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Bounds for the price of discrete arithmetic Asian options

Abstract

In this paper the pricing of European-style discrete arithmetic Asian options with fixed

and floating strike is studied by deriving analytical lower and upper bounds. In our approach

we use a general technique for deriving upper (and lower) bounds for stop-loss premiums

of sums of dependent random variables, as explained in Kaas, Dhaene and Goovaerts (2000),

and additionally, the ideas of Rogers and Shi (1995) and of Nielsen and Sandmann (2003). We

are able to create a unifying framework for European-style discrete arithmetic Asian options

through these bounds, that generalizes several approaches in the literature as well as improves

the existing results. We obtain analytical and easily computable bounds. The aim of the paper

is to formulate an advice of the appropriate choice of the bounds given the parameters, inves-

tigate the effect of different conditioning variables and compare their efficiency numerically.

Several sets of numerical results are included. We also discuss hedging using these bounds.

Moreover, our methods are applicable to a wide range of (pricing) problems involving a sum

of dependent random variables.

1 Introduction

In this paper the pricing of European-style discrete arithmetic Asian options with fixed and floating

strike is studied.

A European-style discrete arithmetic Asian call option is a financial derivative instrument with

exercise dateT , n averaging dates and fixed strike priceK, which generates atT a pay-off(
1

n

n−1∑
i=0

S(T − i) − K

)
+

,

wherex+ = max{x, 0} andS(T − i) is the price of a risky asset at timeT − i, i = 0, . . . , n − 1.

The risk neutral price of this call option at current timet = 0 is given by

AC(n, K, T ) =
e−rT

n
EQ

[(
n−1∑
i=0

S(T − i) − nK

)
+

]
(1)
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under a martingale measureQ and with some risk-neutral interest rater.

A European-style discrete arithmetic Asian put option with exercise dateT , n averaging dates

(n ≤ T + 1) and floating strike price with percentageβ, generates atT a pay-off(
1

n

n−1∑
i=0

S(T − i) − βS(T )

)
+

.

A European-style arithmetic Asian call option with continuous averaging is based on a similar

pay-off as in (1) but by replacing the discrete average by an integral divided by the length of

the averaging period. We focus on discrete averaging which is the normal specification in real

contracts. Discrete arithmetic Asian options are path-dependent contingent claims with pay-offs

that depend on the average of the underlying asset price over some prespecified period of time,

often a low number of trading days in the discrete averaging case. Such contracts form an attractive

specification for thinly traded asset markets where price manipulation on or near a maturity date is

possible. In markets where prices are prone to periods of extreme volatility the averaging performs

a smoothing operation. For buyers as well as for writers, an Asian option is a useful hedging

instrument. These Asian options provide for the buyer a cost efficient way of hedging cash or

asset flows over extended periods, e.g., for foreign exchange, interest rate, or commodities like oil

or gold. For the writer of an Asian option, the advantages include more manageable hedge ratios

and the ability to unwind his position more gracefully at the end.

Asian options can also be part of complex financial contracts and strategies, like retirement plans

or catastrophe insurance derivatives. Indeed, as explained in Nielsen and Sandmann (2003), a

typical investment plan of a retirement scheme could include fixed periodic payments invested in

a specified risky asset. An Asian option on the average return can be used to guarantee a minimum

rate of return on the periodic payments. On the other hand, Cat-calls are catastrophic risk options

which include Asian options on the average of an underlying index (see Geman (1994)).

Within the Black & Scholes (1973) model, no closed form solutions are available for Asian

options involving the discrete arithmetic average. As opposed to options on geometric average,

the density function for the arithmetic average is not lognormal and has no explicit representation.
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A variety of methods for the European case and especially continuously averaged fixed strike op-

tions have been developed while only a few papers deal with the more practical case of discrete

arithmetic averaging. A partial list of methods includes (for references see for example Klassen

(2001) and Veˇceř (2001)): Monte Carlo or quasi-Monte Carlo methods, exact expressions involv-

ing Laplace transforms or an infinite sum over recursively defined integrals, convolution methods

using the fast Fourier transform, analytic approximations based on moment matching or condi-

tioning on some average, a number of PDE methods, tree methods.

We focus on analytic methods, based on bounds through conditioning on some random vari-

able. We aim to create a unifying framework for European-style discrete arithmetic Asian options

through these bounds, that generalizes several approaches in the literature as well as improves the

existing results.

Throughout the paper we mainly consider ‘forward starting’ Asian options which means that at

the current time0, the averaging has not yet started and that then variablesS(T−n+1), . . . , S(T )

are random. This case states in contrast with the case thatT − n + 1 ≤ 0 where only the prices

S(1), . . . , S(T ) remain random. In literature, this Asian option is called ‘in progress’. Note that

our results for forward starting Asian options can immediately be translated to results for Asian

options in progress. Most papers considering analytical approximations treat only standard Asian

options which is the case ofT = n − 1 but in a non-analytical way the PDE approach also treats

easily different types of Asian options.

An analytical lower and upper bound in the case of continuous averaging was obtained by the

method of conditioning in Rogers and Shi (1995). Simon, Goovaerts and Dhaene (2000) derived

and computed in a general framework an analytical expression for the so-called ‘comonotonic

upper bound’, which is in fact the smallest linear combination of prices of European call options

that bounds the price of an European-style Asian option from above. Nielsen and Sandmann

(2003) studied both upper and lower bounds for an European-style arithmetic Asian option in

the Black & Scholes setting. In particular, they derive a special case of the Simon, Goovaerts

and Dhaene upper bound using Lagrange optimization. Nielsen and Sandmann (2003) also apply
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the Rogers & Shi reasoning in the arithmetic averaging case by using one specific standardized

normally distributed conditioning variable.

The paper is organized as follows. Section 2 provides bounds for the European-style discrete

arithmetic Asian options with fixed strike in the Black & Scholes setting. We first present in Sec-

tion 2.1 lower and upper bounds based on a general technique for deriving the bounds for stop-loss

premiums of sums of dependent random variables, as explained in Kaas, Dhaene and Goovaerts

(2000) and Dhaene et al. (2002a). For clarity we have included a short overview of their methods

in Appendix A. In Section 2.2 we show how to improve the upper bound that is based on the

ideas of Rogers and Shi (1995), and generalize the approach of Nielsen and Sandmann (2003) to

a general class of normally distributed conditioning variables. We also show in Section 2.3 how to

sharpen the improved comonotonic upper bound of Kaas et al. (2000) and Dhaene et al. (2002a) by

obtaining another so-called partially exact/comonotonic upper bound which consists of an exact

part of the option price and some improved comonotonic upper bound for the remaining part. This

idea of decomposing the calculations in an exact part and an approximating part goes at least back

to Curran (1994). The procedures we present can also be used to price the European-style discrete

arithmetic Asian put options with fixed strike (either directly or through the put-call parity), see

Section 2.4. In Section 2.5 we compare and discuss all approaches and, in addition, compare our

results to those of Jacques (1996), who approximates the distribution of the arithmetic average by

a more tractable one. We measure the closeness of the bounds in distributional sense. Several sets

of numerical results are given. We also consider hedging based on the lower and upper bounds in

Section 2.6.

Section 3 treats the European-style discrete arithmetic Asian options with floating strike in the

Black & Scholes setting. In independent work, Henderson and Wojakowski (2002) use the change

of numeraire technique to obtain symmetry results between forward starting European-style Asian

options with floating and fixed strike in case of continuous averaging. We show that their results

can be extended to discrete averaging and we give also bounds for the European-style Asian float-

ing strike options in progress.
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We conclude the paper with main results and recent developments in Section 4.

One of the aims of this paper is to identify the currently best lower and upper bounds. We will

show that the lower bounds are very close to the Monte Carlo values and that one of our techniques

leads to very satisfying upper bounds, see Theorem 6.

2 Fixed strike Asian options in a Black & Scholes setting

In the Black & Scholes model, the price of a risky asset{S(t), t ≥ 0} under the risk-neutral

measureQ follows a geometric Brownian motion process, with volatilityσ and with drift equal to

the risk-free force of interestr:

dS(t)

S(t)
= rdt + σdB(t), t ≥ 0,

where{B(t), t ≥ 0} is a standard Brownian motion process underQ. Hence, the random vari-

ablesS(t)
S(0)

are lognormally distributed with parameters(r − σ2

2
)t andtσ2.

Therefore we do not have an explicit analytical expression for the distribution of the average

1
n

∑n−1
i=0 S(T − i) in (1) and determining the price of the Asian option is a complicated task. From

(1) it is seen that the problem of pricing arithmetic Asian options turns out to be equivalent to

calculating stop-loss premiums of a sum of dependent risks. Hence we can apply the results on

comonotonic upper and lower bounds for stop-loss premiums, which have been summarized in

Section 2.1 and in Appendix A.

We now shall concentrate on bounds for the European-style discrete arithmetic Asian option

with fixed strike by comonotonicity reasoning and by using the approach of Rogers & Shi which

has been generalized by Nielsen and Sandmann (2003). We only write down the formulae of the

forward starting Asian call options in progress and corresponding Asian put options can be treated

in a similar way.
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2.1 Bounds based on comonotonicity reasoning

In both financial and actuarial context one encounters quite often random variables of the type

S =
∑n

i=1 Xi where the termsXi are not mutually independent, but the multivariate distribution

function of the random vector(X1, X2, . . . , Xn) is not completely specified because one only

knows the marginal distribution functions of the random variablesXi. In such cases, one would

like to find lower bounds of the formS =
∑n

i=1 Xi and upper bounds of the formS =
∑n

i=1 Xi

for the sumS =
∑n

i=1 Xi such that (i) the marginal distribution functions ofXi, Xi and Xi

(i = 1, . . . , n) are equal, and (ii)S �cx S �cx S, where�cx denotes the convex order, which

means thatE[S] = E[S] = E[S] andE[(S − d)+] ≤ E[(S − d)+] ≤ E[(S − d)+] for all d ∈ R.

Referring to Dhaene et al. (2002a), one possible choice for an upper boundS is given byS := Sc

with

S
c d
=

n∑
i=1

F−1
Xi

(U). (2)

In other words, we choose the components of the random vector
(
X1, X2, . . . , Xn

)
such thatXi :=

Xc
i := F−1

Xi
(U), where (a)F−1

X (U) is the usual inverse of a distribution function, which is the non-

decreasing and left-continuous function defined by

F−1
X (U) = inf {x ∈ R | FX(x) ≥ U} , U ∈ [0, 1] ,

with inf ∅ = +∞ by convention, and (b) the corresponding random vector(X c
1, . . . , X

c
n) is

comonotonic, which means that each two possible outcomes(x1, . . . , xn) and (y1, . . . , yn) of

(Xc
1, . . . , X

c
n) are ordered componentwise.

Another choice for the upper boundS is based on the assumption that there is some additional

information available concerning the stochastic nature of(X1, . . . , Xn), represented by some ran-

dom variableΛ with a given distribution function. Based on Kaas et al. (2000), we chooseS := Su,

with

S
u = F−1

X1|Λ(U) + F−1
X2|Λ(U) + · · · + F−1

Xn|Λ(U). (3)

Put another way, we choose the components of the random vector
(
X1, X2, . . . , Xn

)
such that
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Xi := F−1
Xi|Λ(U), whereF−1

Xi|Λ(U) is the notation for the random variablefi(U, Λ), with the func-

tion fi defined byfi(u, λ) = F−1
Xi|Λ=λ(u), and withU being a(0, 1)-uniform random variable

independent ofΛ. The upper boundSu is an improvement over the upper boundSc, see e.g.

Dhaene et al. (2002a) for details. As a lower bound we chooseS := S�, following Kaas et al.

(2000), whereS� is a conditional expectation ofS given some random variableΛ, not necessarily

equal to that entering (3):

S
� = E [S | Λ] . (4)

In other words, we choose the components of the random vector
(
X1, X2, . . . , Xn

)
such that

Xi := E [Xi | Λ]. We remark that this idea was also suggested by Rogers and Shi (1995) for

the continuous averaging case.

Summarizing, the sumS is bounded below and above in convex order by the sums given by

(4), (3) and (2):

S
� �cx S �cx S

u �cx S
c,

which implies by definition of convex order that

E[(S� − d)+] ≤ E[(S − d)+] ≤ E[(Su − d)+] ≤ E[(Sc − d)+]

for all d in R, while E[S�] = E[S] = E[Su] = E[Sc].

