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Abstract

We extend the Cox-Ingersoll-Ross (1985) model of the short interest rate by
assuming a stochastic reversion level, which better reflects the time dependence
caused by the cyclical nature of the economy or by expectations concerning the
future impact of monetary policies. In this framework, we have studied the con-
vergence of the long-term return by using the theory of generalised Bessel-square
processes. We emphasize the applications of the convergence results. A limit
theorem proves evidence of the use of a Brownian motion with drift instead of
the integral

∫ t

0
rudu. For practice, however, this approximation turns out to be

only appropriate when there are no explicit formulae and calculations are very
timeconsuming.
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1. introduction

In this paper, which has been presented at the 5th AFIR International Collo-
quium, we concentrate on the convergence of the long-term return t−1

∫ t

0
rudu,

using a very general two-factor model, which is an extension of the Cox-Ingersoll-
Ross (1985) model. Cox, Ingersoll & Ross (1985) express the short interest rate
dynamics as

drt = κ(γ − rt)dt + σ
√

rtdBt

with (Bt)t≥0 a Brownian motion and κ, γ and σ positive constants. This model
has some realistic properties. First, negative interest rates are precluded. Sec-
ond, the absolute variance of the interest rate increases when the interest rate
itself increases. Third, the interest rates are elastically pulled to the long-term
value γ, where κ determines the speed of adjustment. Empirical studies like
Chan, Karolyi, Longstaff & Sanders (1992) or Brown & Schaefer (1994), how-
ever, have shown that there is only weak evidence for the existence of a constant
long run level of reversion.

We stress the long-term reversion level and the long-term interest rates since
they are important in several issues in finance and insurance. For instance,
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for pricing an option to exchange a long bond for a short bond; or for mort-
gage pricing where the long rate determines when homeowners refinance their
mortgages. In insurance, whole-life insurances are long-term products and the
long-term interest rates play a dominant role.

We therefore follow the idea of Brennan & Schwartz (1982), who introduced a
two-factor model by using short-term interest rates and consol rates (see Hogan
(1993) for comments on this model).

In this paper, we assume that the short interest rate X is governed by the
stochastic differential equation

dXs = (2βXs + δs)ds + v
√

XsdBs

with the drift rate parameter β < 0, v a constant and δ a nonnegative predictable
stochastic process such that

∫ t

0
δudu < ∞ a.e. for all t ∈ IR+. This stochastic

differential equation has a unique (non-negative) strong solution.
It should be noted that the stochastic process (δs)s≥0 determines a reversion

level. If it is chosen to be a constant and if v = 2, the process (Xs)s≥0 is a
Bessel-square process with drift, a process which is studied in great detail by
for example Pitman & Yor (1982) and Revuz & Yor (1991). As the model is a
generalisation of Bessel-square processes with drift, it is fairly easy to treat.

In Section 2, we concentrate on the convergence almost everywhere of the long-

term return t−1
∫ t

0
rudu. We are interested in this limit as

(
exp(

∫ t

0
rudu)

)1/t

is
the average of the accumulating factor (also called return) which can be useful in
the determination of models of participation in the benefit or of saving products
with a guaranteed minimum return. Using the results of Deelstra & Delbaen

(1995a), we found that in most existing interest rate models,
(
exp(

∫ t

0
rudu)

)1/t

converges almost everywhere to a constant independent of the current market,
as the observing period tends to infinity. We then say that the model has
the ”strong convergence property” (SCP), whereas we refer to models with the
”weak convergence property” when the returns converge to a constant, that will
generally depend upon the current economic environment and that may change
in a stochastic fashion over time. This terminology appeared in a preliminary
version entitled ”Do interest rates converge” (1986) of Dybvig, Ingersoll & Ross
(1996).

