

Proof. From the previous lemma E
h
H(T )B

λ1,β1
T

i
= E

h
H(T )B

λ2,β2
T

i
<

E
h
H(T )B

λ2,β1
T

i
, then λ1 > λ2 from Lemma 6.

Proposition 11 Let k be fixed, β1 < β2 and G
β1
T , G

β2
T the corresponding

optimal guarantees given by (20). Then Gβ1
T ≤ Gβ2

T almost surely.

Proof. See Appendix.

This result can be viewed as follows : the sharing rule is a way to transfer
the risk from the client to the pension fund. With a low β, the guarantee is
low too, which means that the risk is high and mainly taken by the client.
To the opposite, when β is high, the protection is higher and the pension
fund plays an intermediary role between the financial market and the client.

14



6 The solution with power utility function for
the contributor

In this section, we compute explicitely the guarantee when the utility function
of the contributor has the same power form as the one of the fund, in order
to illustrate more concretely our results:

u(y) =
yγ

γ
, γ ∈ (−∞, 1)\{0}. (22)

We want to study the implications of (22) on the optimal guarantee and
in particular on its positiveness.

Proposition 12 Consider the problem (4), where the utility u(.) is given by
(22) with γ = γ. Then the optimal guarantee has the following form:

G∗T =
max {k − (1− β)X 0

0, 0}
β

H(T )
1

γ−1

E
h
H(T )

γ
γ−1
i (23)

Moreover, if market parameters are constant, i.e. r(t) ≡ r, b(t) ≡ b, σ(t) ≡
σ, then the guarantee can be expressed in terms of the basic securities as fol-
lows:

G∗T =
max {k − (1− β)X 0

0, 0}
β

eα0T
nY
i=1

µ
Pi(T )

Pi(0)

¶αi

, (24)

with

α0 =

Ã
r +

1

2
kθk2 − 1

2

µ
γ kθk
γ − 1

¶2
− 1

γ − 1θ
0σ−1vec

Ã
1

2

nX
j=1

σ2ij − bi
!!
∈ R

α = − 1

γ − 1
¡
σ−1

¢0
θ ∈ Rn,

where vec[ai] denotes the vector of Rn whose i-th component is ai.

Proof. See Appendix.

We stress that the parameter k cannot be arbitrary, but it must satisfy
(29), that is

(1− β)X 0
0 ≤ k < X 0

0,
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otherwise the optimal guarantee is zero a.s.: the idea is that if k < (1−β)X 0
0,

the preference for the surplus is so high that the contributor could accept (to
pay) a negative guarantee, i.e. the positivity constraint is binding.

We also notice that the form (23) is the optimal form of a guarantee
in very general market frameworks as introduced in Section 2.1 and in par-
ticular, in the interest rate framework models of Boulier et al. (2001) and
Deelstra et al. (2001). In Deelstra et al. (2001), the different moments of the
state-price density process can be found for the affine term structure case, so
that it is possible to study more in detail this optimal guarantee.
However, it is difficult to explain to the concerned parties of a pension

fund (client, manager, government,...) what the state-price density process
stands for. In this respect, the optimal form (24) in case of constant pa-
rameters is very explicit and is expressed in terms of the prices of the risky
assets.

In order to obtain an explicit formula in case of γ 6= γ, we now look
immediately at the case of constant market parameters.

Proposition 13 Consider the problem (4), where the utility u(.) is given by
(22) with γ 6= γ, and the market parameters are constant.
Then the optimal guarantee has the following form:

G∗T = λ
1

γ−1 e−
1

γ−1(r+
1
2
kθk2)T− 1

γ−1 θ
0W (T )

−1− β

β
(X 0

0 − k) e
³
r+ 1−2γ

2(1−γ)2 kθk
2
´
T− 1

γ−1 θ
0W (T )

,

where the parameter λ is implicitly given by

k−(1−β)X0
0

β
= λ

1
γ−1 e

− γ
γ−1(r+1

2kθk
2)T+1

2( γ
γ−1kθk

2T)
2

Φ
³
±f(λ)± γ

γ−1 kθk2 T
´

− 1−β
β exp

n
1
2(

γkθk
γ−1 )

2
T
o (X 0

0 − k) e
1
2(

γ
γ−1kθk2T)

2

Φ
³
±f(λ)± γ

γ−1 kθk2 T
´
,

where the sign + (resp. −) is according to the case γ > γ (resp. γ < γ), the
function f(λ) is defined by

f(λ) =

ln
 1− β

βE
h
H(T )

γ
γ−1
i (X 0

0 − k)
− 1

γ − 1 lnλ
 1³

γ
γ−1 − γ

γ−1
´
kθk2 T

−
µ
r +

1

2
kθk2

¶
1

kθk2 ,
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and Φ(x) = 1√
2π

R x
−∞ e

− 1
2
t2dt.