A more detailed overview of the construction of these sums and the corresponding bounds,

based on the literature, is given in Appendix A. Notice that throughout the paper, especially in the

proofs of theorems, we make use of the results summarized in that appendix.

We remark that the Asian option pricing in the Black & Scholes setting is in fact a particu-

lar case of sums of lognormal variables in Appendix A. Indeed, let us look at the price of the

European-style discrete arithmetic Asian call option with strike priceK, maturity dateT and av-

eraging overn prices of the underlying withT − n + 1 ≥ 0:

AC(n, K, T ) =
e−rT

n
EQ

[
(S − nK)+

]
(5)
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with

S =
n−1∑
i=0

S(T − i) =
n−1∑
i=0

S(0)e(r−σ2

2
)(T−i)+σB(T−i). (6)

This can be rewritten as a sum of lognormal random variables:

S =

n−1∑
i=0

Xi =

n−1∑
i=0

αie
Yi (7)

with

Yi = σB(T − i) ∼ N(0, σ2(T − i))

(8)

αi = S(0)e(r−σ2

2
)(T−i)

and

cov(Yi, Yj) = σ2min(T − i, T − j)

leading to

cov(Xi, Xj) = αiαje
1
2
σ2((T−i)+(T−j))

[
eσ2min(T−i,T−j) − 1

]
.

2.1.1 Lower bound

A lower bound for the Asian option priceAC(n, K, T ) is obtained by using a normally distributed

conditioning variableΛ and by substitutingS� for S in the right hand side of (5), where according

to (4)

S
� =

n−1∑
i=0

EQ[Xi|Λ] =

n−1∑
i=0

αiE
Q[eYi |Λ].

The following theorem states a lower bound for the option priceAC(n, K, T ). The proof

follows from (62), (63) and (68) in Appendix A as shown in Dhaene et al. (2002b).

Theorem 1. Suppose the sum S is given by (6)-(8) and Λ is a normally distributed conditioning

variable such that (σB(T − i), Λ) are bivariate normally distributed for all i. Then the comono-
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tonic lower bound for the option price AC(n, K, T ) is given by

LBΛ =
e−rT

n
EQ[(S� − nK)+]

=
S(0)

n

n−1∑
i=0

e−ri Φ
[
σρT−i

√
T − i − Φ−1 (FS�(nK))

]
− e−rT K (1 − FS�(nK)) , (9)

where ρT−i = corr(σB(T − i), Λ) ≥ 0 and FS�(nK) is a solution to

S(0)

n−1∑
i=0

exp

[(
r − σ2

2
ρ2

T−i

)
(T − i) + σ ρT−i

√
T − i Φ−1 (FS�(nK))

]
= nK, (10)

where Φ(·) is the cumulative distribution function (cdf) of a standard normal variable and FS�(·)
represents the cdf of S�.

Note that the conditioning variableΛ only enters through the correlationsρT−i. We now focus

on choosing the appropriate conditioning variableΛ. Taking into account that we aim to derive a

closed-form expression for the lower bound, we defineΛ as a normal random variable given by

Λ =

n−1∑
i=0

βiB(T − i), βi ∈ R
+. (11)

For general positiveβi, the variance ofΛ is given by

σ2
Λ =

n−1∑
i=0

n−1∑
j=0

βiβj min (T − i, T − j)

and

ρT−i = corr(σB(T − i), Λ) =
cov (B(T − i), Λ)√

T − i σΛ

=

∑n−1
j=0 βj min (T − i, T − j)√

T − i σΛ

≥ 0. (12)

Remark that we take positive coefficientsβi implying that the correlationsρT−i are positive. This

is to ensure thatS� is a sum ofn comonotonic random variables.

We investigate different choices of weightsβi in expression (11) for the conditioning random

variableΛ. The choice is motivated by the reasoning that the quality of the stochastic lower bound

EQ[S | Λ] can be judged by its variance. To maximize the quality, this variance should be made as

close as possible to varQ[S]. In other words, the average value

EQ
[
varQ[S | Λ]

]
= varQ[S] − varQ

[
EQ[S | Λ]

]
9



should be small. This however does not imply that the above expression should be minimized over

the conditioning variableΛ. Notice that

varQ[S] − varQ
[
S

�
]

= 2

∫ +∞

−∞
{EQ[(S − k)+] − (EQ[(S� − k)+]} dk.

From this relation it is seen that minimizing the difference in variance overΛ is no guarantee that

the difference between the corresponding stop-loss premia for one particulark will be minimized.

Intuitively, to get the best lower bound forAC(n, K, T ), Λ andS should be as alike as possible.

Therefore, we have selected the following two candidates forΛ which turn out to give very good

results:

1. a linear transformation of a first order approximation to
∑n−1

i=0 S(T − i) in (6), as proposed

in a general setting by Kaas, Dhaene and Goovaerts (2000) and used in Dhaene et al. (2002b):

Λ =

n−1∑
i=0

e(r−σ2

2
)(T−i)B(T − i), (13)

2. the standardized logarithm of the geometric averageG = n

√∏n−1
i=0 S(T − i) as in Nielsen

and Sandmann (2003):

Λ =
ln G − EQ[ln G]√

varQ[ln G]
=

1√
varQ[

∑n−1
i=0 B(T − i)]

n−1∑
i=0

B(T − i), (14)

where

varQ[

n−1∑
i=0

B(T − i)] =

n−1∑
i=0

n−1∑
j=0

min(T − i, T − j) = n2T − n

6
(n − 1)(4n + 1).

The lower bound (9)-(10) differs for the two choices (13) and (14) ofΛ, only by the expression

(12) for the correlation coefficientρT−i:

1. ρT−i =

∑n−1
j=0 e(r−σ2

2
)(T−j) min (T − i, T − j)√

T − i σΛ

with

σ2
Λ =

n−1∑
i=0

n−1∑
j=0

e(r−σ2

2
)(2T−i−j) min (T − i, T − j) ,
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2. ρT−i =

∑n−1
j=0 min (T − i, T − j)√

n2T − n
6
(n − 1)(4n + 1)

√
T − i

=
n (T − i) − (n−i−1)(n−i)

2√
n2T − n

6
(n − 1)(4n + 1)

√
T − i

sinceσΛ = 1.

We note that the closed-form solution of the lower bound in Nielsen and Sandmann (2003)

is a special case of (9) and (10) with (14) as the conditioning variable. We also noticed that the

lower bound when conditioning on the geometric average coincides with the so-called “naive”

approximation of Curran (1994). In fact, formulae (9)-(10) for the lower bound are general in the

sense that they hold for any normally distributed conditioning variableΛ by substituting the right

ρT−i. Moreover, the lower bound can be expressed as a combination of Black & Scholes type

formulae.

Theorem 2. For a general normally distributed conditioning variable Λ, satisfying the assump-

tions of Theorem 1, the lower bound LBΛ of AC(n, K, T ) can be written as an average of Black &

Scholes formulae for an artificial underlying asset of which the price process S̃(t) is a geometric

Brownian motion with S̃(0) = S(0) and with a non-constant volatility σ̃i = σρT−i at time instance

T − i:

LBΛ =
e−rT

n

n−1∑
i=0

EQ[(S̃(T − i) − K̃i)+] =
1

n

n−1∑
i=0

(
e−riS̃(0)Φ (d1,i) − e−rT K̃iΦ (d2,i)

)
with

S̃(T − i) = S̃(0)e(r− σ̃2
i
2

)(T−i)+σ̃iB(T−i)

and strike prices

K̃i = F−1
E[S(T−i)|Λ]

(
FS�(nK)

)
= S(0)e(r− σ̃2

i
2

)(T−i)+σ̃i
√

T−iΦ−1(F
S�(nK))

and where

d1,i =

(
r +

σ̃2
i

2

)
(T − i) − ln

(
K̃i

S̃(0)

)
σ̃i

√
T − i

= σ̃i

√
T − i − Φ−1 (FS�(nK)) ,

d2,i = d1,i − σ̃i

√
T − i = −Φ−1 (FS�(nK))

while FS�(nK) can be calculated from
∑n−1

i=0 K̃i = nK similarly to (10).
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2.1.2 Improved comonotonic upper bound

As for the lower bound, we consider a conditioning normal random variableΛ. An improved

comonotonic upper bound for the Asian option priceAC(n, K, T ) is given by

AC(n, K, T ) =
e−rT

n
EQ

[
(S − nK)+

] ≤ e−rT

n
EQ

[
(Su − nK)+

]
, (15)

where according to (3)Su =
∑n−1

i=0 F−1
Xi|Λ(U) =

∑n−1
i=0 F−1

αieYi |Λ(U) for a (0, 1)-uniform random

variableU independent ofΛ. More explicitly, we obtain the following analytic expression for this

bound.

Theorem 3. Suppose the sum S is given by (6)-(8) and Λ is a normally distributed conditioning

variable such that (σB(T − i), Λ) are bivariate normally distributed for all i. Then the improved

comonotonic upper bound for the option price AC(n, K, T ) is given by

ICUBΛ =
e−rT

n
EQ

[
(Su − nK)+

]
=

e−rT

n

n−1∑
i=0

S(0)er(T−i)e−
σ2

2
ρ2

T−i(T−i)

×
∫ 1

0

eρT−i σ
√

T−iΦ−1(v)Φ

(√
1 − ρ2

T−i σ
√

T − i − Φ−1
(
FSu|V =v(nK)

))
dv

−e−rT nK (1 − FSu(nK)) , (16)

where

V = Φ

(
Λ − E [Λ]

σΛ

)
(17)

is a uniform(0, 1) random variable, ρT−i = corr(σB(T − i), Λ), and

FSu(nK) =

∫ 1

0

FSu|V =v(nK)dv,

and the conditional distribution FSu|V =v(nK) follows from

nK =

n−1∑
i=0

αi exp

[
ρT−iσ

√
T − i Φ−1(v) +

√
1 − ρ2

T−i σ
√

T − i Φ−1
(
FSu|V =v(nK)

)]
. (18)

Proof. We determine the cdf ofS
u

and the stop-loss premiumE
[
(Su − d)+

]
, where we condition

on a normally distributed random variableΛ or equivalently on the uniform(0, 1) random variable
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V , cfr. (17). The conditional probabilityFSu|V =v(x) also denoted byFSu(x | V = v), is the cdf of a

sum ofn comonotonic random variables and follows forF −1
Su|V =v(0) < x < F−1

Su|V =v(1), according

to (60) and (67), forαi ≥ 0, i = 0, . . . , n − 1, implicitly from:

n−1∑
i=0

αi eE[Yi]+riσYi
Φ−1(v)+

√
1−r2

i σYi
Φ−1(FSu(x|V =v)) = x, (19)

whereri = corr(Yi, Λ). The cdf ofSu is then given by

FSu(x) =

∫ 1

0

FSu|V =v(x)dv. (20)

We now look for an expression for the stop-loss premium at retentiond with F −1
Su|V =v(0) < d <

F−1
Su|V =v(1) for Su, see (61):

E
[
(Su − d)+

]
=

∫ 1

0

E
[
(Su − d)+ | V = v

]
dv =

n−1∑
i=0

∫ 1

0

E

[(
F−1

Xi|Λ(U | V = v) − di

)
+

]
dv

(21)

with di = F−1
Xi|Λ (FSu(d | V = v) | V = v) and withU a random variable which is uniformly dis-

tributed on(0, 1) and independent ofV . SinceF−1
Xi|Λ(U | V = v) follows a lognormal distribution

with mean and standard deviation:

µv(i) = ln αi + E [Yi] + riσYi
Φ−1(v), σv(i) =

√
1 − r2

i σYi
,

one obtains that

di = αi exp

[
E [Yi] + riσYi

Φ−1(v) + αi

√
1 − r2

i σYi
Φ−1

(
FSu|V =v(d)

)]
. (22)

The well-known formula (65) then yields

E
[
(Su − d)+ | V = v

]
=

n−1∑
i=0

[
αie

µv(i)+
σ2

v(i)

2 Φ(αidi,1) − diΦ(αidi,2)

]
,

with, according to (66),

di,1 =
µv(i) + σ2

v(i) − ln di

σv(i)
, di,2 = di,1 − σv(i).