Dybvig, Ingersoll & Ross (1996) proved that the assumption of no-arbitrage
implies that the long forward rate and the asymptotic zero-coupon rate never fall
and moreover, they show that nearly all models have the surprising implication
that long run forward rates and zero coupon rates converge to a constant, which
is independent of the current state of the economy. El Karoui, Frachot & Geman
(1998) discuss the theoretical and practical consequences of this observation for
existing models. They also focus on some issues encountered in empirical work
which can be related to the behavior of the long-term yield structure of interest
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rates.
As noted by El Karoui, Frachot & Geman (1998) and Pearson & Sun (1994),

parameter estimates are generally very unstable over time and this fact can be
interpreted as an indicator of misspecification : the parameters have to capture
the remaining uncertainty due to the stochastic long-term rates. As illustrated
by Pearson & Sun (1994) and Chen & Scott (1992), the estimation of multifactor
versions with no stochastic long-term reversion level, show low mean-reversion
for one of the state variables. El Karoui, Frachot & Geman (1998) argue that
this low mean-reversion reflects the fact that the long-term yield is not constant
over time.

Using the almost everywhere convergence theorem of Deelstra & Delbaen
(1995a), we show that it is possible to build a model with the WCP in which the
long-term return converges almost surely to a reversion level which is random
itself. As an example we adapt the model of Tice & Webber (1997).

In Deelstra & Delbaen (1995b), we found conditions necessary to prove the
convergence in law of a sequence of transformations of the long-term return to a
Brownian motion. In Section 3, we propose a generalised theorem with measure-
invariant hypotheses and we recall the idea of approximating

∫ t

0
rudu for t large

enough. If the objective is to approximate the distribution of the long-term
return of an investment made at time 0, it is appropriate to approximate

∫ t

0
rudu

by a scaled Brownian motion with drift for t going to infinity. In the past,
many authors have proposed Wiener models since in the long term, the Central
Limit Theorems are applicable. In insurance, e.g. Beekman & Fuelling (1991),
Dufresne (1990), Giacotto (1986), Goovaerts et al. (1994, 1995) and Milevsky
(1997) modeled the accumulating factor exp

(∫ t

0
rudu

)
by the exponential of a

Brownian motion with drift for the derivation of prices of different insurance
products like annuities and perpetuities.

For practical reasons, we are interested in an approximation of
∫ t

0
rudu for all

values of t. Therefore we suggest an improved approximation, which is discussed
and evaluated by looking at bond prices. The results show that one should be
very careful by replacing the integral

∫ t

0
rudu by a Brownian motion with drift.

This approximation should only be used if no exact formulae are available and
the exact computations are very time consuming like could be the case in the
derivation of annuities.

In Section 4, we turn to the pricing of n-year temporary life assurances, whole-
life assurances and endowment assurances. We calculate the present value and
the variance and skewness of this present value of the benefit under these con-
tracts by using on one hand the Cox-Ingersoll-Ross (1985) model and on the
other hand a Brownian motion with drift which is suggested by the Central
Limit Theorem. The results show that in general, it is inappropriate to use the
Brownian motion with drift instead of the Cox-Ingersoll-Ross (1985) model or
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its extensions.

Without further notice we assume that a probability space
(
Ω, (Ft)0≤t , IP

)
is given and that the filtration (Ft)0≤t satisfies the usual assumptions with re-
spect to IP , a fixed probability on the sigma-algebra F∞ =

∨
t≥0 Ft. Also B is

a continuous process which is a Brownian motion with respect to (Ft)0≤t.

2. factor models with SCP and WCP

In this section, we show by using a theorem obtained in Deelstra & Delbaen
(1995a) that it is easy to verify that existing generalisations of the Cox-Ingersoll-
Ross model have the strong convergence property, which means that the long-
term return converges to a constant, which is independent of the earlier shape
of the term structure and of the current state of the economic environment. By
looking at anologous convergence theorems in e.g. a Gaussian setting, we could
as a matter of fact prove that most existing interest rate models have the SCP,
but this will not be done within this paper.

Afterwards, we use the model of Tice and Webber (1997) to show that multi-
factor models do not necessarily imply that the strong convergence property
holds.

It should be noted that the almost everywhere convergence limit of t−1
∫ t

0
rudu

is interesting to study since economists and actuaries work with the multiplica-
tive accumulating factor (return) over t years, namely exp(

∫ t

0
rudu). The aver-

age return in one year, where the average is taken over t years, is denoted by(
exp(

∫ t

0
rudu)

)1/t

. If the observing period goes to infinity, it converges to the

exponent of the almost everywhere limit of t−1
∫ t

0
rudu.