Proof. See Appendix.

The expression of the optimal guarantee is semi-explicit in the case of
γ 6= γ since λ should first be determined numerically, which however turns
out to be an easy task by using a numerical package as Matlab or Maple. As
in the previous Proposition, the guarantee can be easily expressed in terms
of the prices of the risky assets.

7 Conclusion
In a Defined Contribution framework, we obtained the optimal guarantee
that maximizes the expected utility function of the benefit.
Moreover, we analyze the influence of the key parameters (the expected

value of the client’s terminal wealth and the sharing rule between the client
and the pension fund).
We obtain that the sharing rule can be used not only as a way to incitate

the pension fund, but also as a parameter amortizing the risks of the financial
market for the client. In this sense, we think that the kind of pension funds
we have studied makes a bridge between the two classical polar cases, the
defined contribution and defined benefit pension funds schemes.
It would be very interesting to extend our analysis to the case of more

sophisticated sharing rules. Nevertheless, we leave that point for further re-
search, since our methodology cannot be applied to that extended framework,
the main features of the surplus process we have used in this paper being not
true in general.
Using numerical methods should permit to extend our analysis and to

include it in a more general reflexion on the definition (by the state or a
regulator) of optimal sharing rules.
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8 Appendix
Proof of Proposition 5.
Let us introduce the Hamiltonian H(BT ,λ, µ) associated to the problem

(19):

H(BT ,λ, µ,ω) = E [u (BT )]− λ (E [H(T )BT ]− k)
+

Z
Ω

µ
BT (ω)− 1− β

β
(X 0

0 − k)ϕT (ω)
¶
µ(dω),

where the Lagrangian multiplier λ is a real number, while the Hamiltonian
multiplier µ(dω) is a (positive) real measure.
Suppose that the minimum is attained at B∗T . Then at B

ε
T = B∗T + εδ

with δ ∈ Lp+ with p > 2 and ε > 0, one has

∂

∂ε

·
E [u (Bε

T )]− λ (E [H(T )Bε
T ]− k) +

Z
Ω

µ
Bε
T (ω)−

1− β

β
(X 0

0 − k)ϕT (ω)
¶
µ(dω)

¸
|ε=0

= 0.

Using the uniform integrability which is a consequence of the Lp integra-
bility with p > 2, one finds

E [u0 (Bε
T ) δ − λH(T )δ]|ε=0 +

Z
Ω

δ(ω)µ(dω) = 0,

or equivalently, for all δ ∈ Lp+ with p > 2

E
·
δ

µ
u0 (B∗T )− λH(T ) +

µ(dω)

dP (ω)

¶¸
= 0,

therefore almost surely

B∗T (ω) = I
µ
λH(T,ω)− µ(dω)

dP (ω)

¶
. (25)

From (25) and the complementarity conditions, we can divide the set Ω
into two subsets:
i) For ω ∈ Ω such that the guarantee is strictly positive, i.e. BT (ω) >

1−β
β
(X 0

0 − k)ϕT (ω), then µ(dω) = 0 and

BT (ω) = I (λH(T,ω)) .
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ii) For ω ∈ Ω such that the guarantee is zero, i.e. BT (ω) =
1−β
β
(X 0

0 −
k)ϕT (ω), then

BT (ω) = I

µ
λH(T,ω)− µ(dω)

dP (ω)

¶
> I (λH(T,ω)) ,

since µ(.) is a positive measure and I is decreasing.
These two properties are equivalent with the following:
i) for ω ∈ Ω such that I (λH(T,ω)) > 1−β

β
(X 0

0 − k)ϕT (ω), i.e.

λ <
1

H(T,ω)
u0
µ
1− β

β
(X 0

0 − k)ϕT (ω)
¶
,

then BT (ω) = I (λH(T,ω));
ii) for ω ∈ Ω such that I (λH(T,ω)) < 1−β

β
(X 0

0 − k)ϕT (ω), i.e.