13



Substitution of the corresponding expressions and integration over the interval[0, 1] leads to the

following result

E
[
(Su − d)+

]
=

n−1∑
i=0

αie
E[Yi]+

1
2
σ2

Yi
(1−r2

i )×

×
∫ 1

0

eriσYi
Φ−1(v)Φ

(
sign(αi)

√
1 − r2

i σYi
− Φ−1

(
FSu|V =v(d)

))
dv

− d (1 − FSu(d)) . (23)

The upper bound then follows from (19) and (23) ford = nK by plugging inαi, Yi and its mean

and variance from (8), while denoting the correlationsri by ρT−i. �

We found that the conditioning variable

Λ =
T∑

k=1

βkWk, with Wk i.i.d. N(0, 1) such thatB(T − i)
d
=

T−i∑
k=1

Wk, i = 0, ...n − 1, (24)

with all βk equal to a same constant (for simplicity taken equal to one) leads to a sharper upper

bound than other choices forβk or than the conditioning variables in the lower bound.

ForΛ =
∑T

k=1 Wk
d
= B(T ) the correlation terms have the form:

ri = ρT−i =
cov (B(T − i), Λ)√

T − i σΛ

=
T − i√

T − i
√

T
=

√
T − i√

T
, i = 0, . . . , n − 1, (25)

and the dependence structure of the terms in the sumSu corresponds better to that of the terms in

the sumS than for other choices ofΛ. Investigating the correlations

corr
[
F−1

S(T−i)|Λ(U), F−1
S(T−j)|Λ(U)

]
=

e[ρT−iρT−j+
√

1−ρ2
T−i

√
1−ρ2

T−j ]σ
2
√

T−i
√

T−j − 1√
eσ2(T−i) − 1

√
eσ2(T−j) − 1

corr [S(T − i), S(T − j)] =
eσ2 min(T−i,T−j) − 1√

eσ2(T−i) − 1
√

eσ2(T−j) − 1
,

it can be seen that forρT−i given by (25) these correlations not only coincide fori = j but also

when one of the indicesi or j equals zero. Moreover, fori 
= j, the differences∣∣∣∣[ρT−iρT−j +
√

1 − ρ2
T−i

√
1 − ρ2

T−j ]σ
2
√

T − i
√

T − j − σ2 min(T − i, T − j)

∣∣∣∣
are small for alli andj in {0, . . . , n − 1} in comparison to other choices ofΛ.

As in the case of the lower bound, we can rewrite the upper bound as an expression of Black &

Scholes formulae.
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Theorem 4. For a general normally distributed conditioning variable Λ, satisfying the assump-

tions of Theorem 1, the improved upper bound of AC(n, K, T ) can be written as a combination

of Black & Scholes formulae for an artificial underlying asset S̃(t) with S̃(0) = S(0) and with

volatilities σ̃i = σ
√

1 − ρ2
T−i:

e−rT

n
EQ

[
(Su − nK)+

]
=

∫ 1

0

1

n

n−1∑
i=0

eρT−i σ
√

T−iΦ−1(v)−σ2

2
ρ2

T−i(T−i)

×
{

e−riS̃(0)Φ (d1,i(v)) − e−rT K̃i(v)Φ (d2,i(v))
}

dv

with

S̃(T − i) = S̃(0)e(r− σ̃2
i
2

)(T−i)+σ̃iB(T−i)

and the strike prices defined by

K̃i(v) = S(0)e(r− σ̃2
i
2

)(T−i)+σ̃i

√
T−iΦ−1(FSu|V =v(nK))

where

d1,i(v) =

(
r +

σ̃2
i

2

)
(T − i) − ln

(
K̃i(v)

S̃(0)

)
σ̃i

√
T − i

= σ̃i

√
T − i − Φ−1

(
FSu|V =v(nK)

)
d2,i(v) = d1,i(v) − σ̃i

√
T − i = −Φ−1

(
FSu|V =v(nK)

)
and FSu|V =v(nK) can be calculated similarly to (18) from

∑n−1
i=0 K̃i(v) = nK.

2.2 Bounds based on the Rogers & Shi approach

As an alternative to Section 2.1.2, following the ideas of Rogers and Shi (1995), we derive an

upper bound based on the lower bound. Indeed, we apply the following general inequality for any

random variableY andZ from Rogers and Shi (1995):

0 ≤ E
[
E
[
Y + | Z

]− E [Y | Z]+
] ≤ 1

2
E
[√

var(Y | Z)
]
. (26)

Theorem 5. Let S be given by (6)-(8) and Λ is a normally distributed conditioning variable such

that (σB(T −i), Λ) are bivariate normally distributed for all i. Then an upper bound of the option

15



price AC(n, K, T ) is given by

UBΛ =
e−rT

n

{
EQ

[
(S� − nK)+

]
+ ε

}
, (27)

where the error bound ε equals

ε =
1

2
EQ

[√
varQ(S |Λ)

]
=

1

2

∫ 1

0

{
n−1∑
i=0

n−1∑
j=0

αiαje
rijσσijΦ−1(v)+ 1

2
(1−r2

ij)σ
2σ2

ij

−
(

n−1∑
i=0

S(0) e(r− 1
2
σ2ρ2

T−i)(T−i)+ρT−iσ
√

T−iΦ−1(v)

)2



1
2

dv, (28)

with

αiαj = S(0)2 exp

[
(r − σ2

2
)(2T − i − j)

]
, (29)

σij =
√

(T − i) + (T − j) + 2 min(T − i, T − j), (30)

rij =

√
T − i

σij

ρT−i +

√
T − j

σij

ρT−j . (31)

Proof. By applying (26) to the case ofY being
∑n−1

i=0 S(T − i)− nK andZ being a conditioning

variableΛ, we obtain an error bound for the difference of the option price and its lower bound

0 ≤ EQ
[
EQ

[
(S − nK)+ | Λ

]− (S� − nK)+
] ≤ 1

2
EQ

[√
varQ(S | Λ)

]
. (32)

Consequently, (27) follows after discounting as the upper bound for the option priceAC(n, K, T ).

Using properties of lognormal distributed variables,EQ
[√

varQ(S |Λ)
]

can be written out explic-

itly, giving some lengthy, analytical, computable expression:

EQ
[√

varQ(S |Λ)
]

= EQ
[(

EQ
[
S

2 | Λ
]− EQ [S | Λ]2

)1/2
]

(33)

= EQ


(n−1∑

i=0

n−1∑
j=0

EQ [S(T − i)S(T − j) | Λ] − (
S

�
)2

)1/2

 ,

where the first term in the expectation in the right hand side equals

n−1∑
i=0

n−1∑
j=0

αiαj exp

(
rijσσijΦ

−1(V ) +
1

2
(1 − r2

ij)σ
2σ2

ij

)
, (34)
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whereV is uniformly distributed on the interval(0, 1). The second term in the expectation in the

right hand side of (33) can according to (68) in Theorem 12 be written as

S
� d
=

n−1∑
i=0

S(0) e(r− 1
2
σ2ρ2

T−i)(T−i)+ρT−iσ
√

T−iΦ−1(V ) (35)

by plugging inαi, Yi and its mean and variance from (8), while denoting the correlationsri by

ρT−i, and simplifying. �

Note that the error bound (32) and henceε are independent of the strike priceK. In the following

theorem we show how to strengthen the error boundε in Theorem 5 by making it dependent on

the strike price through a suitably chosen constantdΛ such thatΛ ≥ dΛ implies thatS ≥ nK. The

meaning of finding suchdΛ for a general conditioning variableΛ is seen from the fact that we have

on the set{Λ ≥ dΛ} the relation:

EQ[(S − nK)+ | Λ] = EQ[S − nK | Λ] =
(
S

� − nK
)
+

. (36)

The following theorem can be seen as a generalization of the corresponding result in Nielsen

and Sandmann (2003). Whereas Nielsen and Sandmann (2003) derived their result directly forΛ

given by (14), we extend this approach to any normally distributed conditioning random variable

Λ.

Theorem 6. Let S be given by (6)-(8) and Λ is a normally distributed conditioning variable such

that (σB(T − i), Λ) are bivariate normally distributed for all i. Suppose there exists a dΛ ∈ R

such that Λ ≥ dΛ implies that S ≥ nK. Then an upper bound to the option price AC(n, K, T ) is

given by

UBΛd = LBΛ +
e−rT

n
ε(dΛ) (37)

where the error bound ε(dΛ) is given by

ε(dΛ) =
S(0)

2
{Φ(d∗

Λ)} 1
2 ×

×
{

n−1∑
i=0

n−1∑
j=0

er(2T−i−j)+σ2ρT−iρT−j

√
T−i

√
T−jΦ

(
d∗

Λ − σ(ρT−i

√
T − i + ρT−j

√
T − j)

)
×

×
(
eσ2(min(T−i,T−j)−ρT−iρT−j

√
T−i

√
T−j) − 1

)} 1
2
, (38)
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with d∗
Λ = dΛ−EQ[Λ]

σΛ
, Φ(·) the standard normal cdf and ρT−i = corr(σB(T − i), Λ) ≥ 0.

Proof. In general, fordΛ ∈ R such thatΛ ≥ dΛ implies thatS ≥ nK, it follows by (36) that:

0 ≤ EQ
[
EQ[(S − nK)+ | Λ] − (

S
� − nK

)
+

]
=

∫ dΛ

−∞

(
EQ[(S − nK)+ | Λ = λ] − (

EQ [ S | Λ = λ] − nK
)
+

)
dFΛ(λ)

≤ 1

2

∫ dΛ

−∞

(
varQ (S | Λ = λ)

) 1
2 dFΛ(λ) (39)

≤ 1

2

(
EQ

[
varQ (S | Λ) 1{Λ<dΛ}

]) 1
2
(
EQ

[
1{Λ<dΛ}

]) 1
2 =: ε(dΛ), (40)

where Hölder’s inequality has been applied in the last inequality, where1{Λ<dΛ} is the indicator

function, and whereFΛ(·) denotes the normal cumulative distribution function ofΛ.

The first expectation term in the product (40) can be expressed as

EQ
[
varQ (S|Λ) 1{Λ<dΛ}

]
= EQ

[
EQ[S2|Λ]1{Λ<dΛ}

]− EQ
[
(EQ[S|Λ])21{Λ<dΛ}

]
. (41)

The second term of the right-hand side of (41) can according to (35) be rewritten as

EQ
[
(EQ[S|Λ])21{Λ<dΛ}

]
=

∫ dΛ

−∞
(EQ[S|Λ = λ])2dFΛ(λ)

= S(0)2
n−1∑
i=0

n−1∑
j=0

er(2T−i−j)−σ2

2 (ρ2
T−i(T−i)+ρ2

T−j (T−j))
∫ dΛ

−∞
eσ(ρT−i

√
T−i+ρT−j

√
T−j)Φ−1(v)dFΛ(λ)

(42)

where we recall thatΦ−1(v) = λ−EQ[Λ]
σΛ

and Φ(·) is the cumulative distribution function of a

standard normal variable. Applying the equality∫ dΛ

−∞
ebΦ−1(v)dFΛ(λ) = e

b2

2 Φ (d∗
Λ − b) , d∗

Λ =
dΛ − EQ[Λ]

σΛ
, (43)

with b = σ
(
ρT−i

√
T − i + ρT−j

√
T − j

)
we can expressEQ

[
(EQ[S|Λ])21{Λ<dΛ}

]
as

S(0)2
n−1∑
i=0

n−1∑
j=0

er(2T−i−j)+σ2ρT−iρT−j

√
T−i

√
T−jΦ

(
d∗

Λ − σ(ρT−i

√
T − i + ρT−j

√
T − j)

)
. (44)
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To transform the first term of the right-hand side of (41) we invoke (29)-(31) and apply (43) with

b = rijσσij = σ
(
ρT−i

√
T − i + ρT−j

√
T − j

)
:

EQ
[
EQ[S2 | Λ]1{Λ<dΛ}

]

=

n−1∑
i=0

n−1∑
j=0

∫ dΛ

−∞
EQ [S(T − i)S(T − j)|Λ = λ] dFΛ(λ)

= S(0)2
n−1∑
i=0

n−1∑
j=0

e(r−σ2

2
)(2T−i−j)+ 1

2(1−r2
ij)σ2σ2

ij

∫ dΛ

−∞
erijσσijΦ−1(v)dFΛ(λ)

= S(0)2

n−1∑
i=0

n−1∑
j=0

er(2T−i−j)+σ2 min(T−i,T−j)Φ
(
d∗

Λ − σ(ρT−i

√
T − i + ρT−j

√
T − j)

)
. (45)

The second expectation term in the product (40) equalsFΛ(dΛ) = Φ(d∗
Λ).

