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Bounds for the price of discrete arithmetic Asian options

Abstract

In this paper the pricing of European-style discrete arithmetic Asian options with fixed
and floating strike is studied by deriving analytical lower and upper bounds. In our approach
we use a general technique for deriving upper (and lower) bounds for stop-loss premiums
of sums of dependent random variables, as explained in Kaas, Dhaene and Goovaerts (2000),
and additionally, the ideas of Rogers and Shi (1995) and of Nielsen and Sandmann (2003). We
are able to create a unifying framework for European-style discrete arithmetic Asian options
through these bounds, that generalizes several approaches in the literature as well as improves
the existing results. We obtain analytical and easily computable bounds. The aim of the paper
is to formulate an advice of the appropriate choice of the bounds given the parameters, inves-
tigate the effect of different conditioning variables and compare their efficiency numerically.
Several sets of numerical results are included. We also discuss hedging using these bounds.
Moreover, our methods are applicable to a wide range of (pricing) problems involving a sum

of dependent random variables.

1 Introduction

In this paper the pricing of European-style discrete arithmetic Asian options with fixed and floating

strike is studied.

A European-style discrete arithmetic Asian call option is a financial derivative instrument with
exercise dat&’, n averaging dates and fixed strike prie which generates &t a pay-off
1 n—1
(EZS(T—Z) —K) ,
=0 4
wherez = max{z,0} andS(T — i) is the price of a risky asset at tifie— i,7 = 0,...,n — 1.

The risk neutral price of this call option at current time: 0 is given by

(iS(T—i)—nK) ] (1)
i=0 "

efrT
AC(n,K,T) = E°
n
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under a martingale measugeand with some risk-neutral interest rate
A European-style discrete arithmetic Asian put option with exercise ‘Hate averaging dates
(n < T + 1) and floating strike price with percentagegenerates &t a pay-off

(% S0~ ﬂS(T)>

+

A European-style arithmetic Asian call option with continuous averaging is based on a similar
pay-off as in (1) but by replacing the discrete average by an integral divided by the length of
the averaging period. We focus on discrete averaging which is the normal specification in real
contracts. Discrete arithmetic Asian options are path-dependent contingent claims with pay-offs
that depend on the average of the underlying asset price over some prespecified period of time,
often a low number of trading days in the discrete averaging case. Such contracts form an attractive
specification for thinly traded asset markets where price manipulation on or near a maturity date is
possible. In markets where prices are prone to periods of extreme volatility the averaging performs
a smoothing operation. For buyers as well as for writers, an Asian option is a useful hedging
instrument. These Asian options provide for the buyer a cost efficient way of hedging cash or
asset flows over extended periods, e.g., for foreign exchange, interest rate, or commodities like oil
or gold. For the writer of an Asian option, the advantages include more manageable hedge ratios
and the ability to unwind his position more gracefully at the end.

Asian options can also be part of complex financial contracts and strategies, like retirement plans
or catastrophe insurance derivatives. Indeed, as explained in Nielsen and Sandmann (2003), a
typical investment plan of a retirement scheme could include fixed periodic payments invested in
a specified risky asset. An Asian option on the average return can be used to guarantee a minimum
rate of return on the periodic payments. On the other hand, Cat-calls are catastrophic risk options

which include Asian options on the average of an underlying index (see Geman (1994)).

Within the Black & Scholes (1973) model, no closed form solutions are available for Asian
options involving the discrete arithmetic average. As opposed to options on geometric average,

the density function for the arithmetic average is not lognormal and has no explicit representation.



A variety of methods for the European case and especially continuously averaged fixed strike op-
tions have been developed while only a few papers deal with the more practical case of discrete
arithmetic averaging. A partial list of methods includes (for references see for example Klassen
(2001) and Ve&™(2001)): Monte Carlo or quasi-Monte Carlo methods, exact expressions involv-
ing Laplace transforms or an infinite sum over recursively defined integrals, convolution methods
using the fast Fourier transform, analytic approximations based on moment matching or condi-

tioning on some average, a number of PDE methods, tree methods.

We focus on analytic methods, based on bounds through conditioning on some random vari-
able. We aim to create a unifying framework for European-style discrete arithmetic Asian options
through these bounds, that generalizes several approaches in the literature as well as improves the

existing results.

Throughout the paper we mainly consider ‘forward starting’ Asian options which means that at
the current timé), the averaging has not yet started and thattkariablesS(7'—n+1),...,5(T)
are random. This case states in contrast with the cas@'that + 1 < 0 where only the prices
S(1),...,5(T) remain random. In literature, this Asian option is called ‘in progress’. Note that
our results for forward starting Asian options can immediately be translated to results for Asian
options in progress. Most papers considering analytical approximations treat only standard Asian
options which is the case @f = n — 1 but in a non-analytical way the PDE approach also treats

easily different types of Asian options.

An analytical lower and upper bound in the case of continuous averaging was obtained by the
method of conditioning in Rogers and Shi (1995). Simon, Goovaerts and Dhaene (2000) derived
and computed in a general framework an analytical expression for the so-called ‘comonotonic
upper bound’, which is in fact the smallest linear combination of prices of European call options
that bounds the price of an European-style Asian option from above. Nielsen and Sandmann
(2003) studied both upper and lower bounds for an European-style arithmetic Asian option in
the Black & Scholes setting. In particular, they derive a special case of the Simon, Goovaerts

and Dhaene upper bound using Lagrange optimization. Nielsen and Sandmann (2003) also apply
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the Rogers & Shi reasoning in the arithmetic averaging case by using one specific standardized

normally distributed conditioning variable.

The paper is organized as follows. Section 2 provides bounds for the European-style discrete
arithmetic Asian options with fixed strike in the Black & Scholes setting. We first present in Sec-
tion 2.1 lower and upper bounds based on a general technique for deriving the bounds for stop-loss
premiums of sums of dependent random variables, as explained in Kaas, Dhaene and Goovaerts
(2000) and Dhaene et al. (2002a). For clarity we have included a short overview of their methods
in Appendix A. In Section 2.2 we show how to improve the upper bound that is based on the
ideas of Rogers and Shi (1995), and generalize the approach of Nielsen and Sandmann (2003) to
a general class of normally distributed conditioning variables. We also show in Section 2.3 how to
sharpen the improved comonotonic upper bound of Kaas et al. (2000) and Dhaene et al. (2002a) by
obtaining another so-called partially exact/comonotonic upper bound which consists of an exact
part of the option price and some improved comonotonic upper bound for the remaining part. This
idea of decomposing the calculations in an exact part and an approximating part goes at least back
to Curran (1994). The procedures we present can also be used to price the European-style discrete
arithmetic Asian put options with fixed strike (either directly or through the put-call parity), see
Section 2.4. In Section 2.5 we compare and discuss all approaches and, in addition, compare our
results to those of Jacques (1996), who approximates the distribution of the arithmetic average by
a more tractable one. We measure the closeness of the bounds in distributional sense. Several sets
of numerical results are given. We also consider hedging based on the lower and upper bounds in
Section 2.6.