We recall from Deelstra & Delbaen (1995a) that if X is defined by

dXs = (2βXs + δs)ds + v
√

XsdBs

with (Bs)s≥0 a Brownian motion, β < 0, v a constant and δ a positive, pre-
dictable stochastic process such that s−1

∫ s

0
δudu

a.e.−→ δ with δ : Ω −→ IR+, then
the following convergence almost everywhere holds:

1
s

∫ s

0

Xudu
a.e.−→ −δ

2β
.

It is easy to show that for rt = σ2Xt/4, v = 2, β = −κ/2 and δt = 4κγt/σ2,
we obtain a generalised two-factor Cox-Ingersoll-Ross (1985) model

drt = κ(γt − rt)dt + σ
√

rtdBt
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with (γs)s≥0 a positive stochastic reversion level process. To ensure that the
interest rate process (rt)t remains a.s. strictly positive, we should add some
hypotheses. Comparison theorems for Bessel-square processes with stochastic
reversion level (see Deelstra (1995)) can be used to obtain some. Indeed, if X(1)

and X(2) are two Bessel-square processes with respectively stochastic reversion
level δ(1), δ(2) and issued from x(1), x(2) with x(2) ≥ x(1) and δ(2) ≥ δ(1) a.s. for
all t ∈ IR+, then

IP
[
X

(2)
t ≥ X

(1)
t for all t ≥ 0

]
= 1.

Now, it is well-known that if X(1) is a Bessel-square process with constant di-
mension δ(1) ≥ 2, then X

(1)
t > 0 a.s.. Therefore, hypotheses like 4κγt/σ2 ≥ 2

a.s. for all t ∈ IR+, imply the strict positivity of (rt)t a.s.. Remark that this is
the generalisation of the constraint in case of the Cox-Ingersoll-Ross model.
In this paper, we further choose the process (γs)s≥0 such that t−1

∫ t

0
γsds con-

verges almost everywhere to a random variable γ∗ = σ2δ/4κ : Ω −→ IR+. The
central tendency process (γs)s≥0 may be dependent or independent of the short
interest rate process.

We stress this fact since if the reversion level process (γs)s≥0 is independent
of the short-term interest rates it is possible to derive (quasi-)explicit formu-
lae for bond prices by using scaling properties of Bessel-square processes. This
approach has been used in the papers by e.g. Maghsoodi (1996), Delbaen &
Shirakawa (1996) and Deelstra (2000), who consider time-dependent but deter-
ministic (γs)s≥0. However if the reversion level process (γs)s≥0 is dependent on
the short interest rate process, no such formulae can be obtained.

As an example, let us describe the stochastic reversion level process (γs)s≥0

by a Cox-Ingersoll-Ross (1985) square root process

dγt = κ̃(γ∗ − γt)dt + σ̃
√

γtdB̃t

or by a Courtadon (1982) process

dγt = κ̃(γ∗ − γt)dt + σ̃γtdB̃t with σ̃2 ≤ 2κ̃

with (B̃s)s≥0 a Brownian motion and with κ̃, γ∗ and σ̃ positive constants. The
Brownian motion (B̃s)s≥0 may be correlated with the Brownian motion (Bs)s≥0

of the short rate process and this correlation may be in a random way. As
mentioned above, we do not need the technical assumption of fixed correlation or
independence between the two factors of the model: for example as in Brennan
& Schwartz (1982).

The two proposed reversion level processes are from the same family. They
both remain positive for κ̃, γ∗ ≥ 0, a property which is necessary if one wants
to work with nominal interest rates. For κ̃, γ∗ > 0, these processes are mean-
reverting to the long-term constant value γ∗, where κ̃ represents the speed of
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adjustment. The volatility increases in both cases with the reversion level.

For this class of stochastic reversion levels, t−1
∫ t

0
γsds

a.e.−→ γ∗ and since
δs = 4κγs/σ2, t−1

∫ t

0
δsds

a.e.−→ 4κγ∗/σ2. By the theorem mentioned above (see
Deelstra & Delbaen (1995a)), the long-term return is shown to converge almost
everywhere to a constant:

1
t

∫ t

0

rsds =
1
t

∫ t

0

σ2

4
Xsds

a.e.−→ γ∗.