Combining (44) and (45) into (41), and then substitutingΦ(d∗
Λ) and (41) into (40) finally leads to

expression (38). �

We stress that the error bound (40) and thus (38) hold for any conditioning normal random

variableΛ that satisfies the assumptions of Theorem 1 and for which there exists an integration

bounddΛ such thatΛ ≥ dΛ impliesS ≥ nK. ForΛ given by (14), Nielsen and Sandmann found

that the correspondingdΛ is given by

dGA =
n ln

(
K

S(0)

)
−∑n−1

i=0

(
r − σ2

2

)
(T − i)

σ
√

n2T − 1
6
n(n − 1)(4n + 1)

, (46)

where the subscriptGA is to remind the fact thatΛ is the standardized logarithm of the geometric

average. The error bound (38) coincides with the one found in Nielsen and Sandmann (2003) for

the special choice (14) forΛ and the correspondingdGA (46). Let us show that also forΛ given by

(13) this technique works to strengthen the error bound (32) and hence to sharpen the upper bound

(27). Using the property thatex ≥ 1 + x and relations (6)-(8) and (13), we obtain

S =

n−1∑
i=0

αie
Yi ≥

n−1∑
i=0

αi + S(0)σ

n−1∑
i=0

e(r−σ2

2
)(T−i)B(T − i)︸ ︷︷ ︸
=Λ

.

HenceS ≥ nK whenΛ is larger than
nK −∑n−1

i=0 αi

S(0)σ
. Thus in case ofΛ being a linear transfor-
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mation of the first order approximation (FA) ofS, we have

dFA =
nK −∑n−1

i=0 S(0)e(r−σ2

2
)(T−i)

S(0)σ
. (47)

Let us also notice that the upper bound (27) corresponds to the limiting case of (39) wheredΛ

equals infinity. Further note that in contrast to (32) the error bound now depends onK throughdΛ.

2.3 Partially exact/comonotonic upper bound

Next we combine the technique for obtaining an improved comonotonic upper bound by condition-

ing on some normally distributed random variableΛ and the idea of decomposing the calculations

in an exact part and an approximating part which goes at least back to Curran (1994). This so-

called partially exact/comonotonic upper bound consists of an exact part of the option price and

some improved comonotonic upper bound for the remaining part. This upper bound improves the

upper bound denoted byC∗∗,G
A in the paper of Nielsen and Sandmann (2003), as will be explained

at the end of this section.

Theorem 7. Let S be given by (6)-(8) and Λ be a normally distributed conditioning variable such

that (σB(T − i), Λ) are bivariate normally distributed for all i. Suppose there exists a dΛ ∈ R

such that Λ ≥ dΛ implies that S ≥ nK. Then the partially exact/comonotonic upper bound to the

option price AC(n, K, T ) is given by

PECUBΛ

=
S(0)

n

n−1∑
i=0

e−riΦ(ρT−iσ
√

T − i − d∗
Λ) − e−rT KΦ(−d∗

Λ)

+
S(0)

n

n−1∑
i=0

e−rie−
σ2

2
ρ2

T−i(T−i)

×
∫ Φ(d∗Λ)

0

eρT−i σ
√

T−iΦ−1(v)Φ

(√
1 − ρ2

T−i σ
√

T − i − Φ−1
(
FSu|V =v(nK)

))
dv

− e−rT K

(
Φ(d∗

Λ) −
∫ Φ(d∗Λ)

0

FSu|V =v(nK) dv

)
(48)
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where d∗
Λ =

dΛ − EQ[Λ]

σΛ
and FSu|V =v is given by (18) and ρT−i = corr(σB(T − i), Λ).

Proof. For any normally distributed random variableΛ, with cdf FΛ(·), for which there exists a

dΛ such thatΛ ≥ dΛ impliesS ≥ nK and which satisfies the assumptions of Theorem 1, we can

write

e−rT

n
EQ[(S − nK)+] =

e−rT

n
EQ[EQ[(S − nK)+ | Λ]]

=
e−rT

n

{∫ dΛ

−∞
EQ[(S − nK)+ | Λ = λ]dFΛ(λ) +

∫ +∞

dΛ

EQ[S − nK | Λ = λ]dFΛ(λ)

}
. (49)

The second term in the equality (49) can be written in closed-form along similar lines as (42)-(44):

e−rT

n

∫ +∞

dΛ

EQ[S | Λ = λ]dFΛ(λ) − e−rT K(1 − FΛ(dΛ))

=
e−rT

n

n−1∑
i=0

S(0)e(r− 1
2
σ2ρ2

T−i)(T−i)

∫ +∞

dΛ

eρT−iσ
√

T−iΦ−1(v)dFΛ(λ) − e−rT K(1 − Φ(d∗
Λ))

=
S(0)

n

n−1∑
i=0

e−riΦ(ρT−iσ
√

T − i − d∗
Λ) − e−rT KΦ(−d∗

Λ), (50)

whered∗
Λ =

dΛ − EQ[Λ]

σΛ
andv =

λ − EQ[Λ]

σΛ
.

In the first term of (49) we replaceS by Su in order to obtain an upper bound and apply (16) but

now with an integral from zero toΦ(d∗
Λ):

e−rT

n

∫ d

−∞
EQ[(S − nK)+ | Λ = λ]dFΛ(λ)

≤ e−rT

n

∫ d

−∞
EQ[(Su − nK)+ | Λ = λ]dFΛ(λ) =

e−rT

n

∫ Φ(d∗Λ)

0

EQ[(Su − nK)+ | V = v] dv

=
S(0)

n

n−1∑
i=0

e−rie−
σ2

2
ρ2

T−i(T−i)

×
∫ Φ(d∗Λ)

0

eρT−i σ
√

T−iΦ−1(v)Φ

(√
1 − ρ2

T−i σ
√

T − i − Φ−1
(
FSu|V =v(nK)

))
dv

− e−rT K

(
Φ(d∗

Λ) −
∫ Φ(d∗Λ)

0

FSu|V =v(nK) dv

)
. (51)

Adding (50) and (51) we obtain (48). �
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Theorem 8. For any conditioning variable Λ satisfying the assumptions of Theorem 7,

PECUBΛ ≤ ICUBΛ,

where PECUBΛ and ICUBΛ are defined by (48) and (16), respectively.

Proof. Recall that according to the assumption of Theorem 7 there existsdΛ such thatΛ ≥ dΛ ⇒
S ≥ nK. Using this fact and by convex ordering of stop-loss premia ofS andSu we obtain

nerT ICUBΛ =

∫ +∞

−∞
E
[
(Su − nK)+ | Λ = λ

]
dFΛ(λ)

=

∫ dΛ

−∞
E
[
(Su − nK)+ | Λ = λ

]
dFΛ(λ) +

∫ +∞

dΛ

E
[
(Su − nK)+ | Λ = λ

]
dFΛ(λ)

≥
∫ dΛ

−∞
E
[
(Su − nK)+ | Λ = λ

]
dFΛ(λ) +

∫ +∞

dΛ

E
[
(S − nK)+ | Λ = λ

]
dFΛ(λ)

=

∫ dΛ

−∞
E
[
(Su − nK)+ | Λ = λ

]
dFΛ(λ) +

∫ +∞

dΛ

E [S − nK | Λ = λ] dFΛ(λ)

= nerT PECUBΛ. �

We stress that for two distinct conditioning variablesΛ1 andΛ2 it does not necessarily hold that

PECUBΛ1 ≤ ICUBΛ2.

For the random variablesΛ given by (13) and (14) we derived adΛ, see (47) and (46), and thus

we can compute the new upper bound PECUBΛ, cfr. (48). Recall that these choices ofΛ do not

lead to the best improved comonotonic upper bound. The “best” choice isΛ = B(T ) for which

we do not find the necessarydΛ in this new upper bound. However, we expect that the contribution

of the exact part (50) which is the second term in (49) will compensate for the somewhat lower

quality of theSu.

Finally, we note that the upper boundC∗∗,G
A in Nielsen and Sandmann (2003) was derived for the

special conditioning variableΛ given by (14), with the usage of an optimization algorithm to find

the weightsai such that their upper bound for the first term in (49), namely

e−rT

n

n−1∑
i=0

∫ dΛ

−∞
EQ[(S(T − i) − ainK)+ | Λ = λ]dFΛ(λ),
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is minimized. In fact, they introduce a second approximation by bounding this expression from

above using a portfolio of call options, following the presentation in Ross (1976). The expression

obtained this way is then minimized with respect to the weightsai. With our method, however,

we directly have the explicit optimal solution of the original minimization problem, namely the

optimal weightsai for a givenλ or v are:

ai =
1

nK
F−1

S(T−i)|Λ=λ(FSu|V =v(nK))

=
S(0)

nK
e(r−σ2

2
)(T−i)+ρT−iσ

√
T−i Φ−1(v)+

√
1−ρ2

T−i σ
√

T−i Φ−1(FSu|V =v(nK)).

In this sense, the partially exact/comonotonic upper bound improves their upper boundC ∗∗,G
A , see

Table 2 for numerical results.

2.4 General remarks

In this section we summarize some general remarks:

1. Denoting the price of a European-style discrete arithmetic Asianput option with exercise

dateT , n averaging dates and fixed strike priceK byAP (n, K, T ), we find from the put-call

parity at the present:

AC(n, K, T ) − AP (n, K, T ) =
S(0)

n

1 − e−rn

1 − e−r
− e−rT K. (52)

Hence, we can derive bounds for the Asian put option from the bounds for the call. These

bounds for the put option coincide with the bounds that are obtained by applying the theory

of comonotonic bounds and the conditioning approach directly to Asian put options. This

stems from the fact that the put-call parity also holds for these bounds.

2. Note that for numerical computations in (52), ifn andT are expressed in days thenr should

be interpreted as a continuously compounded interest rate for one day which equals a con-

tinuously compounded interest rate for one year divided by the number of (trading) days per

year.
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3. The case of a continuous dividend yieldδ can easily be dealt with by replacing the interest

rater by r − δ.

4. When the number of averaging datesn equals1, the Asian call optionAC(n, K, T ) reduces

to a European call option. It can be proven that in this case the upper and the lower bounds

for the price of the Asian option both reduce to the Black and Scholes formula for the price

of a European call option. For bounds based on a conditioning variableΛ this is true since

for n = 1 we have thatΛ = β0B(T ) while S = S(0) exp
(
(r − 1

2
σ2)T + σB(T )

)
implying

thatρT = 1, and thus thatSu = S� = S.

5. The lower and upper bounds are derived for forward starting Asian options but they can

easily be adapted to hold for Asian options in progress. In this caseT − n + 1 ≤ 0 and only

the prices ofS(1), . . . , S(T ) remain random such that the price of the option is given by:

AC(n, K, T ) =
e−rT

n
EQ

[(
n−1∑
i=0

S(T − i) − nK

)
+

]

=
e−rT

n
EQ

[(
T−1∑
i=0

S(T − i) −
(

nK −
n−1∑
i=T

S(T − i)

))
+

]
.

Thus substitutingnK −∑n−1
i=T S(T − i) for nK and summing for the average overi from

zero toT − 1 instead ofn − 1 the desired bounds follow.

6. The bounds can be extended to the case of deterministic volatility functionσ = σ(t) or σ =

σ(S(0), t) but are not applicable when we assume a stochastic volatility surfaceσ = σ(S, t).

2.5 Numerical illustration

In this section we give a number of numerical examples in the Black & Scholes setting. We discuss

our results and compare them to those found in the literature and to the Monte Carlo price. Further,

we approximateS by a lognormal distribution which is the closest in the Kullback-Leibler sense.