Section 3 treats the European-style discrete arithmetic Asian options with floating strike in the
Black & Scholes setting. In independent work, Henderson and Wojakowski (2002) use the change
of numeraire technique to obtain symmetry results between forward starting European-style Asian
options with floating and fixed strike in case of continuous averaging. We show that their results
can be extended to discrete averaging and we give also bounds for the European-style Asian float-

ing strike options in progress.



We conclude the paper with main results and recent developments in Section 4.

One of the aims of this paper is to identify the currently best lower and upper bounds. We will
show that the lower bounds are very close to the Monte Carlo values and that one of our techniques

leads to very satisfying upper bounds, see Theorem 6.

2 Fixed strike Asian optionsin a Black & Scholes setting

In the Black & Scholes model, the price of a risky as§6tt), ¢ > 0} under the risk-neutral
measurg) follows a geometric Brownian motion process, with volatiitand with drift equal to

the risk-free force of interest
——= = rdt + cdB(t), t>0,

where{B(t), t > 0} is a standard Brownian motion process un@erHence, the random vari-

ables% are lognormally distributed with parametérs— %Q)t andto?.

Therefore we do not have an explicit analytical expression for the distribution of the average
1 Z?:‘()l S(T —1) in (1) and determining the price of the Asian option is a complicated task. From
(1) it is seen that the problem of pricing arithmetic Asian options turns out to be equivalent to
calculating stop-loss premiums of a sum of dependent risks. Hence we can apply the results on
comonotonic upper and lower bounds for stop-loss premiums, which have been summarized in

Section 2.1 and in Appendix A.

We now shall concentrate on bounds for the European-style discrete arithmetic Asian option
with fixed strike by comonotonicity reasoning and by using the approach of Rogers & Shi which
has been generalized by Nielsen and Sandmann (2003). We only write down the formulae of the
forward starting Asian call options in progress and corresponding Asian put options can be treated

in a similar way.



2.1 Boundsbased on comonotonicity reasoning

In both financial and actuarial context one encounters quite often random variables of the type
S = >, X, where the terms{; are not mutually independent, but the multivariate distribution
function of the random vectafX,, Xs, ..., X,,) is not completely specified because one only
knows the marginal distribution functions of the random variablesIn such cases, one would

like to find lower bounds of the forri = 3", X; and upper bounds of the forfh= S X

for the sumS = >°" | X; such that (i) the marginal distribution functions &, X; and X;

(i = 1,...,n) are equal, and (ip < S =<« S, where=., denotes the convex order, which

means that’[S] = E[S] = E[S] andE[(S — d) 4] < E[(S—d),] < E[(S — d),] forall d € R.

Referring to Dhaene et al. (2002a), one possible choice for an upper Basigiven byS := S°

with
8L FU). 2)
i=1
In other words, we choose the components of the random ve&torX,, . . ., X,,) such thatX; :=

X{ = F);il(U), where (a)F'y ' (U) is the usual inverse of a distribution function, which is the non-

7

decreasing and left-continuous function defined by
F{HU) =inf{z € R| Fx(z) > U}, Uelo,1],

with inf() = +4o0o by convention, and (b) the corresponding random ve¢#of, ..., X¢) is
comonotonic, which means that each two possible outcortes ..., z,) and (y1,...,y,) of

(Xf,...,X¢) are ordered componentwise.

Another choice for the upper bouSds based on the assumption that there is some additional
information available concerning the stochastic natureXaf . . . , X,,), represented by some ran-
dom variable\ with a given distribution function. Based on Kaas et al. (2000), we ch®oseS®,
with

S* :F);ll\A<U)+F);21|A(U)+“'+F);i|A<U>' 3)

Put another way, we choose the components of the random VEE{QLX,, . .., X,,) such that
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X, = F)}illA(U), WhereF);illA(U) is the notation for the random variabfg U, A), with the func-
tion f; defined byf;(u,\) = F;'A:A(u), and withU being a(0, 1)-uniform random variable
independent of\. The upper boun&* is an improvement over the upper bouit see e.g.
Dhaene et al. (2002a) for details. As a lower bound we ch8ose S*, following Kaas et al.
(2000), wheres’ is a conditional expectation &f given some random variable, not necessarily
equal to that entering (3):

S*=FE[S|A]. (4)

In other words, we choose the components of the random vééferX,, ..., X,) such that
X, == E[X, | A]. We remark that this idea was also suggested by Rogers and Shi (1995) for

the continuous averaging case.

Summarizing, the sur8 is bounded below and above in convex order by the sums given by
(4), (3) and (2):

4
S jcx S jcx St jcx Scu

which implies by definition of convex order that
E[(S" — d),] < B[S — d),] < E[(S" — d)] < E[(S° — d),]

for all din R, while E[S!] = E[S] = E[S"] = E[S*].

A more detailed overview of the construction of these sums and the corresponding bounds,
based on the literature, is given in Appendix A. Notice that throughout the paper, especially in the

proofs of theorems, we make use of the results summarized in that appendix.

We remark that the Asian option pricing in the Black & Scholes setting is in fact a particu-
lar case of sums of lognormal variables in Appendix A. Indeed, let us look at the price of the
European-style discrete arithmetic Asian call option with strike pficenaturity datel” and av-
eraging oven prices of the underlying witd" — n + 1 > 0:

efrT

AC(n,K,T) = E°[(S—nK),] (5)

n



with

n—1
S=) S(T- Z S(0 ~i)+oB(T i), (6)
=0
This can be rewritten as a sum of Iognormal random variables:
n—1 n—1
S = Xz = czieyi (7)
=0 =0
with
Y; = oB(T —i)~ N(0,0*(T — 1))
2 ®)
o = S(0)er—2)T=
and
cov(Y;, Y;) = o’min(T — i, T — j)
leading to

cov(X;, Xj) = o ozje§”2(( )+(T—3)) [eo2min(T—z‘,T—j) —1l.

2.1.1 Lower bound

A lower bound for the Asian option pricéC'(n, K, T') is obtained by using a normally distributed
conditioning variable\ and by substituting’ for S in the right hand side of (5), where according

to (4)

S'=Y " EC[Xi|A] = ZaEQ

The following theorem states a lower bound for the option prcé(n, K,7). The proof

follows from (62), (63) and (68) in Appendix A as shown in Dhaene et al. (2002b).