We conclude that the long-term return in these two-factors model of short in-
terest rates satisfies the strong convergence property. The average accumulating
factor, where the average is taken over a period t, is found to converge almost
everywhere to a constant as the period t tends to infinity, and this constant is
independent of the current state of the economy:(

e

∫ t

0
rudu

)1/t
a.e.−→ eγ∗ .

As another example, we treat the two-factor model proposed by Cox, Ingersoll
& Ross (1985). They assumed a stochastic reversion level process depending on
Y , the state variable which describes the change in the production opportunities,
namely

drt = κ(γt − rt)dt + σ
√

rtdBt

dγt = κ̃(Yt − γt)dt

dYt = −ξ(
−ζ

ξ
− Yt)dt + σ̃

√
YtdB

′

t,

with κ, κ̃, σ, ζ and σ̃ strictly positive constants. We assume that ξ is a strictly
negative constant. We here only theoretically show that this model also has
the SCP for the long-term return: since t−1

∫ t

0
Ysds

a.e.−→ −ζ/ξ, we have that
t−1

∫ t

0
γsds

a.e.−→ −ζ/ξ and by the same reasoning as above, we obtain

1
t

∫ t

0

rsds
a.e.−→ −ζ

ξ
.

As a consequence of the convergence of the long-term return to a constant,
we can conclude that the long-term yield limT→∞ Y (t, T ) is uniformly bounded
above as by Jensens’s inequality (see also Yao (1998))

Y (t, T ) = IE

[
exp

(
1

T − t

∫ T

t

rudu

)]
≤ exp

(
1

T − t

∫ T

t

IE[ru]du

)
.
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It is not surprising that the previous examples satisfy the SCP since in each
model, the reversion level process itself is elastically pulled to a constant inde-
pendent of the economic state. We recall that the convergence theorem from
Deelstra & Delbaen (1995a) has no such strong hypothesis; on the contrary,
the assumptions are very general. For example, the reversion level process does
not have to be continuous. The convergence theorem only assumes a positive,
predictable reversion (δu)u≥0 such that s−1

∫ s

0
δudu

a.e.−→ δ, where δ may be a
random variable. Models in which this δ really is a random variable, would imply
that the long-term return converges to a random variable which will generally
depend on the economic environment.

As an example, let us look at the general dynamic mean interest rate model
in Tice & Webber (1997)

dr = a(γ − r)dt + σrdzr

dγ = b(µγ(t, r, Y )− γ)dt + σγdzγ

dY = c(µY (t, r, γ, Y )− Y )dt + σY dzY

where zr, zγ and zY denote Brownian motions, r is the short rate and γ the
level to which the short rates revert. Y is assumed to be a vector process
summarizing the remainder of the dynamics in the model. Tice & Webber
(1997) have interpreted this model within the IS-LM framework, which is a
standard model in macroeconomics (see e.g. Hicks (1937)). As a particular
case, Tice & Webber (1997) study a three factor model with the third factor
related to the availability of transactions credit within the economy. To simplify
the notations, Tice & Webber (1997) restrict themselves to σr, σγ and σY being
constant but it is possible to consider e.g. σr = σ

√
r.

In that case, it is clear that we are dealing with an extension of the Cox-
Ingersoll-Ross model with a stochastic reversion level. This model has the weak
convergence property if the process is not recurrent.

3. approximation of the long-term return and of bond prices

In this section, we give a generalised version of the Central Limit Theorem from
Deelstra & Delbaen (1995b). We study the convergence in law since it is al-
ways useful to know how the long-term return is distributed in the limit so that
approximations can be deduced. We are particularly interested in an approxi-
mation of

∫ t

0
rudu since this term appears in discounting factors, bond prices,

annuities, perpetuities, etc. As a natural candidate appears a Brownian motion
with drift. This process has been used in insurance before for modeling the
integral

∫ t

0
rudu, e.g. in Beekman & Fuelling (1991), Dufresne (1990), Giacotto

(1986), Goovaerts et al. (1994, 1995) and Milevsky (1997). In order to evaluate
this approximation, we compare in the settings of the Cox-Ingersoll-Ross model
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bond prices calculated by using the approximating Brownian motion with exact
values.