We also measure the closeness of the lower and upper bounds in the distributional sense.
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2.5.1 Comparing bounds

In this section we discuss our results and compare them with those of Jacques (1996) where the

distribution of the sumS of lognormals, see (6), entering in the European-style discrete arithmetic

Asian option was approximated by means of the lognormal (LN) and the inverse Gaussian (IG)

distribution. For the comparison we also included the upper bounds based on the lower bounds, see

Theorem 5 and 6. We show here one set of numerical experiments where we consider a forward

starting European-style discrete arithmetic Asian call option with fixed strike having the same data

as in the paper of Jacques (1996): an initial stock priceS(0) = 100, a nominal annual (daily dis-

cretely compounded) interest rate of 9% per year (corresponding to a continuously compounded

interest rater = ln
(
1 + 0.09

365

)
per day1 or 8,9989% per year), a maturity of 120 days and an aver-

aging periodn of 30 days. The values of the volatilityσ are on annual basis. As a benchmark we

included the price obtained via Monte Carlo simulation by adapting the control variate technique

of Kemna and Vorst (1990) to European-style discrete arithmetic Asian options. The number of

simulated Monte Carlo paths was10 000.

We use the following notations whereΛ can beGA, FA orBT : LBΛ for lower bound, PECUBΛ

for partially exact/comonotonic upper bound, UBΛ for upper bound based on lower bound (cfr.

Theorem 5), and UBΛd for upper bound given by Theorem 6.

As we see from Table 1, the lower bounds LBFA and LBGA are equal up to five decimals.

They both perform much better in comparison with Monte Carlo results than the lower bound

LBBT where we conditioned onΛ =
∑T

k=1 Wk
d
= B(T ) (cfr. (24)). The bad performance is due

to the fact thatB(T ) differs much fromS for n larger than one and henceEQ
[√

varQ(S |B(T ))
]

is large, while for theΛ of (13) or (14) this termEQ
[√

varQ(S |Λ)
]

is very small becauseΛ

en S are very much alike. It seems that the relative difference between a lower bound and its
1In the paper of Jacques (1996) this interest rate is reported and is used in our computations of the bounds. The

actual computations in Jacques (1996) were made with a continuously compounded interest rate ofln(1+0.09)
365 per day,

where 9% is an effective annual interest rate. Due to this inconsistency, we recomputed LN and IG approximations

with the interest rate as mentioned in that paper.
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upper-bound-counterpart increases withK. For the upper bounds UBFA and UBBT this is clear,

since for different values ofK a same constant is added while the value of the lower bound is

decreasing. The upper bound UBGAd which is based on the lower bound LBGA plus a pricing

error cfr. (37)-(38) and (46), performs the best of all upper bounds considered. However, UBFAd

cfr. (37)-(38) and (47), performs good as well. For this set of parameters, the values for the par-

tially exact/comonotonic upper bound PECUBGA, cfr. (48) and (46), are smaller than those for the

improved comonotonic upper bound ICUBBT but, as the results in Table 1 show for the case of

Λ given by (14), they are not that good as we would have expected. Notice that we have included

only PECUBGA in Table 1 since it was the best PECUBΛ upper bound for the two conditioning

variables that we consider.

Comparing UBFA with UBFAd, we note that making the error bound dependent on the strike

priceK has led to an improvement. Table 1 also reveals that in general the lognormal (LN) ap-

proximation as well as the inverse Gaussian (IG) approximation of Jacques (1996) fall within the

interval given by the best lower bound and the best upper bound. The exception is the lognormal

approximation in case whenK = 110 for σ = 0.2 andσ = 0.3, and the inverse Gaussian approx-

imation in case whenK = 80 for σ = 0.2, σ = 0.3, andσ = 0.4 (in those cases the prices are

smaller than the (comonotonic) lower bounds LBFA and LBGA). Notice that the approximations

of Jacques (1996) (except of the cases mentioned above) are always higher than the respective

Monte Carlo values, but nevertheless they all fall into the Monte Carlo price interval (MC± SE).

Further, note that the precision of the simulated prices decreases as the volatilityσ increases. The

Monte Carlo approach systematically seems to underestimate the true price, especially for at- and

out-of-the-money options for which the Monte Carlo price falls slightly below the lower bounds.

Conclusion 1. From Table 1 LBFA and LBGA perform equally well and are very close to the

Monte Carlo values. The UBGAd is the best upper bound for the parameters considered in this

table.
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2.5.2 The effect of the averaging period and of interest rates on the bounds

In this section we compare bounds over several averaging periods and for different interest rates.

For different sets of parameters, we have computed the lower and the upper bounds together with

the price obtained by Monte Carlo simulation2. The latter is based on generating10 000 paths.

This has been done in particular for four different options: the first with expiration date at time

T = 120 and30 averaging days, the second with expiration at timeT = 60 and30 averaging days,

the third one with again expiration timeT = 120 but only10 averaging days, and as the last one

we considered the case where averaging was done over the whole period of120 days. In all cases

we considered the4 following strike pricesK: 80, 90, 100 and110, three values (0.2, 0.3 and0.4)

for the volatility σ, and the two different flat continuously compounded risk-free interest ratesr:

5% and9% yearly. The initial stock price was fixed atS(0) = 100.

The absolute and relative differences between the best upper and lower bound increase with the

volatility and with the strike price, but decrease with the interest rate. The results further suggest

that all intervals are sharper for options that are in-the-money. For fixed maturity, the length of the

intervals reduces with the number of averaging dates. However for a fixed averaging period the

effect of the maturity date seems to be less clear.

Conclusion 2. The difference between the lower bounds LBGA and LBFA is overall practically

zero. The upper bound UBGAd is in general the best but for example when r = 0.05, K = 100

and σ = 0.4, UBFAd turns out to be smaller than UBGAd.

2The tables with the results discussed in this paragraph are available from Liinev (2003).
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2.5.3 Comparison of lower and upper bounds as in Nielsen and Sandmann (2003) with our

bounds

In this section we use the data from Nielsen and Sandmann (2003) in order to compare their

different upper bounds with our results. They give as input data:σ = 0.25, r = 0.04, S(0) = 100,

T = 3 years. Note that they use price averaging over the whole period (n = 3 years) where

averaging takes place each month (in the previous sections the averaging was done daily).

The first column of Table 2 shows the selection of strike prices from Nielsen and Sandmann (2003).

In addition to the strike prices used in the above sections we also includedK = 50 andK = 200

as examples of extreme in- and out-of-the-money options.

The bounds LBGA, UBGA and UBGAd in Table 2 were reported in Nielsen and Sandmann (2003)

and we recall that these three bounds are the special cases of the more general bounds LBΛ, UBΛ

and UBΛd, respectively. Nielsen and Sandmann (2003) also derive another upper boundCu,G
A

which depends on coefficientsai satisfying
∑n

i=1 ai = 1. The last three columns in Table 2 show

the boundsCu,G
A for different choices of coefficientsai. The columns labelled asC∗,G

A andCN,G
A

are computed for the choice ofai = a∗
i (special choice by Nielsen and Sandmann) andai = 1

n
,

respectively. The columnC∗∗,G
A presents the results for the optimal sequence of the weightsai in

relation to theCu,G
A bound (i.e. the sequence which minimizes the upper boundCu,G

A ). From this

table it is clear that the PECUBGA indeed improvesC∗∗,G
A as explained in Section 2.3.

We note again that the partially exact/comonotonic upper bound PECUBGA is smaller and thus

better than the improved comonotonic upper bound ICUBBT for strike prices in the range50

to 150 (not all values are reported in Table 2), but for deeply out-of-the-money options there is a

switch and ICUBBT becomes better and even forK = 200 outperforms all other the upper bounds

including the choices of Nielsen and Sandmann. Note that this is an example of the case when for

two distinct conditioning variablesΛ1 andΛ2 it does not follow that PECUBΛ1 ≤ ICUBΛ2.

Conclusion 3. We can conclude that the best upper bound is again given by UBGAd. Notice also

that the lower bounds LBFA and LBGA are very close and equal up to two decimals.
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2.5.4 Distributional distance between the bounds and lognormal approximation of S

As already mentioned, the sum of lognormal random variables is not lognormally distributed.

However, in practice it is often claimed to be approximately lognormal. In this section we aim to

quantify the distance between the distribution ofS =
∑n

i=1 Xi, (7), which is a sum of lognormal

random variables, and the lognormal family of distributions by means of the so-called Kullback-

Leibler information. We also use the Hellinger distance in order to measure the closeness of the

derived lower and upper bounds. This section uses the ideas from Brigo and Liinev (2002) and

we refer to Liinev (2003) for more details. See also Brigo et al. (2003) in the context of basket

options.

Firstly, note that it is possible to calculate the Kullback-Leibler distance (KLI) of the distribu-

tion of the sumS from the lognormal family of distributionsL in the following way

KLI(p(x),L) = Ep[ln p(x)] +
1

2
+ Ep

[
ln

(
x

S(0)

)]

+
1

2
ln

(
2πS(0)2

[
Ep

[
ln2

(
x

S(0)

)]
−
(

Ep

[
ln

(
x

S(0)

)])2
])

, (53)

wherep(x) denotes the density function ofS, andEp[φ(x)] =
∫

φ(x)p(x)dx. This distance is

readily computed, once one has an estimate of the trueS density and of its first two log-moments.

The distance (53) can be interpreted as the distance of the distribution ofS from the closest log-

normal distribution in Kullback-Leibler sense. The latter is the distribution which shares the same

log-momentsEp[(ln(·))i], i = 1, 2 with the distribution ofS.

This provides an alternative way to the lognormal approximation of Jacques (1996) in order to

compute the price of the Asian call optionAC(n, K, T ). Namely, we can estimate the parameters

of the closest lognormal distribution based on the simulatedS, and then apply the standard Black

& Scholes technique in order to find the price. This method is considerably easier to implement

than that of Jacques (1996). However, to obtain a correct price approximation, more simulations

are needed than for the usual Monte-Carlo price estimate.

In Table 3 we present the results obtained in evaluating the Kullback-Leibler distance for the

sum of lognormalsS through a standard Monte Carlo method with10 000 antithetic paths, for the
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parameters in Table 1. In the brackets we show the sample standard errors (SE) for both quanti-

ties. In order to have an idea for what it means to have a KLI distance of about0.003 between two

distributions, we may resort to the KLI distance of two lognormals, which can be easily computed

analytically. It appears that we find a KLI distance comparable in size to our distances below if we

consider for example two lognormal densities with the same mean but different standard devia-

tions. Then a KLI distance of approximately0.003 amounts to a percentage difference in standard

deviations of about0.29%. This gives a feeling for the size of the distributional discrepancy our

distance implies.

σ S (SE) KLI (SE)

0.2 3079.000 (3.255429) 0.0032712 (0.0001183)

0.3 3078.555 (4.905087) 0.0033344 (0.0001144)

0.4 3078.558 (6.579753) 0.0032950 (0.0001277)

Table 3: Distance analysis.

In Table 4 we show the corresponding lognormal price approximation (for the respective Monte

Carlo values we refer to Table 1). These values seem to indicate that this method underestimates

the price. This indicates that even the optimal lognormal distribution (in KLI sense) does not

attribute enough weight to the upper tail.

K σ = 0.2 σ = 0.3 σ = 0.4

80 22.00133 22.30572 23.02679

90 12.75699 13.91766 15.41261

100 5.515920 7.525337 9.550753

110 1.647747 3.508497 5.504232

Table 4: Price approximation based on the closest lognormal distribution in Kullback-Leibler

sense.

In Table 5 we display the Hellinger distancesHD between the densitiesp� of S�, (35), when
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the conditioning variableΛ is given by (13) (hereafter denoted asS
�
FA), andpc of the comonotonic

sumSc, defined as

HD(S�
FA; Sc) := 2 − 2

∫ √
p�(x)pc(x)dx.

It appears that increasing the volatilityσ the densities tend to move further away from each other.

σ HD(S�
FA; Sc)

0.2 0.001756845

0.3 0.001831938

0.4 0.001949698

Table 5: Hellinger distance between comonotonic lower and upper bound ofS.

We also computed the distance between the densities ofS�
FA and ofS�

GA which is S� with con-

ditioning variableΛ (14). This distance was found to be of the magnitude of10−13, and also

increasing with increasingσ.