Theorem 1. Suppose the sum S is given by (6)-(8) and A is a normally distributed conditioning

variable such that (¢ B(T' — i), A) are bivariate normally distributed for all i. Then the comono-



tonic lower bound for the option price AC'(n, K, T') is given by

e—rT

LBA = - E°[(S' — nK),]

SO g [y T 87 (ByK)] - TR (1~ Fy(aK), @

n <
=0

where pr_; = corr(cB(T — i), A) > 0 and Fi(nK) isa solution to

S(0) ni; exp [(r — U;p%i) (T — i)+ 0 priNT —i d (Fge(nK))} —nK, (10)

where ®(-) is the cumulative distribution function (cdf) of a standard normal variable and F':(-)

represents the cdf of S*.

Note that the conditioning variable only enters through the correlatiops_;. We now focus
on choosing the appropriate conditioning variableTaking into account that we aim to derive a

closed-form expression for the lower bound, we defires a normal random variable given by

A=) BB(T-i), BeR (11)

For general positivg;, the variance of\ is given by

1 n—

3

oy =

BB min (T — i, T — j)

1
i=0 j=0
and
cov (B(T —i),A) 5=y Bymin (T —i,T — j)

VT_iO'A B \/T—’iO’A

Remark that we take positive coefficiemtsimplying that the correlationsr_; are positive. This

pr—i; = corr(oB(T —i),A) =

>0. (12)

is to ensure tha®’ is a sum ofn comonotonic random variables.

We investigate different choices of weightsin expression (11) for the conditioning random
variableA. The choice is motivated by the reasoning that the quality of the stochastic lower bound
EC?[S | A] can be judged by its variance. To maximize the quality, this variance should be made as

close as possible to VAiS)]. In other words, the average value
E® [var®[S | A]] = var?[S] — var? [EV[S | A]]

9



should be small. This however does not imply that the above expression should be minimized over
the conditioning variabld.. Notice that
+00
var?[S] — var® [S‘] = 2 {EQ[(S — k)4] — (EQ[(S* — k) 4]} dk.
From this relation it is seen that minimizing the difference in variance avemo guarantee that
the difference between the corresponding stop-loss premia for one parfiauilabe minimized.
Intuitively, to get the best lower bound fotC'(n, K, T), A andS should be as alike as possible.

Therefore, we have selected the following two candidated fahich turn out to give very good

results:

1. a linear transformation of a first order approximatiorﬁ@;ol S(T — i) in (6), as proposed

in a general setting by Kaas, Dhaene and Goovaerts (2000) and used in Dhaene et al. (2002b):

=

A=) =TT — ), (13)

i

I
o

2. the standardized logarithm of the geometric avefage VH?;J S(T — i) as in Nielsen
and Sandmann (2003):

— EQ il
A:lnG g [InG] _ 1 B(T — i), (14)
var@[ln G| \/varQ >} B(T — )] i=0
where
n—1 n—1 n—1 n
var®[y  B(T —1i)] :Z min(T—i,T—j):nQT—g(n—l)(éln—Fl).
i=0 =0 j=0

The lower bound (9)-(10) differs for the two choices (13) and (14) abnly by the expression

(12) for the correlation coefficient,_;:

o2 .
Z;:Ol =)= min (T — i, T — j)

Lpr—i VT —ion
with
n—1 n—1 5
o e = F)CT==0) yin (T — 4, T — j) ,
=0 j=0

10



Sy min (T =i, T — j) n (T — i) — (n=izbe=d)

T —En—0)(An+ DVT —i  /n?T — 2(n— D(dn+ )VT —i
sinceo, = 1.

2. pr—i =

We note that the closed-form solution of the lower bound in Nielsen and Sandmann (2003)
is a special case of (9) and (10) with (14) as the conditioning variable. We also noticed that the
lower bound when conditioning on the geometric average coincides with the so-called “naive”
approximation of Curran (1994). In fact, formulae (9)-(10) for the lower bound are general in the
sense that they hold for any normally distributed conditioning variAlidg substituting the right
pr—;. Moreover, the lower bound can be expressed as a combination of Black & Scholes type

formulae.

Theorem 2. For a general normally distributed conditioning variable A, satisfying the assump-
tions of Theorem 1, the lower bound LBA of AC(n, K, T') can bewritten as an average of Black &
Scholes formulae for an artificial underlying asset of which the price process S (t) isa geometric

Brownian motion with S(0) = S(0) and with a non-constant volatility 5; = o p;_; at timeinstance

T —1:
e~ T n—1 1 n—1
LBA = E9[(S(T —i)— K)4] = — S(0)® (dy ) — e T KD (dy
L BT i) = K] = 53 (™S00 (drs) — e K (day))
with

52
S(T — ’L) = S’(O)e(r*%)(T*i)Jr&iB(Tfi)

and strike prices

% - r— T —i)+6;v/T—i® L (Fo(nK
K; = FE[}S‘(T—Z‘)\A] (Fsé(nK)) = S(O)e( 20T (P (i)
and where
5 _
(7"—1—0—7) (T—z)—ln(f(l )
dl,z’ == ’ ‘ - 5(0) = 6-1 T —1q¢— q)il (FS(Z(TLK)) s

dgﬂ' = dl,i — 62 \/T —1 = —q)il (FSK (TLK))
while Fy (nK) can be calculated from 37" K; = nK similarlyto (10).

11



2.1.2 Improved comonotonic upper bound

As for the lower bound, we consider a conditioning normal random variablén improved

comonotonic upper bound for the Asian option prib€'(n, K, T') is given by

—rT —rT

C _EQ[S-nK),] <"

AC(n,K,T) =

E°[(S" —nK),], (15)

n n

where according to (3}* = Z:.;l F;‘A(U) = Z?;Ol F(;iyi‘A(U) for a (0, 1)-uniform random

variableU independent oA. More explicitly, we obtain the following analytic expression for this

bound.