In order to obtain convergence in law, we have to make some more assump-
tions about our family of process:

Theorem: Suppose that a probability space (Ω, (Ft)t≥0, IP ) is given and that
a stochastic process X : Ω× IR+ → IR+ is defined by the stochastic differential
equation

dXs = (2βXs + δs)ds + v
√

XsdBs ∀s ∈ IR+

with (Bs)s≥0 a Brownian motion with respect to (Ft)t≥0, v a constant and
β < 0.
Let us make the following assumptions about the adapted and measurable pro-
cess δ : Ω× IR+ → IR+:

• 1
s

∫ s

0
δudu

a.e.−→ δ where δ is a strictly positive real number;

• supt≥1
1
t

∫ t

0
δ2
udu < ∞ a.e.;

• For all a ∈ IR+ 1
t

∫ t

t−a
δ2
udu

IP−→ 0.

Under these conditions, the following convergence in distribution holds:(√
−8β3

v2δn

∫ nt

0

(
Xu +

δu

2β

)
du

)
t≥0

L−→ (Bt)t≥0

where (Bt)t≥0 denotes a Brownian motion and where ’ L−→’ denotes convergence
in law.

Since the proof of this theorem follows more or less the lines of the result in
Deelstra & Delbaen (1995b), the proof is omitted and we immediately turn to
the applications.

Inspired by this theorem, we estimate
∫ t

0
Xudu with X as in the settings of

the theorem by ∫ t

0

−δu

2β
du +

√
−v2δ

8β3
Bt

for t large enough. In Deelstra & Delbaen (1995b), we used the hypothesis
t−1

∫ t

0
δudu

a.e.−→ δ, to approximate
∫ t

0
Xudu by the sum of the long-term constant

−δ/2β, to which the long-term return a.e. converges, multiplied by t and a
scaled Brownian motion:∫ t

0

Xudu by
−δ

2β
t +

√
−v2δ

8β3
Bt. (1)
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It should be noted that in the case that (δu)u is a stochastic process we replace
the stochastic term (−2β)−1

∫ t

0
δudu by a constant times t.

Another drawback of this estimator is that the moments of
∫ t

0
Xudu do not

equal those of the estimator, although they are the same asymptotically. If
the period observed is large enough, this is satisfactory. If the objective is to
approximate the distribution of the long-term return of an investment made at
time 0, it seems to be appropriate to approximate

∫ t

0
Xudu by a scaled Brownian

motion with drift since the Central Limit Theorems are applicable on long-term.
However, one of our objectives is to look at the approximation

∫ t

0

Xudu by
−δ

2β
t +

√
−v2δ

8β3
Bt

to find estimations of bond prices for all maturities. Therefore, the moments of∫ t

0
Xudu and of the estimator should be equal for all t. A second drawback of

the approximation immediately appears in the bond price, namely

P (0, t) = IEX0

[
e
−
∫ t

0
Xudu

]
∼ exp

(
δ

2β
t− v2δ

16β3
t

)
.

It is not realistic that the estimating bond price is independent of the current
short interest rate X0. Remark that we work with the default-free bond prices.
In the sequel, we omit without notice the adjective ”default-free”. We further
assume that there is no market price of risk, since we only want to compare
different approximations theoretically.

In case of the Cox-Ingersoll-Ross (1985) square root process, the approximat-
ing bond price equals:

IEr0

[
e
−
∫ t

0
rudu

]
∼ exp

(
γt(

σ2

2κ2
− 1)

)
.

This estimating bond price is a decreasing function of the speed of adjustment
parameter κ, where in case of the Cox-Ingersoll-Ross (1985) model, two cases are
distinguished: for r0 < γ, the bond price is a decreasing function of the param-
eter κ, and for r0 > γ, it is an increasing function of κ. In Deelstra & Delbaen
(1995b), we compared these approximating bond prices with values obtained
in the Cox-Ingersoll-Ross setting and found that there is an underestimation of
bond prices if r0 < γ and an overestimation if r0 > γ.

Trying to motivate the approximation of the integral of the short-term interest
rates by a Brownian motion with drift, we searched for an improved approxi-
mation. It seems logical to propose the approximation

∫ t

0

Xudu ∼
∫ t

0

IE[Xu]du +

√
−v2δ

8β3
Bt.
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Then the expectation is equal for all t and the variance is still asymptotically
equal.