2.6 Hedging the fixed strike Asian option

Hedging is an important concept for managing risks in the market. Most traders use quite sophisti-

cated hedging schemes which involve calculating several “measures” in order to characterize risk

exposure. These measures are referred to as “Greek letters”, or “Greeks”. Each Greek measures

a different aspect of the risk in an option position. Delta represents the sensitivity with respect to

S(0), the initial value of the underlying asset. It is defined as a rate of change of the option price

w.r.t. the price of the underlying asset. Gamma of a portfolio of derivatives is a rate of change of

the portfolio’s Delta w.r.t. the asset price. Vega characterizes the rate of change of the value of the

portfolio w.r.t. the volatility of the underlying asset.

In this Section we show that from the analytical expressions in terms of Black and Scholes

prices for the lower and the upper bounds we can easily obtain the hedging Greeks which are

summarized by the following proposition. Note, however, that these expressions for the Greeks do
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Bound Delta (∆)

LBΛ
∑n−1

i=0
e−ri

n
Φ(ρT−iσ

√
T − i − Φ−1(F

S�(nK)))

ICUBΛ
∫ 1
0

I2(v)dv

PECUBΛ
∑n−1

i=0
e−ri

n
Φ(ρT−iσ

√
T − i − d∗Λ) +

∫ Φ(d∗
Λ)

0 I2(v)dv + [χ(d∗Λ) + I1(Φ(d∗Λ))ϕ(d∗Λ)]
∂d∗

Λ
∂S(0)

UBΛ ∆LBΛ + e−rT

2n

∫ 1
0

√
q(v)dv

UBΛd ∆LBΛ + g(d∗Λ)[1 + η(d∗Λ)]

Gamma (Γ)

LBΛ e−rT n
[

K
S(0)

]2
ϕ(Φ−1(F

S�(nK)))
[∑n−1

i=0 K̃iσρT−i

√
T − i

]−1

ICUBΛ e−rT n
[

K
S(0)

]2 ∫ 1

0
ϕ(Φ−1(FSu|V =v(nK)))

[
n−1∑
i=0

K̃i(v)pi(v)e−r(T−i)σ
√

1 − ρ2
T−i

√
T − i

]−1

dv

PECUBΛ
[
− e−rT

n

∑n−1
i=0 pi(Φ(d∗Λ)) + 2I2(Φ(d∗Λ)) +

∂χ(d∗
Λ)

∂S(0)

]
ϕ(d∗Λ)

∂d∗
Λ

∂S(0)
+ χ(d∗Λ)

∂2d∗
Λ

∂S(0)2
+ γ(d∗Λ)I1(Φ(d∗Λ))

+e−rT n
[

K
S(0)

]2 ∫ Φ(d∗
Λ)

0
ϕ(Φ−1(FSu|V =v(nK)))

[
n−1∑
i=0

K̃i(v)pi(v)e−r(T−i)σ
√

1 − ρ2
T−i

√
T − i

]−1

dv

UBΛ ΓLBΛ

UBΛd ΓLBΛ + 1
2
g(d∗Λ)

[
(1 + η(d∗Λ))η(d∗Λ) +

∂η(d∗
Λ)

∂d∗
Λ

]
∂d∗

Λ
∂S(0)

Vega (V)

LBΛ e−rT

n

[∑n−1
i=0 K̃iρT−i

√
T − i

]
ϕ(Φ−1(F

S�(nK)))

ICUBΛ

∫ 1

0

∂I1(v)

∂σ
dv

PECUBΛ [χ(d∗Λ) + I1(Φ(d∗Λ))ϕ(d∗Λ)]
∂d∗

Λ
∂σ

+ e−rT

n
S(0)ϕ(d∗Λ)

∑n−1
i=0 pi(Φ(d∗Λ))ρT−i

√
T − i +

∫ Φ(d∗
Λ)

0

∂I1(v)

∂σ
dv

UBΛ VLBΛ + e−rT

4n
S(0)

∫ 1

0

1√
q(v)

∂q(v)

∂σ
dv

UBΛd VLBΛ +
S(0)

2
g(d∗Λ) ζ(d∗Λ)

∂d∗
Λ

∂σ

Notations

pi(v) = e(r− σ2
2 ρ2

T−i)(T−i)eρT−iσ
√

T−i Φ−1(v) g(d∗Λ) = e−rT

2n
Φ(d∗Λ)1/2h(d∗Λ)1/2

I1(v) = 1
n

n−1∑
i=0

pi(v)

er(T−i)

[
e−riS(0)Φ(d1,i(v)) − e−rT K̃i(v)Φ(d2,i(v))

]
ζ(d∗Λ) =

ϕ(d∗
Λ)

Φ(d∗
Λ)

+ 1
h(d∗

Λ)

∂h(d∗
Λ)

∂d∗
Λ

I2(v) =
∂I1(v)
∂S(0)

= e−rT

n

n−1∑
i=0

pi(v)Φ(d1,i(v)) η(d∗Λ) =
S(0)

2
ζ(d∗Λ)

∂d∗
Λ

∂S(0)

cij = eσ2(min(T−i,T−j)−ρT−iρT−j
√

T−i
√

T−j) γ(d∗Λ) = ϕ(d∗Λ)

[
−d∗Λ(

∂d∗
Λ

∂S(0)
)2 +

∂2d∗
Λ

∂S(0)2

]

qij = er(2T−i−j)+σ2ρT−iρT−j
√

T−i
√

T−j(cij − 1) χ(d∗Λ) = e−rT ϕ(d∗Λ)

[
K − S(0)

n

n−1∑
i=0

pi(Φ(d∗Λ))

]

h(d∗Λ) =

n−1∑
i=0

n−1∑
j=0

qijΦ(d∗Λ − σ(ρT−i

√
T − i + ρT−j

√
T − j)) q(v) = varQ(S|Λ)

S(0)2
=

n−1∑
i=0

n−1∑
j=0

pi(v)pj (v)cij −
[

n−1∑
i=0

pi(v)

]2

Table 6: Delta, Gamma and Vega for bounds.
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not represent the bounds for the hedging parameters. Instead, they can be considered as an approx-

imation to the hedging Greeks. Nielsen and Sandmann (2003) also derived the Greeks for their

bounds, noticing that this approximation was quite good in numerical examples.

Proposition 1. The Delta, Gamma and Vega positions of the bounds (9), (16), (48), (27), and (37)

are given by the expressions in Table 6.

The proof for obtaining the hedging Greeks is a straightforward application of partial differ-

entiation of the combinations of Black and Scholes type prices that we found for the bounds (cf.

Theorems 2 and 4).

In the next section we discuss different methods for pricing European-style discrete arithmetic

Asian options with floating strike through the bounds developed in previous sections.

3 Floating strike Asian options in a Black & Scholes settings

By arbitrage arguments, the price at current timet = 0 of a floating strike Asian put option with

percentageβ is given by

APF (n, β, T ) =
e−rT

n
EQ

[(
n−1∑
i=0

S(T − i) − nβS(T )

)
+

]

under the risk-neutral probability measureQ. In the Black & Scholes model, the following change

of measure leads to results dealt with in Section 2. Let us define the probabilityQ̃ equivalent toQ

by the Radon-Nikodym derivative

dQ̃

dQ
=

S(T )

S(0)erT
= exp(−σ2

2
T + σB(T )). (54)

Under this probabilityQ̃, B̃(t) = B(t) − σt is a Brownian motion and therefore, the dynamics of

the share under̃Q are given by

dS(t)

S(t)
= (r + σ2)dt + σdB̃(t). (55)
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Let us exemplarily consider the case of a forward starting floating strike Asian put option with

T − n + 1 > 0.

Using the probabilityQ̃, the corresponding option price is given by

APF (n, β, T ) =
S(0)

n
EQ̃

[(∑n−1
i=0 S(T − i)

S(T )
− βn

)
+

]
.

From this formula, one can conjecture that a floating strike Asian put option can be interpreted

as a fixed strike Asian call with strike priceβS(0). Henderson and Wojakowski (2002) have ob-

tained symmetry results between the floating and fixed strike Asian options in the forward starting

case of continuous averaging. They considered the Black & Scholes dynamics for the underlying

asset with a continuous dividend yieldδ. In Section 3.1, we prove similar results in case of the

European-style discrete arithmetic Asian options. The symmetry results become very useful for

transferring knowledge about one type of an option to another. However, there does not exist such

a symmetry relation for the options ‘in progress’.

3.1 Symmetry results for arithmetic Asian options

In order to derive the similar results to Henderson and Wojakowski (2002) in case of discrete

averaging, we introduce some generalized notation. For the fixed strike Asian call option we use

the notation

AC(x1, x2, x3, x4, x5, x6, x7),

where

x1 = strike price

x2 = initial value of the process(S(t))t≥0

x3 = risk-free interest rate

x4 = dividend yield

x5 = option maturity

x6 = number of averaging terms
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x7 = starting date of averaging.

Analogously, for a put option we setAP (x1, x2, x3, x4, x5, x6, x7). For example,AP (K, S(0),

r, δ, T, n, T − n + 1) denotes the Asian put option with fixed strike priceK and maturity dateT

which is forward starting withn terms and with the first term beingS(T −n+1), where(S(t))t≥0

denotes as usual a Black and Scholes process with initial valueS(0) and with dividend yieldδ.

The short-term constant interest rate equalsr.

For floating strike options, we introduce a similar slightly modified notation. Namely, by

ACF (y1, y2, y3, y4, y5, y6, y7)

we denote the floating strike Asian call option with

y1 = initial value of the process(S(t))t≥0

y2 = percentage

y3 = risk-free interest rate

y4 = dividend yield

y5 = option maturity

y6 = number of averaging terms in strike

y7 = starting date of averaging.

For example,ACF (S(0), K
S(0)

, δ, r, T, n, 0) denotes the European-style floating strike Asian call

option with percentageK
S(0)

and maturity dateT which is forward starting withn terms and with

the first term beingS(0), where(S(t))t≥0 denotes as usual a Black and Scholes process with

initial valueS(0) and with dividend yieldr. The constant short-term interest rate is equal toδ.

Analogously, for a floating strike put option we setAPF (y1, y2, y3, y4, y5, y6, y7).

Using these notations, we obtain the following symmetry results, which are proved in Ap-

pendix B.

Theorem 9.

36



AP (K, S(0), r, δ, T, n, T − n + 1) = ACF (S(0),
K

S(0)
, δ, r, T, n, 0)

ACF (S(0), β, r, δ, T, n, T − n + 1) = AP (βS(0), S(0), δ, r, T, n, 0)

and

AC(K, S(0), r, δ, T, n, T − n + 1) = APF (S(0),
K

S(0)
, δ, r, T, n, 0)

APF (S(0), β, r, δ, T, n, T − n + 1) = AC(βS(0), S(0), δ, r, T, n, 0).

From the equalities above it is clear that by using the results of Section 2, one can obtain bounds

for a floating strike Asian option through the bounds for a fixed strike Asian option. Note that the

interest rate and the dividend yield have switched their roles when going from a floating to a fixed

strike Asian option or vice versa.

3.2 Direct approach

In what follows we show that, instead of using symmetry, we can directly derive bounds for the

floating strike Asian options. We also stress that these bounds can manage both ‘in progress’ and

forward-starting floating strike Asian options as opposed to the approach using symmetry. Writing

down the formulae forS(T − i) andS(T ) in the Black & Scholes setting leads to

S =

∑n−1
i=0 S(T − i)

S(T )
=

n−1∑
i=0

e−(r+ σ2

2
)i+σ(B̃(T−i)−B̃(T )) =:

n−1∑
i=0

αi eYi

with αi = e−(r+ σ2

2
)i and withYi = σ(B̃(T − i) − B̃(T )) a normally distributed random variable

with meanEQ̃ [Yi] = 0 and varianceσ2
Yi

= iσ2. Note thatα0e
Y0 is in fact a constant. ClearlyS is

a sum of lognormal variables and thus we can apply the results of Section 2.

Denoting the price of an European-style discrete arithmetic floating strike Asiancall option

with exercise dateT , n averaging dates and percentageβ by

ACF (n, β, T ) =
e−rT

n
EQ

[(
nβS(T ) −

n−1∑
i=0

S(T − i)

)
+

]
,
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we find from the put-call parity at the present:

APF (n, β, T )− ACF (n, β, T ) =
S(0)

n

1 − e−rn

1 − e−r
− βS(0). (56)

Hence, we can derive bounds for the Asian floating strike call option from the bounds for the put.

In the remaining of the section, we only work out in detail the forward starting case as the ‘in

progress’ case can be dealt with in a similar way.