Theorem 3. Suppose the sum S is given by (6)-(8) and A is a normally distributed conditioning
variable suchthat (¢ B(T' — ), A) are bivariate normally distributed for all i. Then the improved
comonotonic upper bound for the option price AC'(n, K, T') is given by

efrT

I — Q u __
CUBA - EC[(S* —nK),]
—rT n—1 2
_ ¢ Z S<O)er(T—i)e—%p2T,¢(T—i)
n 4
=0
1
% ePT—iU\/ﬁ‘i’_l(v)q)( 1_p27i0' T—i—& ! (Fa —v(nK )dU
/0 v/ T OV ( Suv=o( ))
—e 'K (1 - Fsu(nk)), (16)
where
V:q)(A—E[A]) (17)
OA

isauniform(0, 1) randomvariable, pr_; = corr(e B(T — i), A), and
1
Fsu(nK) = / Fsuy—y(nK)dv,
0
and the conditional distribution Fs.)y—,(nK’) follows from

n—1
nk = Z Qv €xXp |:pTiO'\/T —i® () + /1= p2 oVT —i® ! (Fgu‘vzv(nK)) . (18)
i=0

Proof. We determine the cdf " and the stop-loss premiumi [(S“ — d)J , Where we condition

on a normally distributed random variableor equivalently on the uniforfd, 1) random variable

12



V, cfr. (17). The conditional probabilit§s.,.—, (x) also denoted b¥s.(z | V = v), is the cdf of a
sum ofn comonotonic random variables and follows for, ,,_ (0) < = < Fy.,,_, (1), according
to (60) and (67), fory, > 0,7 =0,...,n — 1, implicitly from:

n—1

Z o eEYiltrioy, @7 )4/ 1= oy, @7 (Fou(alV=0)) — 4 (19)

)
1=0

wherer; = corr(Y;, A). The cdf ofS* is then given by

Fau(a) = /O Faymn(@)dv. (20)

We now look for an expression for the stop-loss premium at retealtiwith F S“|V ,(0) <d <

Fo.iy_,(1) for ¥, see (61):

Su|V=
1
Bl -] = [ E[E -, 1V = dv—z/ (Fh@ v =v-a) |a
(21)
with d; = F' ‘A (Fsu(d |V =v) | V =wv) and withU a random variable which is uniformly dis-

tributed on(0, 1) and independent df . SinceF'

X IA(U | V = v) follows a lognormal distribution

with mean and standard deviation:

po(i) = Ina; + E Y]] + 10y, @ (v), 0,(i) =+/1 1?0y,

one obtains that

d; = a; exp {E [Yi] + rioy, @ 1) + iy /1 — 120y, @1 (Fguvzv(d)):| ) (22)
The well-known formula (65) then yields
n—1 20
E [(Su — d)Jr ‘ V = ’U] = [CQ@HU(Z)JF 2 @(Oﬁd@l) — dzq)(&zdzvg)] s
i=0

with, according to (66),

o1 (1) — i .
di,l = ; ) di,2 = di,l - Uv(Z)-

13



Substitution of the corresponding expressions and integration over the interidleads to the

following result

n—1
E[S"-d),] :Z&ieE[Yi]-I—%U%(l—r?)X
1=0
1
X enoycb ()q)(sugnai 1—7r20v — P T J(d )d’U
/0 (/1 —rEoy (Favy—o(d))

The upper bound then follows from (19) and (23) fio= nK by plugging ina;, Y; and its mean

and variance from (8), while denoting the correlationby pr_;. O

We found that the conditioning variable
A= Zﬁka, with T, i.i.d. N(0,1) such thatB(T ZWk, i=0,.n—1, (24)

with all ﬁk equal to a same constant (for simplicity taken equal to one) leads to a sharper upper
bound than other choices @), or than the conditioning variables in the lower bound.

ForA = Zfil W, < B(T) the correlation terms have the form:

cov(B(T —i),A)  T—i  VT—i
VT—ion VT -wT T

and the dependence structure of the terms in theStioorresponds better to that of the terms in

=0,....,n—1, (25)

Ty = pr—i =

the sunt than for other choices of. Investigating the correlations
e[pripT*jJ’_\/ 1=p5_;\/1=p7_;lo*VT—iyT=j _ 1

\/@‘72(T—i) — 1\/@02(T—j) —1
o? min(T—i,T—35) __ 1

corr | F

sr—in(U)s For ])|A(U)] =

€
Ve M=) — 1y/e?T=5) — 1’
it can be seen that fgr;_; given by (25) these correlations not only coincide fot j but also

corr [S(T —1),S(T —j)] =

when one of the indicesor j equals zero. Moreover, far#£ j, the differences

’[pmpm + \/1 = p%fi\/l — 7 jlo*VT —i/T = j — o* min(T — i, T — j)

are small for alk andyj in {0,...,n — 1} in comparison to other choices af

As in the case of the lower bound, we can rewrite the upper bound as an expression of Black &

Scholes formulae.

14



Theorem 4. For a general normally distributed conditioning variable A, satisfying the assump-
tions of Theorem 1, the improved upper bound of AC(n, K,T') can be written as a combination
of Black & Scholes formulae for an artificial underlying asset S(t) with S(0) = S(0) and with

volatilitiesg; = oy /1 — p%_;:

—rT

1 n—1
¢ EQ [(Su _ nK)+] — / 1 Z ePTfiU\/T_iq)_l(v)_ép%_i(T_i)
)

n

x {eTS(0)® (d14(0) — e TR (0)® (dyi(v) | dv
with
S(T —i) = g(o)e(r—%g)(T—i)Jr&iB(T—i)
f(z(v) _ S(O)e(rfZi)(Tfi)Jr&i«/Tfi@*l(Fsu‘vzv(nK))

where

dl,i(v) = — = > = &z V1T —1i— q)il (F§u|V:U(7LK))

dzJ(U) = dl,i(v) — 62 \/T —1 = —q)il (Fgu“/:v(nK))

and Fiupy—,(nK) can be calculated similarly to (18) from 3" ' K;(v) = nkK.

2.2 Boundsbased on the Rogers & Shi approach

As an alternative to Section 2.1.2, following the ideas of Rogers and Shi (1995), we derive an
upper bound based on the lower bound. Indeed, we apply the following general inequality for any

random variablé” andZ from Rogers and Shi (1995):

0<E[E[Y*|Z] B |2)'] <

E|VvarY [ 7). (26)

DO | —

Theorem 5. Let S be given by (6)-(8) and A isa normally distributed conditioning variable such

that (c B(T'—1), A) arebivariate normally distributed for all 7. Then an upper bound of the option
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price AC(n, K, T) isgiven by

e—rT

UBA =

{EC[(S"—=nK)*] +¢}, (27)

n
where the error bound ¢ equals

£ :%EQ [ V&I‘Q(S|A)i|

1 1 (n—1n-1
:5/ ZE Ozz‘ajenj""”q’_l(”)*%(1*T3j)"2"?j
0

i=0 j=0
. 2\ 3
- (Z S(0) elr=37°7h-)(T=itproioVT=i2 () ) dv, (28)
i=0
with
o2
o = S(O)2 exp {(r — 7)(2T — g — j)] , (29)
oij = V(T —i)+ (T —3j)+2min(T —i,T — j), (30)
T —1 I — g
i = Pr—i + J Pr—j- (31)
Uz’j Uij