λ >
1

H(T,ω)
u0
µ
1− β

β
(X 0

0 − k)ϕT (ω)
¶
,

then

BT (ω) = I

µ
λH(T,ω)− µ(dω)

dP (ω)

¶
=

1− β

β
(X 0

0 − k)ϕT (ω),

which permits to compute all values of µ(.).
In conclusion, there exists a threshold for λ such that

B∗T = I (λH(T )) 1λ< 1
H(T )

u0( 1−ββ (X0
0−k)ϕT )+

1− β

β
(X 0

0−k)ϕT1λ> 1
H(T )

u0( 1−ββ (X0
0−k)ϕT ),

which gives (20).

Proof of Lemma 6.
a) In order to prove the first assertion, we consider different possible cases

and we check that the property is fulfilled in all cases.
a.i) For ω ∈ Ω such that Bλ2

T (ω) = I (λ2H(T,ω)), we have

1

H(T,ω)
u0
µ
1− β

β
(X 0

0 − k)ϕT (ω)
¶
> λ2 > λ1,

19



then Bλ1
T (ω) = I (λ1H(T,ω)) > I (λ2H(T,ω)) = B

λ2
T (ω), since the function

I(.) is decreasing.

a.ii) For ω ∈ Ω such that Bλ2
T (ω) =

1−β
β
(X 0

0 − k)ϕT (ω) = Bλ1
T (ω) (inde-

pendent of λ) the statement is obvious.

a.iii) For ω ∈ Ω such that Bλ2
T (ω) =

1−β
β
(X 0

0 − k)ϕT (ω) and Bλ1
T (ω) =

I (λ1H(T,ω)) we have

λ2 >
1

H(T,ω)
u0
µ
1− β

β
(X 0

0 − k)ϕT (ω)
¶
> λ1,

that is

I (λ1H(T,ω)) >
1− β

β
(X 0

0 − k)ϕT (ω) > I (λ2H(T,ω)) ,

which gives the result.

b) We now prove the second assertion by considering the different possible
cases:

b.i) For ω ∈ Ω such that Bk1T (ω) = I (λH(T,ω)) = B
k2
T (ω), the statement

is obvious.

b.ii) For ω ∈ Ω such that

Bk1T (ω) =
1− β

β
(X 0

0 − k1)ϕT (ω)

Bk2T (ω) =
1− β

β
(X 0

0 − k2)ϕT (ω),

the statement is also true.

b.iii) For ω ∈ Ω such that Bk1T (ω) =
1−β
β
(X 0

0 − k1)ϕT (ω) and Bk2T (ω) =
I (λH(T,ω)), then

λ ≥ 1

H(T,ω)
u0
µ
1− β

β
(X 0

0 − k1)ϕT (ω)
¶
,

that is 1−β
β
(X 0

0 − k1)ϕT (ω) ≥ I (λH(T,ω)).
b.iv) The last possibility, i.e.

Bk1T (ω) = I (λH(T,ω))

Bk2T (ω) =
1− β

β
(X 0

0 − k2)ϕT (ω),
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implies

1− β

β
(X 0

0 − k2)ϕT (ω) ≥ I (λH(T,ω)) ≥
1− β

β
(X 0

0 − k1)ϕT (ω)

that is k1 ≥ k2, which is a contradiction.

Proof of Proposition 8.
i) For ω ∈ Ω such that G1T (ω) = 0 and G2T (ω) ≥ 0, the statement is

obvious.

ii) For ω ∈ Ω such that

G1T (ω) = I (λ1H(T,ω))− 1− β

β
(X 0

0 − k1)ϕT (ω)

G2T (ω) = I (λ2H(T,ω))− 1− β

β
(X 0

0 − k2)ϕT (ω),

since λ1 > λ2 by Corollary 7, then I (λ1H(T,ω)) < I (λ2H(T,ω)), and the
statement follows by comparing term by term.

iii) The last possibility, i.e. G1T (ω) > 0 and G2T (ω) = 0 cannot happen

with positive probability. In fact, it should be λ1 < 1
H(T )

u0
³
1−β
β
(X 0

0 − k1)ϕT
´

and λ2 >
1

H(T )
u0
³
1−β
β
(X 0

0 − k2)ϕT
´
, but since λ1 > λ2, this implies k2 < k1,

a contradiction.