Since (Xu)u≥0 is defined by the stochastic differential equation

dXs = (2βXs + δs)ds + v
√

XsdBs,

the expectation value of Xs equals:

IE[Xs] = e2βsX0 + e2βs

∫ s

0

e−2βuIE[δu]du,

which can only be calculated if IE[δu] is known and
∫ s

0
IE[δu]du < ∞. As above,

it should be noted that in the case of (δu)u being a stochastic process, we replace
the stochastic term (2β)−1

∫ t

0
δudu by a deterministic time-dependent term. But

at least in this way, the current state X0 is introduced in the approximation.
As an example of the approximation, let us look again at the Cox-Ingersoll-

Ross (1985) two-factor model:

drt = κ(γt − rt)dt + σ
√

rtdBt,

dγt = κ̃(γ∗ − γt)dt + σ̃
√

γtdB̃t.

The approximation becomes∫ t

0

rudu ∼
∫ t

0

IE[ru]du +

√
σ2γ∗

κ2
Bt

∼ γ∗t +
1− e−κt

κ

(
r0 − γ∗ − γ0 − γ∗

κ− κ̃
κ

)
+

1− e−κ̃t

κ̃

(
γ0 − γ∗

κ− κ̃

)
κ +

√
σ2γ∗

κ2
Bt.

The bond price is estimated by:

IEr0

[
e
−
∫ t

0
rudu

]
∼ exp

(
γ∗t(

σ2

2κ2
− 1)

)
.

exp
(
−1− e−κt

κ

(
r0 − γ∗ − γ0 − γ∗

κ− κ̃
κ

)
− 1− e−κ̃t

κ̃

(
γ0 − γ∗

κ− κ̃

)
κ

)
.

Let us evaluate the approximation in case of the Cox-Ingersoll-Ross (1985)
single-factor model:

drt = κ(γ − rt)dt + σ
√

rtdBt.

An anonymous referee remarked (see Deelstra & Delbaen (1995b)) that in this
case, the moments of the first proposal (1) are equal for all t, as soon as the

10



Table 1: Bond prices: Exact values and approximations.

t r0 = 0.04 r0 = 0.1
Exact Approx Approx-Exact Exact Approx Approx-Exact

1 .9565 .9617 .0051 .9068 .9116 .0048
6 .7061 .7254 .0192 .5843 .5978 .0134
7 .6587 .6788 .0200 .5386 .5521 .0134
8 .6135 .6339 .0204 .4970 .5102 .0131
9 .5708 .5912 .0204 .4591 .4719 .0127

10 .5305 .5507 .0201 .4244 .4367 .0122
20 .2503 .2630 .0127 .1968 .2040 .0071
30 .1171 .1239 .0068 .0919 .0959 .0039
40 .0547 .0582 .0035 .0430 .0451 .0021

current short interest rate r0 is distributed according to the steady state distri-
bution of the square root process, namely the gamma-function with parameters
α = 2κγ/σ2 and β = 2κ/σ2:

IEr0

[∫ t

0

rudu

]
= γt = IE0

[
γt +

√
σ2

2κ2
Bt

]
.

In reality, r0 is not distributed this way, so an improvement is also necessary
here to obtain good estimations of bond prices:∫ t

0

rudu ∼
∫ t

0

IE[ru]du +

√
σ2γ

κ2
Bt.

Substituting the mean of the short interest rate, gives the expression∫ t

0

rudu ∼ γt +
1− e−κt

κ
(r0 − γ) +

√
σ2γ

κ2
Bt

and the estimating bond price is found to be

IEr0

[
e
−
∫ t

0
rudu

]
∼ exp

(
γt(

σ2

2κ2
− 1)− 1− e−κt

κ
(r0 − γ)

)
.

In case of the previous approximation (1), we found for r0 < γ an underesti-
mation of the bond prices. The approximation in this paper is larger since for
r0 < γ, a positive term is added to the exponent, namely − 1−e−κt

κ (r0 − γ). In
the same way, the underestimation in case of r0 > γ is reduced.
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For the Cox-Ingersoll-Ross (1985) square root process, an explicit formula for
the bond price is given by Pitman & Yor (1982) and Cox, Ingersoll & Ross
(1985). We recall the bond price from Pitman & Yor (1982):

IEr0

[
exp

(
−
∫ t

0

rudu

)]