Proof. By applying (26) to the case af beingZ’i:O1 S(T — i) —nK andZ being a conditioning

variableA, we obtain an error bound for the difference of the option price and its lower bound

0< EQ[EQ[(S — nK)* | A] — (' — nK)'] < %EQ [Vvar(ETh)] . (32)

Consequently, (27) follows after discounting as the upper bound for the option4irice, K, 7).
Using properties of lognormal distributed variabl&¥’ [ vare(s | A)} can be written out explic-

itly, giving some lengthy, analytical, computable expression:

B [Vval(STh)| = B [(B[s?|A] - B[ | AP)"] (33)
n—1 n—1 1/2
= E° [(ZZEQ [S(T —)S(T —5) | A] — (Sf)2> ] ,
i=0 j=0
where the first term in the expectation in the right hand side equals
n—1 n—1 1
Q;aj exp (TijUO'ij@_l(V) + 5(1 — T?j)UQUZZj) : (34)
i=0 j=0
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whereV is uniformly distributed on the intervab, 1). The second term in the expectation in the

right hand side of (33) can according to (68) in Theorem 12 be written as
n—1
St 4 Z S(O) e(’"*%"QP%_i)(T*i)JrPT—iGm(b_l(V) (35)
1=0

by plugging in«;, Y; and its mean and variance from (8), while denoting the correlatipby

pr—i, and simplifying. O

Note that the error bound (32) and hencare independent of the strike priéé In the following
theorem we show how to strengthen the error bound Theorem 5 by making it dependent on
the strike price through a suitably chosen constiarguch that\ > d, implies thatS > nK. The
meaning of finding sucti, for a general conditioning variableis seen from the fact that we have

on the sef{ A > d, } the relation:

E°[S —nK), | A] = E°[S —nK | A] = (S = nK), . (36)

The following theorem can be seen as a generalization of the corresponding result in Nielsen
and Sandmann (2003). Whereas Nielsen and Sandmann (2003) derived their result diréctly for
given by (14), we extend this approach to any normally distributed conditioning random variable

A.

Theorem 6. Let S be given by (6)-(8) and A is a normally distributed conditioning variable such
that (¢ B(T' — i), A) are bivariate normally distributed for all ;. Suppose there existsa d, € R
suchthat A > d, impliesthat S > n K. Then an upper bound to the option price AC(n, K,T) is
given by

efrT

UBA,; = LBA +

e(da) (37)

n

where the error bound e(d, ) is given by
1
{®(d})}? x
n—1 n—1
X { erCT—i=i)tapr—ipr—VT=iVT=] g (d}‘\ —o(pr_iNT — i+ pr_j\/T — j)) X
i=0 j=0

1

<602(min(Tfi,T*j)*PT—iPT—jm\/ Tﬁj) — 1) }5 , (38)

X
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with dj = MQW ®(-) the standard normal cdf and p_; = corr(c B(T — i), A) > 0.

Proof. In general, ford, € R such thatA > d, implies thatS > nK, it follows by (36) that:

0 < B[RS~ nK), | A~ (8"~ nK),]

- /m<Eq®—nKhIA:A}wEQm|A:M—nKL>MgQ)
dp )
< %/Oo (VarQ (S|A= )\))E dFy(\) (39)

< % (EQ [VarQ (S|A) 1{A<dA}])% (EQ [1{A<dA}D

NI

=: £(da), (40)

where Hlder’s inequality has been applied in the last inequality, whegke 4, is the indicator
function, and wheré’, (-) denotes the normal cumulative distribution functiomof

The first expectation term in the product (40) can be expressed as
@ [var? (S|A) Lpeay ] = B9 [E9S?| AL peay] — B2 [(ECSIA) 1iacayy] - (A1)

The second term of the right-hand side of (41) can according to (35) be rewritten as

da
E [(E?[S|A])*Lia<ay)] :/ (E?[S|A = N])*dFp(N)
n—1 n—1 5 da
— 5(0)? er(2T—i—j)—Ug(P%_i(T—i)-f-P%_j(T—j))/ oo (pr—iV/T=i4pr_; VT—j) ™ QPN
=0 j=0 —o0
(42)
A—EQ[A]

where we recall tha®—'(v) = and ®(-) is the cumulative distribution function of a

standard normal variable. Applying the equality

da 2 — Q
/ wﬂwﬂum:&@wywycm:@—flﬂ, (43)

OA

—00

with b = o (pr—ivV'T — i + pr—;v/T — j) we can expres&? [(E?[S|A])*1{r<a,;] @S

n—1 n—1

2 er@T—i=)+o*pr—ipr—VT—iV/T=]i g <d7\ - U(PT—z‘m + pr—; \/T7_17)> . (44)

Jj=0

H

1§
o

i
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To transform the first term of the right-hand side of (41) we invoke (29)-(31) and apply (43) with
b= 1ij00 = 0 (priVT — 1+ prj\/T — j)

E9 [EC[S® | All{a<dyy]

:A_Ei/AEﬂﬂT—UﬂT—ﬁM:MdﬂM)

-1 n-1 ) dp
= 5(0)? e(“%)(zT - ])+2(1T§j)"20?j/ erisi® O gy (N)
i=0 j=0 o
n—1 n—1
. . 2 . . . T B
_ 5(0)2 eT(QT*Z*])‘FO’ rnm(sz,Tf])q) <d>/l<\ _ U(pri T — 4 +pr_; /T _]>> . (45)
i=0 j=0

The second expectation term in the product (40) eqbiglg) = P(d}).
Combining (44) and (45) into (41), and then substituting? ) and (41) into (40) finally leads to
expression (38). O

We stress that the error bound (40) and thus (38) hold for any conditioning normal random
variable A that satisfies the assumptions of Theorem 1 and for which there exists an integration

boundd, such thatA > d, impliesS > nK. For A given by (14), Nielsen and Sandmann found

that the corresponding), is given by
nln (S(o)) - (r— 02_2)<T — i)
o\[n2T = dn(n — 1)(4n + 1) ’

where the subscrifghA is to remind the fact thak is the standardized logarithm of the geometric

dea = (46)

average. The error bound (38) coincides with the one found in Nielsen and Sandmann (2003) for
the special choice (14) fok and the corresponding;4 (46). Let us show that also far given by
(13) this technique works to strengthen the error bound (32) and hence to sharpen the upper bound

(27). Using the property that > 1 + = and relations (6)-(8) and (13), we obtain

H

n—

n—1
S:Z&Z >Z&Z+S O’Z@ T—1).
i=0

=
N J/

=A

K-y,
S(0)o

HenceS > nK whenA is larger than’- ' Thus in case of\ being a linear transfor-
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mation of the first order approximation (FA) 8f we have

nK — Yy S(0)el = F)r D

dra = S0 (47)

Let us also notice that the upper bound (27) corresponds to the limiting case of (39)dxhere

equals infinity. Further note that in contrast to (32) the error bound now deperdslooughd , .