Proof of Lemma 9.
Let us first introduce the parameter β given by

β =
1− β

β
(26)

and Bβ1
T = B

β1
T .

i) For ω ∈ Ω such that Bβ1
T (ω) = B

β2
T (ω) = I (λH(T,ω)), the statement

is obvious.

ii) For ω ∈ Ω such that

B
β1
T (ω) = β1 (X

0
0 − k)ϕT (ω)

B
β2
T (ω) = β2 (X

0
0 − k)ϕT (ω),
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we obtain Bβ1
T (ω) > B

β2
T (ω) since β(β) is decreasing, and thus also B

β1
T (ωi) >

B
β2
T (ωi).

iii) For ω ∈ Ω such thatBβ1
T (ω) = I (λH(T,ω)) andB

β2
T (ω) = β2 (X

0
0 − k)ϕT (ω),

from (20) it follows

B
β1
T (ω) = I (λH(T,ω)) > β1 (X

0
0 − k)ϕT (ω),

I (λH(T,ω)) < β2 (X
0
0 − k)ϕT (ω) = Bβ2

T (ω),

which leads to β1 > β2, a contradiction.

iv) For ω ∈ Ω such that Bβ1
T (ω) = β1 (X

0
0 − k)ϕT (ω) and Bβ2

T (ω) =
I (λH(T,ω)), we have I (λH(T,ω)) < β1 (X

0
0 − k)ϕT (ω), and the proof is

complete.

Proof of Proposition 11.
We suppose thus that β1 > β2, where β is given by (26), and where we

denote also Gβ1
T = G

β1
T .

i) For ω ∈ Ω such that Gβ1
T (ω) = 0 and Gβ2

T (ω) ≥ 0, the statement is
obvious.

ii) For ω ∈ Ω such that

G
β1
T (ω) = I (λ1H(T,ω))− β1 (X

0
0 − k)ϕT (ω)

G
β2
T (ω) = I (λ2H(T,ω))− β2 (X

0
0 − k)ϕT (ω),

since λ1 > λ2, then I (λ1H(T,ω)) < I (λ2H(T,ω)), and the statement follows
by comparing term by term.

iii) The last possibility, i.e. Gβ1
T (ω) > 0 and G

β2
T (ω) = 0 cannot happen

with positive probability. In fact, it should be

β1 (X
0
0 − k)ϕT (ω) < I (λ1H(T,ω))

β2 (X
0
0 − k)ϕT (ω) > I (λ2H(T,ω))

and λ1 > λ2, then β2 > β1, a contradiction.

Proof of Proposition 12.
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We have to find λ in (21), i.e. we have to solve

E
·
H(T )

µ
max

½µ
I (λH(T ))− 1− β

β
(X 0

0 − k)ϕT
¶
, 0

¾
+
1− β

β
(X 0

0 − k)ϕT
¶¸

= k

where I(x) = x
1

γ−1 .
It is easy to check that the function (15) assumes the following form

ϕT =
H(T )

1
γ−1

E
h
H(T )

γ
γ−1
i ,

so that the previous equation can be written as follows:

k − (1− β)X 0
0

β
= E

max

λ

1
γ−1H(T )

γ
γ−1 − 1− β

β
(X 0

0 − k)
H(T )

γ
γ−1

E
h
H(T )

γ
γ−1
i
 , 0


 .
(27)

If γ = γ, we obtain

k − (1− β)X 0
0

β
= max

½µ
λ

1
γ−1E

h
H(T )

γ
γ−1
i
− 1− β

β
(X 0

0 − k)
¶
, 0

¾
,

which admits the solution

λ =

 k

E
h
H(T )

γ
γ−1
i
γ−1

(28)

provided that

λ
1

γ−1E
h
H(T )

γ
γ−1
i
− 1− β

β
(X 0

0 − k) ≥ 0,

i.e.
(1− β)X 0

0 ≤ k < X 0
0 (29)

Now, if we plug (28) into (20) we obtain (23).

Now, let us consider the case with constant market parameters. From
(1), it results

W (T ) = σ−1vec

"
ln

µ
Pi(T )

Pi(0)

¶
+

Ã
1

2

nX
j=1

σ2ij − bi
!
T

#
,
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so that

H(T ) = exp

½
−
µ
r +

1

2
kθk2

¶
T − θ0W (T )

¾
= exp

(
−
Ã
r +

1

2
kθk2 + θ0σ−1vec

Ã
1

2

nX
j=1

σ2ij − bi
!!