=
exp

{
− r0

σ2 w 1+κ/w coth(wt/2)
coth(wt/2)+κ/w

}
eκx/σ2

eκ2γ∗t/σ2

(cosh(wt/2) + κ/w sinh(wt/2))
2κγ∗

σ2

with w =
√

κ2 + 2σ2.
Using various values for the parameters, we have calculated this exact bond

price and the improved approximation, for a large range of maturities. The
deviations are always very small. The largest absolute deviations appear when
the bond price has a value about 0.5. The reason therefore is that the bond
price is a decreasing convex function of maturity and that the endpoints are
fixed, namely for t = 0, the bond price equals 1, and for t = ∞, the bond price
converges to 0. Consequently, the largest deviations are to be expected around
one half.

In Table 1, the exact bond prices and the estimating bond prices are calculated
with the parameters estimated by Chan, Karolyi, Longstaff & Sanders (1992),
namely κ = 0.23394, γ = 0.0808 and σ = 0.0854. The results are given for
r0 = 0.04 and for r0 = 0.1. We present the maturities between 6 and 10 since
then, the bond price is approximately 0.5 and the largest absolute deviations
appear. Although the absolute error as presented in Table 1 is not a monotonic
function, one should note that the error in the rate − lnP (0, t)/t does reduce
for large values of t.
In comparison with the first approximation (1), the underestimation and over-
estimation are reduced but the difference between the exact result and the ap-
proximation remains too large to be useful in practice. This approximation
should only be used if no exact formulae are available and the exact computa-
tions are very timeconsuming like could be the case in the derivation of annuities.

4. applications in life assurance

In this section, we follow the lines of Parker (1993, 1994) for deriving the net
single premium and the variance and the skewness of the present value of the
benefit payable under some insurance contracts. If the short-term interest rates
are determined by a Cox-Ingersoll-Ross model, the exact formulae follow from
the result of Pitman & Yor (1982). We compare these values with the approxi-
mation derived in Section 3.

Following the notation of Parker (1992), we denote by K the integer-valued
discrete random variable which represents the number of completed years to be
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lived by a life assured, whose age is exactly x year at the issue of the contract.
We let Z be the present value of the benefit payable under a given assurance
contract. As the precise definition of Z depends on the specific assurance un-
der consideration, we look at some examples: the n-year temporary assurance,
the whole-life assurance and the endowment assurance (see e.g. Bowers et al.
(1986)).

Under the n-year temporary assurance, the benefit of 1 is payable at the end
of the year of death of a life assured, if the death occurs within n years from
the date of issue. Thus Z is defined to be:

Z =

{
exp

(
−
∫K+1

0
Xudu

)
K = 0, 1, . . . , n− 1

0 K = n, n + 1, . . .

where (Xu)u≥0 denotes as before the short interest rate, defined by the stochastic
differential equation

dXt = (2βXt + δt)dt + v
√

XtdB̃t.

The m-th non-centered moment of Z is given by:

IE [Zm] =
n−1∑
k=0

IE

[
exp

(
−m

∫ k+1

0

Xudu

)]
k|qx,

where k|qx denotes the probability that the life assured dies between his (x+k)-
th and his (x + k + 1)-th birthday.

Remark that for a whole-life assurance, the benefit certainly will be paid once,
namely at the end of the year of death. Consequently,

Z = exp

(
−
∫ K+1

0

Xudu

)
K = 0, 1, · · · , ω − x− 1,

where ω is the least age so that lx = 0. The m-th non-centered moment is given
by:

IE [Zm] =
ω−x−1∑

k=0

IE

[
exp

(
−m

∫ k+1

0

Xudu

)]
k|qx.

Under the endowment assurance contract, the benefit is payable at the end
of the year of death if death occurs within n years of the issue date or, if the
insured person survives n years, the benefit is payable at time n. Consequently,
the present value Z of an endowment assurance is defined as:

Z =

{
exp

(
−
∫K+1

0
Xudu

)
K = 0, 1, . . . , n− 1

exp
(
−
∫ n

0
Xudu

)
K = n, n + 1, . . .
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Table 2: Net single premiums: Exact values and Approximations.

n life assurance endowment assurance
Exact Approx Approx-Exact Exact Approx Approx-Exact