2.3 Partially exact/comonotonic upper bound

Next we combine the technique for obtaining an improved comonotonic upper bound by condition-

ing on some normally distributed random varialland the idea of decomposing the calculations

in an exact part and an approximating part which goes at least back to Curran (1994). This so-

called partially exact/comonotonic upper bound consists of an exact part of the option price and

some improved comonotonic upper bound for the remaining part. This upper bound improves the
o, G

upper bound denoted lgy, ™ in the paper of Nielsen and Sandmann (2003), as will be explained

at the end of this section.

Theorem 7. Let S be given by (6)-(8) and A be a normally distributed conditioning variable such
that (¢ B(T' — i), A) are bivariate normally distributed for all 7. Suppose there existsa d, € R
suchthat A > d, impliesthat S > n K. Then the partially exact/comonotonic upper bound to the

option price AC(n, K, T) isgiven by

PECUBA
S(O) n—1
==L e 0(proioVT — i — dy) — e "TKO(—d})
n
i=0
S<O — —7ri —ﬁp2 (T—1)
_ 2 FT'—q
+ " Z;e e
®(dy) L
X / ePT—i VT8 () ( 1—p ,oVT —i—® (FSu|V:U(nK))) dv
0
®(dy)
— e TK [ ®(dy) — / Fsupy—y(nK) dv (48)
0



— E9[A .
where d, = u and Fsuv—, isgiven by (18)and pr_; = corr(c B(T — i), A).
OA

Proof. For any normally distributed random variable with cdf £, (-), for which there exists a

d, such thatA > d, impliesS > nK and which satisfies the assumptions of Theorem 1, we can

write
“ T RRl(S —nk),) = T ER[EA(S — nK). | A]

_n {/d EQ[(S — nK)y | A = AldFa()) + /m BB —nk | A= A]dFA(A)} )

n —00 da

The second term in the equality (49) can be written in closed-form along similar lines as (42)-(44):

e—rT

/+Oo E9[S | A= NdFy(\) — e ™ K (1 — Fy(dy))

n dy
e (r—L02p2._)(T—i) e o/ T—i &1 (v) —rT *
— S(0)el" 27 Pr—i ePr=i dEA(N) — e ™ K(1 — ®(d}))
n 4 d
=0 A
S(0) <=
=— e " ®(pr_ioVT —i —dy) — e TTK®(—d}), (50)
n
=0
— EQA — EQA
whered}, = da = B7IA] andv = )\7”
OA O

In the first term of (49) we replac& by S* in order to obtain an upper bound and apply (16) but
now with an integral from zero t®(d? ):

—rT

‘ /d E?[(S — nK)y | A = NdF\(\)

—00

e—rT

< ¢ /d EC[(S" —nK), | A= NdEy(\) =

n o J oo n

D(d%)
0
n—1
_5(0) Z o Tig— TP (T
(dy) S
> / epT—iUm‘b (U)cI) < 1 — p%il o'\/T——’i — q)il (FS“V’U(TLK))) dv
0

. ®(d})
—e " K (@(df\) —/O Fsupy—p(nK) dv) : (51)

Adding (50) and (51) we obtain (48). O
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Theorem 8. For any conditioning variable A satisfying the assumptions of Theorem 7,
PECUBA < ICUBA,

where PECUBA and ICUBA are defined by (48) and (16), respectively.

Proof. Recall that according to the assumption of Theorem 7 there ekistach thatA > d, =
S > nK. Using this fact and by convex ordering of stop-loss premig andS* we obtain

+oo
ne " ICUBA = / E[(S"—nK), | A=) dF\(\)

(e 9]

da +
— / E[(S" —nK), | A=\dF\(\) + /d E[(S* = nK),_ | A=\ dF\(N)

(o.o]

z/dAE[(SU—nK)+|A=A]dFA(A)+/+ E[(S—nK),_ | A=\ dF\(\)

(e.o]

:/dAE[(S”—nK)+\A:)\]dFA(A)+/+ B[S —nK | A= \dFy()\)

—00

o rT
=ne"" PECUBA. 0

We stress that for two distinct conditioning variablesand A it does not necessarily hold that

PECUBA; < ICUBA..

For the random variables given by (13) and (14) we derivedda, see (47) and (46), and thus
we can compute the new upper bound PEQUBIr. (48). Recall that these choices ®fdo not
lead to the best improved comonotonic upper bound. The “best” choitedsB(T") for which
we do not find the necessafy in this new upper bound. However, we expect that the contribution
of the exact part (50) which is the second term in (49) will compensate for the somewhat lower
quality of theS™.
Finally, we note that the upper bouﬁﬂA‘*’G in Nielsen and Sandmann (2003) was derived for the
special conditioning variablé given by (14), with the usage of an optimization algorithm to find

the weights:; such that their upper bound for the first term in (49), namely

6_7; Z/ " EQY(S(T — 1) — amK). | A= NdFy(N),

=0 v
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is minimized. In fact, they introduce a second approximation by bounding this expression from
above using a portfolio of call options, following the presentation in Ross (1976). The expression
obtained this way is then minimized with respect to the weightswith our method, however,

we directly have the explicit optimal solution of the original minimization problem, namely the

optimal weights:; for a given\ or v are:

1
a; = n—KFS(lei)\AzA(FS“\Vﬂ(nK))

_ S(O) e(r—é)(T—i)—i—pTﬂ'J\/T—i PL(v)+4/1—p2_, J\/T—i'ib’l(FSu‘V:U (nK))

nk
In this sense, the partially exact/comonotonic upper bound improves their upper(BQ’iJﬁdsee

Table 2 for numerical results.

2.4 General remarks
In this section we summarize some general remarks:

1. Denoting the price of a European-style discrete arithmetic Apidgroption with exercise
dateT’, n averaging dates and fixed strike prigeby AP (n, K, T), we find from the put-call
parity at the present:

AC(n,K,T) — AP(n, K,T) = @11_76_ _eTK. (52)
n —e "

Hence, we can derive bounds for the Asian put option from the bounds for the call. These
bounds for the put option coincide with the bounds that are obtained by applying the theory
of comonotonic bounds and the conditioning approach directly to Asian put options. This

stems from the fact that the put-call parity also holds for these bounds.