T − θ0σ−1vec
·
ln

µ
Pi(T )

Pi(0)

¶¸)

and
E
h
H(T )

γ
γ−1
i
= e−

γ
γ−1(r+

1
2
kθk2)T+ 1

2(
γkθk
γ−1 )

2
T .

We have

H(T )
1

γ−1

E
h
H(T )

γ
γ−1
i = e

³
r+ 1

2
kθk2−1

2(
γkθk
γ−1 )

2´
T− 1

γ−1θ
0W (T )

= e

³
r+ 1

2
kθk2−1

2(
γkθk
γ−1 )

2− 1
γ−1θ

0σ−1vec( 12
Pn
j=1 σ

2
ij−bi)

´
T− 1

γ−1 θ
0σ−1vec

h
ln
³
Pi(T )

Pi(0)

´i
,

and since

θ0σ−1vec
·
ln

µ
Pi(T )

Pi(0)

¶¸
= vec

·
ln

µ
Pi(T )

Pi(0)

¶¸0 ¡
σ−1

¢0
θ,

we obtain

G∗T =
max {k − (1− β)X 0

0, 0}
β

exp

(Ã
r +

1

2
kθk2 − 1

2

µ
γ kθk
γ − 1

¶2
− 1

γ − 1θ
0σ−1vec

Ã
1

2

nX
j=1

σ2ij − bi
!!

T − 1

γ − 1vec
·
ln

µ
Pi(T )

Pi(0)

¶¸0 ¡
σ−1

¢0
θ

)
,

which gives the statement (24), once the parameters α0,α are replaced.

Proof of Proposition 13.
If market parameters are constant, H(T ) is log-normally distributed:

H(T ) = exp

½
−
µ
r +

1

2
kθk2

¶
T − θ0W (T )

¾
,

and
E
h
H(T )

γ
γ−1
i
= e−

γ
γ−1(r+

1
2
kθk2)T+ 1

2(
γkθk
γ−1 )

2
T .
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From (27), we look for λ such that

k − (1− β)X 0
0

β
= E

·
max

½µ
λ

1
γ−1 e−

γ
γ−1(r+

1
2
kθk2)T−γkθk2T

γ−1 N(0,1)

− 1− β

βE
h
H(T )

γ
γ−1
i (X 0

0 − k) e−
γ

γ−1(r+
1
2
kθk2)T−γkθk2T

γ−1 N(0,1)

 , 0

 ,

where N(0, 1) denotes the Normal standard variable.
Suppose that γ < γ (the case γ > γ is perfectly analogous), so that the

max is strictly positive iff

N(0, 1) >

ln
 1− β

βE
h
H(T )

γ
γ−1
i (X 0

0 − k)
− 1

γ − 1 lnλ
 1³

γ
γ−1 − γ

γ−1
´
kθk2 T

−
µ
r +

1

2
kθk2

¶
1

kθk2
= : f(λ),

then (27) becomes

k − (1− β)X 0
0

β
=

1√
2π

Z +∞

f(λ)

λ
1

γ−1 e−
γ

γ−1(r+
1
2
kθk2)T−γkθk2T

γ−1 x− 1
2
x2dx

− 1√
2π

Z +∞

f(λ)

1− β

βE
h
H(T )

γ
γ−1
i (X 0

0 − k) e−
γ

γ−1(r+
1
2
kθk2)T−γkθk2T

γ−1 x− 1
2
x2dx.

We complete the square and we arrive to

k−(1−β)X0
0

β
= λ

1
γ−1 e

− γ
γ−1(r+1

2kθk
2)T+12( γ

γ−1 kθk
2T)

2

Φ
³
−f(λ)− γ

γ−1 kθk2 T
´

− 1−β
βE
·
H(T )

γ
γ−1

¸ (X 0
0 − k) e−

γ
γ−1(r+

1
2
kθk2)T+ 1

2(
γ

γ−1kθk2T)
2

Φ
³
−f(λ)− γ

γ−1 kθk2 T
´
,

which gives the result once the term E
h
H(T )

γ
γ−1
i
is replaced.
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