3.2.1 Lower bound

In order to obtain a lower bound of good quality for the forward starting Asian option, we consider

as conditioning variable a normal random variableΛ which is as much alike asS. Inspired by the

choice for the fixed case, we take

Λ =

n−1∑
i=0

βi(B̃(T − i) − B̃(T )) (57)

with some positive real numbersβi. In particular forβi = e−(r+ σ2

2
)i we find the first order ap-

proximation ofS. If βi equals 1√
1
3
n3− 1

2
n2+ 1

6
n

for all i, thenΛ = lnG−EQ̃[lnG]√
varQ̃[lnG]

is the standardized

logarithm of the geometric averageG:

G =

(
n−1∏
i=0

S(T − i)

S(T )

)1/n

=

(
n−1∏
i=0

exp

[
−(r +

σ2

2
)i + σ(B̃(T − i) − B̃(T ))

])1/n

, (58)

with

EQ̃[ln G] = −(r +
σ2

2
)
n − 1

2

varQ̃[ln G] =
σ2

n2

n−1∑
i=0

n−1∑
j=0

min(i, j) =
σ2

n2

(
1

3
n3 − 1

2
n2 +

1

6
n

)
.

This choice ofΛ is similar to the choice (14) of Nielsen and Sandmann (2003) in the fixed strike

setting.

For generalβi, we have thatYi | Λ = λ is normally distributed with meanri
σ
√

i
σΛ

λ and variance

σ2
Yi

(1 − r2
i ) wherer0 = 0 and fori ≥ 1

ri =
cov

(
B̃(T − i) − B̃(T ), Λ

)
√

i σΛ

=

∑n−1
j=0 βj min (i, j)

√
i
√∑n−1

i=0

∑n−1
j=0 βiβj min (i, j)

. (59)
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For both choices ofΛ that we consider, these correlationsri are positive. We thus find analogously

to Theorem 1 the following lower bound for the price of the forward starting Asian floating put

option:

APF (n, β, T ) ≥ S(0)

n

n−1∑
i=0

e−riΦ
[
σri

√
i − Φ−1 (FS�(nβ))

]
− S(0)β (1 − FS�(nβ)) ,

whereFS�(nβ) is obtained from

n−1∑
i=0

exp

[
−
(

r +
r2
i σ

2

2

)
i + riσ

√
iΦ−1(FS�(nβ))

]
= nβ.

3.2.2 Improved comonotonic upper bound

Analogously to the case of the improved comonotonic upper bound for the Asian fixed strike, we

have found that also in the Asian floating strike case, the conditioning variable

Λ = −
T∑

k=1

Wk, with Wk i.i.d. N(0, 1) such thatB̃(T − i)
d
=

T−i∑
k=1

Wk, i = 0, . . . , n − 1,

leads to a sharper upper bound than other choices, for example the conditioning variable in the

lower bound.

The theory of comonotonicity (see (23) and (21)) then leads to the following upper bound

S(0)

n
EQ̃

[
(Su − nβ)+

]
=

S(0)

n

n−1∑
i=0

e−(r+ σ2

2
r2
i )i

∫ 1

0

eriσ
√

i Φ−1(v)Φ

(√
1 − r2

i σ
√

i − Φ−1
(
FSu|V =v(nβ)

))
dv

−S(0)β (1 − FSu(nβ))

with the correlations given byri =
√

i
T

, i = 1, . . . , n − 1 andr0 = 0. Invoking (19)-(20), the

conditional distributionFSu|V =v(x) and the cdf ofSu can be obtained.

3.2.3 Bounds based on the Rogers & Shi approach

By a similar reasoning as in Section 2.2, it is easy to derive an upper bound based on the lower

bound by following the ideas of Rogers and Shi (1995) and Nielsen and Sandmann (2003). Indeed,
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by using our conditioning variableΛ given by (57), we obtain

APF (n, β, T ) ≤ S(0)

n

{
EQ̃

[
(S� − nβ)+

]
+ ε(dΛ)

}
wheredΛ is such thatS ≥ nβ if Λ ≥ dΛ and with

ε(dΛ) =
1

2
{Φ(d∗

Λ)} 1
2 ×

×
{

n−1∑
i=0

n−1∑
j=0

e−r(i+j)+σ2rirj

√
i
√

jΦ
(
d∗

Λ − σ(ri

√
i + rj

√
j)
)(

eσ2(min(i,j)−rirj

√
i
√

j) − 1
)} 1

2

whered∗
Λ = dΛ−EQ̃[Λ]

σΛ
and with correlationsri defined in (59).

In particular for the linear transformation of the first order approximation (FA) ofS, namely

Λ =
∑n−1

i=0 βi(B̃(T − i) − B̃(T )) with βi = e−(r+ σ2

2
)i, one gets

d̃FA =
nβ −∑n−1

i=0 e−(r+ σ2

2
)i

σ
.

For βi = σ
n

1√
varQ̃[ln G]

with the geometric average (GA)G defined in (58),Λ equals the standard-

ized logarithm of the geometric average and the correspondingdΛ equals

d̃GA =
ln(β) + (r + σ2

2
)n−1

2

σ
n

√
1
3
n3 − 1

2
n2 + 1

6
n

.

Notice also, that analogously to Theorem 5 one can obtain an upper bound forAPF (n, β, T ) in

terms of a constant errorε.

3.2.4 Partially exact/comonotonic upper bound

Along similar lines as in Section 2.2.3, we can derive a partially exact/comonotonic upper bound

by recalling that for some normally distributed variableΛ there exists adΛ such thatΛ ≥ dΛ

impliesS ≥ nβ:

APF (n, β, T ) ≤S(0)

n

n−1∑
i=0

e−riΦ(riσ
√

i − d∗
Λ) − S(0)βΦ(−d∗

Λ)

+
S(0)

n

n−1∑
i=0

e−(r+ σ2

2
r2
i )i

∫ Φ(d∗Λ)

0

eri σ
√

i Φ−1(v)Φ

(√
1 − r2

i σ
√

i − Φ−1
(
FSu|V =v(nβ)

))
dv

− S(0)β

(
Φ(d∗

Λ) −
∫ Φ(d∗Λ)

0

FSu|V =v(nβ) dv

)
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whered∗
Λ =

dΛ − EQ̃[Λ]

σΛ
andv =

λ − EQ̃[Λ]

σΛ
.

The first two terms of the upper bound are composing the exact part ofS(0)
n

EQ̃[(S − nβ)+], while

the last two terms define the improved comonotonic upper bound for the remaining part of it.

3.3 Numerical illustration

In this section we shall give a numerical example of a floating strike Asian put option.

In Table 7 we display different lower and upper bounds for a floating strike Asian put option

with an initial stock priceS(0) = 100, a maturity of120 days and an averaging periodn of 30

days. The choices for volatility and risk-free interest rate are the same as in Section 2.5.2. The

percentageβ is chosen so thatβS(0) corresponds to the respective strikeK in Section 2.5.2. We

obtained Monte Carlo price estimates (based on10 000 simulated paths) by adapting the Kemna

and Vorst (1990) control variate technique. Indeed, by applying the change of measure (54), we

can interpret a floating strike Asian put option as a fixed strike Asian call option with strike price

βS(0). Hence we can simulate the dynamics of the stock price according to (55), and use the

geometric averageG given by (58) as our control variate.

Note that by using the put-call parity result (56) one can easily obtain the price for the floating

strike Asian call option. For example, consider the entry in Table 7 withβ = 1.0, σ = 0.2, and

r = 0.05. By applying (56), we obtain that LBFA = 1.387410, LBGA = 1.387411, UBGAd =

1.388847, UBFAd = 1.388792, PECUBGA =1.557532, and ICUBBT =1.575395.

We observe similar behaviour of the lower and upper bounds as for the fixed strike Asian call

option apart from some interesting particular cases:

1. for σ = 0.2, 0.3, 0.4 andβ = 0.8 the lower and the best upper bounds coincide up to three

or four decimals and thus give almost exact results. Although the Monte Carlo price es-

timate is slightly higher, the interval[MC − SE, MC + SE] overlaps with the interval

[LBΛ, UBΛd] for Λ = FA or Λ = GA. Notice that forβ = 0.8 (σ = 0.2, 0.3) – which is a
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r = 0.09

σ β MC (SE× 104) LBFA LBGA UBGAd UBFAd UBFA PECUBGA ICUBBT

0.2 0.8 19.64351 (2.5) 19.643331 19.643331 19.643331 19.643331 19.652053 19.643118 19.643284

0.9 9.644117 (2.5) 9.643903 9.643903 9.643923 9.643934 9.652625 9.645429 9.646147

1.0 1.113866 (2.1) 1.113997 1.113998 1.119154 1.118720 1.122719 1.283311 1.301119

1.1 0.001167 (0.6) 0.001154 0.001155 0.010306 0.010293 0.009876 0.004286 0.004762

0.3 0.8 19.64376 (5.6) 19.643332 19.643332 19.643333 19.643334 19.662815 19.642851 19.643255

0.9 9.670844 (5.3) 9.670327 9.670324 9.671056 9.671175 9.689810 9.704453 9.708673

1.0 1.752636 (5.0) 1.753406 1.753406 1.764434 1.763671 1.772889 2.008637 2.034843

1.1 0.040901 (3.2) 0.040840 0.040844 0.060394 0.060568 0.060323 0.084571 0.089851

0.4 0.8 19.64452 (9.9) 19.643666 19.643666 19.643700 19.643762 19.678319 19.645280 19.645424

0.9 9.784575 (9.1) 9.784545 9.784533 9.788040 9.788243 9.819198 9.891788 9.904717

1.0 2.391664 (9.1) 2.393883 2.393884 2.412935 2.411692 2.428536 2.734542 2.769381

1.1 0.191081 (7.4) 0.192114 0.192128 0.224217 0.224551 0.226767 0.320139 0.334277

r = 0.05

0.2 0.8 19.80180 (2.5) 19.801637 19.801637 19.801637 19.801637 19.810313 19.801423 19.801590

0.9 9.802297 (2.5) 9.802114 9.802114 9.802131 9.802141 9.810790 9.803394 9.804074

1.0 1.188935 (2.2) 1.189061 1.189061 1.193931 1.193664 1.197736 1.359169 1.377045

1.1 0.001407 (0.7) 0.001377 0.001377 0.010502 0.010525 0.010052 0.004943 0.005479

0.3 0.8 19.80200 (5.6) 19.801638 19.801638 19.801638 19.801640 19.821132 19.801156 19.801557

0.9 9.826784 (5.3) 9.826301 9.826299 9.826970 9.827101 9.845795 9.858436 9.862434

1.0 1.830198 (5.1) 1.830953 1.830953 1.841571 1.841046 1.850447 2.086848 2.113107

1.1 0.044667 (3.3) 0.044669 0.044671 0.064136 0.064355 0.064163 0.091056 0.096617

0.4 0.8 19.80267 (10.0) 19.801942 19.801942 19.801972 19.802032 19.836644 19.803444 19.803566

0.9 9.935006 (9.2) 9.935044 9.935035 9.938357 9.938621 9.969747 10.038765 10.051296

1.0 2.470755 (9.2) 2.473011 2.473011 2.491532 2.490598 2.507713 2.814307 2.849193

1.1 0.202340 (7.6) 0.203494 0.203505 0.235379 0.235795 0.238196 0.335905 0.350466

Table 7: Comparing bounds for a floating strike Asian put option

T = 120, n = 30, σ : yearly volatility, β : percentage, S(0) = 100

MC : Monte Carlo price together with its standard error (SE) based on10 000 paths

LBFA : lower bound withΛ =
∑n−1

j=0 e(r−σ2
2 )(T−j)B(T − j)

LBGA : lower bound withΛ = (ln G − EQ̃[lnG])/

√
varQ̃(ln G)

UBGAd : upper bound equal to lower bound LBGA plusε(d̃GA)S(0)/n

UBFAd : upper bound equal to lower bound LBFA plusε(d̃FA)S(0)/n

UBFA : upper bound equal to lower bound LBFA plus constantεS(0)/n

PECUBGA : partially exact/comonotonic upper bound withΛ = (ln G − EQ̃[lnG])/

√
varQ̃(ln G)

ICUBBT : improved comonotonic upper bound withΛ =
∑T

k=1 Wk
d
= B(T )

case of theoretical interest as this rarely happens in practice – the values of PECUBGA and

ICUBBT suffer from numerical instabilities caused by the involved numerical integration.