2. Note that for numerical computations in (52)pi&nd7" are expressed in days theshould
be interpreted as a continuously compounded interest rate for one day which equals a con-
tinuously compounded interest rate for one year divided by the number of (trading) days per

year.
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3. The case of a continuous dividend yiéldan easily be dealt with by replacing the interest

rater by r — 4.

4. When the number of averaging datesqualsl, the Asian call optioAC'(n, K, T') reduces
to a European call option. It can be proven that in this case the upper and the lower bounds
for the price of the Asian option both reduce to the Black and Scholes formula for the price
of a European call option. For bounds based on a conditioning varathies is true since
for n = 1 we have that\ = 3,B(T") while S = S(0) exp ((r — 30*)T + o B(T)) implying
thatpr = 1, and thus tha* = S’ = S.

5. The lower and upper bounds are derived for forward starting Asian options but they can
easily be adapted to hold for Asian options in progress. In this€ase + 1 < 0 and only
the prices of5(1), ..., S(7T) remain random such that the price of the option is given by:

—rT

AC(n, K, T) = en fo (SS(T—@—M() ]
L \i=0 "

—rT

_ en EQ <§S(T—i)—<nK—nZ_15(T—i)>> ]

Thus substitutinge X' — Z?;% S(T — i) for nK and summing for the average oveirom

zero to7T — 1 instead ofrn — 1 the desired bounds follow.

6. The bounds can be extended to the case of deterministic volatility functien(t) or o =

o(S(0),t) but are not applicable when we assume a stochastic volatility surface (.S, ¢).

2.5 Numerical illustration

In this section we give a number of numerical examples in the Black & Scholes setting. We discuss
our results and compare them to those found in the literature and to the Monte Carlo price. Further,
we approximaté by a lognormal distribution which is the closest in the Kullback-Leibler sense.

We also measure the closeness of the lower and upper bounds in the distributional sense.
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251 Comparing bounds

In this section we discuss our results and compare them with those of Jacques (1996) where the
distribution of the sun$ of lognormals, see (6), entering in the European-style discrete arithmetic
Asian option was approximated by means of the lognormal (LN) and the inverse Gaussian (IG)
distribution. For the comparison we also included the upper bounds based on the lower bounds, see
Theorem 5 and 6. We show here one set of numerical experiments where we consider a forward
starting European-style discrete arithmetic Asian call option with fixed strike having the same data
as in the paper of Jacques (1996): an initial stock psi@® = 100, a nominal annual (daily dis-
cretely compounded) interest rate 6t er year (corresponding to a continuously compounded
interest rate = In (1 + %%2) per day or 8,9989% per year), a maturity of 120 days and an aver-
aging periodn of 30 days. The values of the volatilityare on annual basis. As a benchmark we
included the price obtained via Monte Carlo simulation by adapting the control variate technique

of Kemna and Vorst (1990) to European-style discrete arithmetic Asian options. The number of

simulated Monte Carlo paths was 000.

We use the following notations whefecan beGA, FA or Br: LBA for lower bound, PECUR
for partially exact/comonotonic upper bound, WBor upper bound based on lower bound (cfr.

Theorem 5), and UB,; for upper bound given by Theorem 6.

As we see from Table 1, the lower bounds EB and LBGA are equal up to five decimals.
They both perform much better in comparison with Monte Carlo results than the lower bound

LB By where we conditioned oN = Zle W, < B(T) (cfr. (24)). The bad performance is due

to the fact that3(7T") differs much frontS for n larger than one and hen&®’ [\/varQ(S | B(T))
is large, while for theA of (13) or (14) this termi® [ vare(s | A)] is very small becausa

enS are very much alike. It seems that the relative difference between a lower bound and its

In the paper of Jacques (1996) this interest rate is reported and is used in our computations of the bounds. The
actual computations in Jacques (1996) were made with a continuously compounded interesﬂéﬁ—@@ per day,
where 9% is an effective annual interest rate. Due to this inconsistency, we recomputed LN and IG approximations

with the interest rate as mentioned in that paper.
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upper-bound-counterpart increases with For the upper bounds UBA and UBB this is clear,

since for different values of{ a same constant is added while the value of the lower bound is
decreasing. The upper bound UB, which is based on the lower bound GR plus a pricing

error cfr. (37)-(38) and (46), performs the best of all upper bounds considered. Howevet,,UB

cfr. (37)-(38) and (47), performs good as well. For this set of parameters, the values for the par-
tially exact/comonotonic upper bound PECUB, cfr. (48) and (46), are smaller than those for the
improved comonotonic upper bound ICBB but, as the results in Table 1 show for the case of

A given by (14), they are not that good as we would have expected. Notice that we have included
only PECURBZA in Table 1 since it was the best PECWRBIpper bound for the two conditioning
variables that we consider.

Comparing UBFA with UBFA,, we note that making the error bound dependent on the strike
price K has led to an improvement. Table 1 also reveals that in general the lognormal (LN) ap-
proximation as well as the inverse Gaussian (IG) approximation of Jacques (1996) fall within the
interval given by the best lower bound and the best upper bound. The exception is the lognormal
approximation in case whefd = 110 for ¢ = 0.2 ando = 0.3, and the inverse Gaussian approx-
imation in case wherk’ = 80 for o = 0.2, 0 = 0.3, ando = 0.4 (in those cases the prices are
smaller than the (comonotonic) lower boundsABand LBGA). Notice that the approximations

of Jacques (1996) (except of the cases mentioned above) are always higher than the respective
Monte Carlo values, but nevertheless they all fall into the Monte Carlo price intervab{N3E).
Further, note that the precision of the simulated prices decreases as the velatiitgases. The
Monte Carlo approach systematically seems to underestimate the true price, especially for at- and

out-of-the-money options for which the Monte Carlo price falls slightly below the lower bounds.

Conclusion 1. From Table 1 LBFA and LBGA perform equally well and are very close to the
Monte Carlo values. The UBGA, is the best upper bound for the parameters considered in this
table.

26



2.5.2 The¢effect of the averaging period and of interest rates on the bounds

In this section we compare bounds over several averaging periods and for different interest rates.
For different sets of parameters, we have computed the lower and the upper bounds together with
the price obtained by Monte Carlo simulatforiThe latter is based on generatib@000 paths.