1 .00154 .00155 .000008 .9313 .9363 .0049
10 .01453 .01484 .000314 .4785 .4944 .0158
20 .02896 .02985 .000887 .2354 .2453 .0098
40 .06222 .06479 .002572 .0894 .0935 .0041
60 .07635 .07979 .003439 .0767 .0801 .0034
80 .07664 .08010 .003459 .0766 .0801 .0034

Table 3: The variances: Exact values and Approximations.

n life assurance endowment assurance
Exact Approx Exact-Approx Exact Approx Exact-Approx

1 .00153 .00147 .00006 .00949 .05587 .04638
10 .01182 .01071 .00111 .02844 .07711 .04867
20 .01763 .01587 .00175 .01849 .02994 .01148
40 .02021 .01796 .00225 .01567 .01833 .00266
60 .01902 .01658 .00243 .01653 .01897 .00244
80 .01898 .01654 .00244 .01654 .01898 .00244

The m-th non-centered moment of the present value is given by:

IE [Zm] =
n−1∑
k=0

IE

[
exp

(
−m

∫ k+1

0

Xudu

)]
k|qx + IE

[
exp
(
−m

∫ n

0

Xudu

)]
npx.

Approximations of the net single premium of each contract are easily calcu-
lated. Indeed, approximations of the expected value of Z are obtained by taking
m = 1 and by substituting the estimating bond price, proposed in the previous
section.

We have evaluated this approximation in case of the Cox-Ingersoll-Ross single
factor model, with the parameters estimated within Chan, Karolyi, Longstaff
& Sanders (1992) and with r0 = 0.07. We used the mortality table HD (1968-
72), which is commonly used in Belgium and which is based on Makeham’s
formula lx = k sx gcx

with for the ages between 0 and 69: k = 1, 000, 268, s =
0.999147835528, g = 0.999731696667 and c = 1.115094352734; and otherwise
k = 1, 292, 726, g = 0.995564574228, c = 1.077130677635 and the same value of
s.
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Table 4: The skewness: Exact values and Approximations.

n life assurance endowment assurance
Exact Approx Exact-Approx Exact Approx Exact-Approx

1 25.245 24.866 0.379 -3.685 0.313 -3.998
10 7.540 7.421 0.119 -0.957 1.048 -2.005
20 5.019 5.002 0.017 0.443 2.046 -1.602
40 3.655 3.719 -0.064 3.668 3.961 -0.293
60 3.724 3.891 -0.166 3.733 3.904 -0.171
80 3.731 3.902 -0.170 3.731 3.902 -0.170

In Table 2, the exact values and the approximations are given for the net
single premiums of n-year temporary life assurances and endowment contracts.
Remark that for n larger than 60 years, both assurances become whole-life
assurances since the life assured is aged x = 30 at the date of issue. We conclude
that the approximations of the single net premiums are not encouraging.

The variance and the skewness of Z also are easy to find since the variance is
defined as

var [Z] = IE
[
Z2
]
− IE[Z]2,

and the skewness is defined as

sk[Z] =
IE
[
(Z − IE[Z])3

]
var[Z]3/2

=
IE
[
Z3
]
− 3IE

[
Z2
]

IE[Z] + 2IE[Z]3

var[Z]3/2
.

Each of these terms can be calculated by substituting m =1, 2 or 3 in IE [Zm]
and by using the approximation of the m-th non-centered moment of the dis-
counting factor, namely

IE

[
exp

(
−m

∫ t

0

Xudu

)]
∼ exp

(
−m

∫ t

0

IE[Xu]du− m2δv

16β3
t

)
.

In Tables 3 and 4, the variance and the skewness of Z are calculated, for Z be-
ing the present value of the benefit under an n-year temporary life-assurance, an
endowment assurance and a whole-life assurance (if n is very large). Again, we
used the formula of Makeham and the Cox-Ingersoll-Ross (1985) model with the
same parameters as above. These results seem to be an indicator that the ap-
proximation by a Brownian motion with drift can only be used in practice when
there are no explicit formulae or when the calculation is very timeconsuming.

We further admit that the major problem of taking into account stochastic
interest rates in long-term life insurance products, is that the policies become
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dependent. With regard to the problems of setting contingency reserves and
assessing the solvency of life assurance companies, it is therefore interesting to
study portfolios of assurance policies (see e.g. Parker (1992, 1997)).
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