2. for σ = 0.2 and0.3, andβ = 1.1 the value for upper bound UBFAd is larger than the one

for UBFA which must be caused by the additional H¨older inequality in the derivation of the

error boundε(d̃FA).
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3. the partially exact/comonotonic upper bound PECUBGA is the best of all upper bounds for

σ = 0.2 andβ = 1.1.

4 Conclusions and future research

We derived analytical lower and upper bounds for the price of European-style discrete arithmetic

Asian options with fixed and floating strike. Hereto we used and combined different ideas and

techniques such as firstly conditioning on some random variable as in Rogers and Shi (1995),

secondly results based on comonotonic risks and bounds for stop-loss premiums of sums of de-

pendent random variables as in Kaas, Dhaene and Goovaerts (2000), and finally adaptation of the

error bound of Rogers and Shi as in Nielsen and Sandmann (2003). All bounds have analytical

expressions. This allows a study of the hedging Greeks of these bounds. For the numerical experi-

ments it was important to find and motivate a good choice for the conditioning variables appearing

in the formulae. We note that the expressions found for the bounds are not only analytical but

also easily computable. The numerical results in the tables show that the upper bounds UBGAd

or UBFAd are in general the best ones except for extreme values of the strike priceK or β; then

ICUBBT or PECUBGA outperforms all the other upper bounds. The lower bounds LBGA and

LBFA are practically equal and very close to the Monte Carlo values.

This approach has also been used to derive upper and lower bounds for basket options and

Asian basket options, see Deelstra et al. (2004). The derivation of bounds for Asian options by

using binomial trees was investigated by Reynaerts et al. (2004).

We mention that in view of recent developments for modelling the asset prices by exponential

Lévy process, Albrecher and Predota (2002, 2004) have applied the comonotonic upper bound of

Kaas et al. (2000) when the asset price dynamics is driven by a Normal Inverse Gaussian (NIG)

and Variance Gamma (VG) L´evy processes. Moreover, Albrecher et al. (2004) present a general

case of this upper bound and illustrate super-hedging of Asian options using European call options

in a buy-and-hold strategy. We note also that in context of L´evy processes the results on the
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equivalence between fixed and floating strike Asian options are recently derived by Eberlein and

Papapantoleon (2005).

Further research includes extending the conditioning approach to more general distributions

than lognormal. For example, one candidate is the class of log-elliptic distributions which is a

better choice from the point of view of providing a better fit to the real data (cfr. Valdez and

Dhaene (2003)).
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Appendix A. Some theoretical results

In this section, we recall from Dhaene et al. (2002a) and the references therein the procedures

for obtaining the lower and upper bounds for stop-loss premiums of sumsS of dependent random

variables by using the notion of comonotonicity and of convex ordering, see Section 2.1.

Improved comonotonic upper bound

As proven in Dhaene et al. (2002a), the convex-largest sum of the components of a random vector

with given marginals is obtained by the comonotonic sumSc, see (2). In the following theorem
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Dhaene et al. (2002a) have proved that the stop-loss premiums of a sum of comonotonic random

variables can easily be obtained from the stop-loss premiums of the terms.

Theorem 10. The stop-loss premiums of the sum Sc of the components of the comonotonic random

vector (Xc
1, X

c
2, . . . , X

c
n) are given by

E
[
(Sc − d)+

]
=

n∑
i=1

E
[(

Xi − F−1
Xi

(FSc (d))
)
+

]
, (F−1

Sc (0) < d < F−1
Sc (1)).

Let us now assume that we have some additional information available concerning the stochas-

tic nature of(X1, . . . , Xn). More precisely, we assume that there exists some random variable

Λ with a given distribution function, such that we know the conditional cumulative distribution

functions, givenΛ = λ, of the random variablesXi, for all possible values ofλ. In fact, Kaas et

al. (2000) define the improved comonotonic upper boundSu as in (3). Notice that

S
u =

(
n∑

i=1

Xi | Λ

)c

.

In order to obtain the distribution function ofSu, observe that given the eventΛ = λ, the random

variableSu is a sum of comonotonic random variables. Hence,

F−1
Su|Λ=λ(p) =

n∑
i=1

F−1
Xi|Λ=λ(p), p ∈ [0, 1] .

GivenΛ = λ, the cdf ofSu is defined by

FSu|Λ=λ(x) = sup

{
p ∈ [0, 1] |

n∑
i=1

F−1
Xi|Λ=λ(p) ≤ x

}
.

The cdf ofSu then follows from

FSu(x) =

∫ +∞

−∞
FSu|Λ=λ(x) dFΛ(λ).

If the marginal cdfsFXi|Λ=λ are strictly increasing and continuous, thenFSu|Λ=λ(x) is a solution

to
n∑

i=1

F−1
Xi | Λ=λ

(
FSu | Λ=λ(x)

)
= x, x ∈

(
F−1

Su | Λ=λ(0), F−1
Su | Λ=λ(1)

)
. (60)
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In this case, we also find that for anyd ∈
(
F−1

Su|Λ=λ(0), F−1
Su|Λ=λ(1)

)
:

E
[
(Su − d)+ | Λ = λ

]
=

n∑
i=1

E

[(
Xi − F−1

Xi|Λ=λ

(
FSu|Λ=λ(d)

))
+
| Λ = λ

]
, (61)

from which the stop-loss premium at retentiond of Su can be determined by integration with

respect toλ.

Lower bound

Let X = (X1, . . . , Xn) be a random vector with given marginal cdfsFX1 , FX2 , . . . , FXn. We

assume as in the previous section that there exists some random variableΛ with a given distribution

function, such that we know the conditional cdfs, givenΛ = λ, of the random variablesXi, for

all possible values ofλ. This random variableΛ, however, should not be the same as in case of

the upper bound. We recall from Kaas et al. (2000) how to obtain a lower bound, in the sense of

convex order, forS = X1 + X2 + · · · + Xn by conditioning on this random variable.

For the conditional expectationS�, see (4), let us further assume that the random variableΛ is

such that allE [Xi | Λ] are non-decreasing and continuous functions ofΛ. The quantiles of the

lower boundS� then follow from

F−1
S� (p) =

n∑
i=1

F−1
E[Xi|Λ](p) =

n∑
i=1

E
[
Xi | Λ = F−1

Λ (p)
]
, p ∈ [0, 1] ,

and the cdf ofS� is given by

FS�(x) = sup

{
p ∈ [0, 1] |

n∑
i=1

E
[
Xi | Λ = F−1

Λ (p)
] ≤ x

}
.

If we now additionally assume that the cdfs of the random variablesE [Xi | Λ] are strictly

increasing and continuous, then the cdf ofS� is also strictly increasing and continuous, and we get

for all x ∈ (F−1
S� (0) , F−1

S� (1)
)
,

n∑
i=1

F−1
E[Xi|Λ] (FS�(x)) = x ⇔

n∑
i=1

E
[
Xi | Λ = F−1

Λ (FS�(x))
]

= x, (62)
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which unambiguously determines the cdf of the convex order lower boundS
� for S. Using Theo-

rem 10, the stop-loss premiums ofS� can be computed as:

E
[(

S
� − d

)
+

]
=

n∑
i=1

E
[(

E [Xi | Λ] − E
[
Xi | Λ = F−1

Λ (FS�(d))
])

+

]
, (63)

which holds for all retentionsd ∈ (
F−1

S� (0) , F−1
S� (1)

)
.

So far, we considered the case that allE [Xi | Λ] are non-decreasing functions ofΛ. The case

where allE [Xi | Λ] are non-increasing and continuous functions ofΛ also leads to a comonotonic

vector(E [X1 | Λ] , E [X2 | Λ] , . . . , E [Xn | Λ]), and can be treated in a similar way.

Sums of lognormal variables

In this section, we study upper and lower bounds forE
[
(S − d)+

]
whereS is a linear combination

of lognormal variables. Let us denote

S =

n∑
i=1

Xi =

n∑
i=1

αi eYi , (64)

with Yi a normally distributed random variable with meanE [Yi] and varianceσ2
Yi

, andαi ∈ R.

In this case the stop-loss premium with some retentiondi, namelyE[(Xi − di)+], can be ob-

tained from the following theorem.

Theorem 11. Let Xi be a lognormal random variable of the form Xi = αie
Yi with

Yi ∼ N(E[Yi], σYi
)

and αi ∈ R. Then the stop-loss premium with retention di equals for αidi > 0

E[(Xi − di)+] = sign (αi) eµi+
σ2

i
2 Φ(sign (αi) di,1) − di Φ(sign (αi) di,2), (65)

where Φ is the cdf of the N(0, 1) distribution, and di,1 and di,2 are determined by

di,1 =
µi + σ2

i − ln |di|
σi

, di,2 = di,1 − σi. (66)
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The casesαidi < 0 are trivial.

We now consider a normally distributed random variableΛ and we slightly generalize Theorem

1 of Dhaene et al. (2002b) to our more general settings.

Theorem 12. Let S be given by (64) and consider a normally distributed random variable Λ

such that (Yi, Λ) is bivariate normally distributed for all i. Then the distributions of the improved

comonotonic upper bound S
u and the lower bound S

� are given by

S
u d

=

n∑
i=1

F−1
Xi|Λ(U) =

n∑
i=1

αi eE[Yi]+riσYi
Φ−1(V )+sign(αi)

√
1−r2

i σYi
Φ−1(U), (67)

S
� d

=

n∑
i=1

E[Xi | Λ] =

n∑
i=1

αi e
E[Yi]+riσYi

Φ−1(V )+ 1
2(1−r2

i )σ2
Yi , (68)

where U and V = Φ
(

Λ−E[Λ]
σΛ

)
are mutually independent uniform(0,1) random variables, Φ is the

cdf of the N(0, 1) distribution and ri is defined by

ri = corr (Yi, Λ) =
cov [Yi, Λ]

σYi
σΛ

.

When for all i sign(αi) = sign(ri) for ri 
= 0, or for all i sign(αi) = −sign(ri) for ri 
= 0, then S�

is comonotonic.

Appendix B. Proof of symmetry results in Theorem 9

Proof. We only prove the first symmetry result since the others follow along similar lines.

AP (K, S(0), r, δ, T, n, T − n + 1)

= e−rT EQ

[(
K − 1

n

n−1∑
i=0

S(T − i)

)
+

]

= e−δT EQ

[
e−(r−δ)T S(T )

S(0)

(
KS(0)

S(T )
− 1

n

n−1∑
i=0

S(T − i)S(0)

S(T )

)
+

]

= e−δT EQ̃

[(
KS(0)

S(T )
− 1

n

n−1∑
i=0

S(0) exp

[
−(r − δ +

σ2

2
)i + σ

(
B̃(T − i) − B̃(T )

)])
+

]
,
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where we defined as before the probabilityQ̃ equivalent toQ by the Radon-Nikodym derivative

but now by stressing the dividend yieldδ

dQ̃

dQ
=

S(T )

S(0)e(r−δ)T
= exp(−σ2

2
T + σB(T )).

Under this probabilityQ̃, B̃(t) = B(t) − σt is a Brownian motion and therefore, the dynamics of

the share under̃Q are given by

dS(t)

S(t)
= ((r − δ) + σ2)dt + σdB̃(t).

Due to the independent increments,B̃(T −i)−B̃(T ) has the same distribution as̃B(i) and−B̃(i),

and we can concentrate on the process(S∗(t))t defined by

S∗(i) = S(0) exp

[
−(r − δ +

σ2

2
)i + σB̃(i)

]
.

Indeed, then

AP (K, S(0), r, δ, T, n, T − n + 1) = e−δT EQ̃

[(
KS∗(T )

S(0)
− 1

n

n−1∑
i=0

S∗(i)

)
+

]

= e−δT EQ

[(
KS̃(T )

S(0)
− 1

n

n−1∑
i=0

S̃(i)

)
+

]

with the process(S̃(t))t defined by

S̃(i) = S(0) exp

[
−(r − δ +

σ2

2
)i + σB(i)

]
with (B(t))t a Brownian motion underQ.

As a conclusion,

AP (K, S(0), r, δ, T, n, T − n + 1) = ACF (S(0),
K

S(0)
, δ, r, T, n, 0),

which was to be shown. �
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