This has been done in particular for four different options: the first with expiration date at time
T = 120 and30 averaging days, the second with expiration at tifine 60 and30 averaging days,

the third one with again expiration tinie = 120 but only 10 averaging days, and as the last one

we considered the case where averaging was done over the whole periziddafys. In all cases

we considered thé following strike pricesk’: 80, 90, 100 and110, three values((2, 0.3 and0.4)

for the volatility o, and the two different flat continuously compounded risk-free interest rates

5% and9% yearly. The initial stock price was fixed &(0) = 100.

The absolute and relative differences between the best upper and lower bound increase with the
volatility and with the strike price, but decrease with the interest rate. The results further suggest
that all intervals are sharper for options that are in-the-money. For fixed maturity, the length of the
intervals reduces with the number of averaging dates. However for a fixed averaging period the

effect of the maturity date seems to be less clear.

Conclusion 2. The difference between the lower bounds LBGA and LBFA is overall practically
zero. The upper bound UBGA, isin general the best but for example when » = 0.05, K = 100
and o = 0.4, UBFA, turns out to be smaller than UBGA ;.

The tables with the results discussed in this paragraph are available from Liinev (2003).
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253 Comparison of lower and upper bounds asin Nielsen and Sandmann (2003) with our

bounds

In this section we use the data from Nielsen and Sandmann (2003) in order to compare their
different upper bounds with our results. They give as input data:0.25, r = 0.04, S(0) = 100,

T = 3 years. Note that they use price averaging over the whole period @ years) where
averaging takes place each month (in the previous sections the averaging was done daily).

The first column of Table 2 shows the selection of strike prices from Nielsen and Sandmann (2003).
In addition to the strike prices used in the above sections we also inckided0 and X' = 200

as examples of extreme in- and out-of-the-money options.

The bounds LB:A, UBGA and UBGA, in Table 2 were reported in Nielsen and Sandmann (2003)
and we recall that these three bounds are the special cases of the more general bdyréBA B

and UB\,, respectively. Nielsen and Sandmann (2003) also derive another upper tb“@?nd
which depends on coefficients satisfying} " , a; = 1. The last three columns in Table 2 show

the boundg>'4 for different choices of coefficients. The columns labelled a8 andC')"“

are computed for the choice of = a; (special choice by Nielsen and Sandmann) ane- %
respectively. The colum(fj;*’G presents the results for the optimal sequence of the weigls
relation to theCZ’G bound (i.e. the sequence which minimizes the upper b@fﬁﬁ). From this

table it is clear that the PECURA indeed improveQ’;"’G as explained in Section 2.3.

We note again that the partially exact/comonotonic upper bound PEZUS smaller and thus
better than the improved comonotonic upper bound I@JBor strike prices in the rangg0

to 150 (not all values are reported in Table 2), but for deeply out-of-the-money options there is a
switch and ICUB3; becomes better and even fer= 200 outperforms all other the upper bounds
including the choices of Nielsen and Sandmann. Note that this is an example of the case when for

two distinct conditioning variables; andA, it does not follow that PECUR; < ICUBA,.

Conclusion 3. We can conclude that the best upper bound is again given by UBGA ;. Notice also

that the lower bounds LBFA and LBGA are very close and equal up to two decimals.
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2.5.4 Distributional distance between the bounds and lognormal approximation of S

As already mentioned, the sum of lognormal random variables is not lognormally distributed.
However, in practice it is often claimed to be approximately lognormal. In this section we aim to
quantify the distance between the distributiorfot >"" | X;, (7), which is a sum of lognormal
random variables, and the lognormal family of distributions by means of the so-called Kullback-
Leibler information. We also use the Hellinger distance in order to measure the closeness of the
derived lower and upper bounds. This section uses the ideas from Brigo and Liinev (2002) and
we refer to Liinev (2003) for more details. See also Brigo et al. (2003) in the context of basket

options.

Firstly, note that it is possible to calculate the Kullback-Leibler distance (KLI) of the distribu-

tion of the sun® from the lognormal family of distributions in the following way

L0 = Banto] 4] [ (55

[ (555)] - (5 [ ()]) ]) -

wherep(z) denotes the density function 8f and £, [¢(z)] = [ ¢(x)p(x)dz. This distance is

+% In (2%5(0)2

readily computed, once one has an estimate of theStiensity and of its first two log-moments.

The distance (53) can be interpreted as the distance of the distribut®frah the closest log-
normal distribution in Kullback-Leibler sense. The latter is the distribution which shares the same
log-moments?,[(In(-))"], = 1,2 with the distribution ofs.

This provides an alternative way to the lognormal approximation of Jacques (1996) in order to
compute the price of the Asian call optietC'(n, K, T'). Namely, we can estimate the parameters

of the closest lognormal distribution based on the simul&texhd then apply the standard Black

& Scholes technique in order to find the price. This method is considerably easier to implement
than that of Jacques (1996). However, to obtain a correct price approximation, more simulations

are needed than for the usual Monte-Carlo price estimate.

In Table 3 we present the results obtained in evaluating the Kullback-Leibler distance for the

sum of lognormal§ through a standard Monte Carlo method with000 antithetic paths, for the
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parameters in Table 1. In the brackets we show the sample standard errors (SE) for both quanti-
ties. In order to have an idea for what it means to have a KLI distance of albogtbetween two
distributions, we may resort to the KLI distance of two lognormals, which can be easily computed
analytically. It appears that we find a KLI distance comparable in size to our distances below if we
consider for example two lognormal densities with the same mean but different standard devia-
tions. Then a KLI distance of approximatély)03 amounts to a percentage difference in standard
deviations of abou®.29%. This gives a feeling for the size of the distributional discrepancy our

distance implies.

o S (SE) KLI (SE)

0.2 | 3079.000 (3.255429) 0.0032712 (0.0001183)
0.3 | 3078.555 (4.905087) 0.0033344 (0.0001144)

0.4 | 3078.558 (6.579753) 0.0032950 (0.0001277)

Table 3: Distance analysis.

In Table 4 we show the corresponding lognormal price approximation (for the respective Monte
Carlo values we refer to Table 1). These values seem to indicate that this method underestimates
the price. This indicates that even the optimal lognormal distribution (in KLI sense) does not

attribute enough weight to the upper tail.

K =02 oc=20.3 oc=04

80 | 22.00133 22.30572 23.02679
90 | 12.75699 13.91766 15.41261
100 | 5.515920 7.525337 9.550753
110 | 1.647747 3.508497 5.504232

Table 4: Price approximation based on the closest lognormal distribution in Kullback-Leibler

sense.

In Table 5 we display the Hellinger distancEsD between the densitigs of S¢, (35), when
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the conditioning variabld is given by (13) (hereafter denoted$ts,), andp. of the comonotonic

sumsS¢, defined as
HD(S% ;S =2 — 2/ Vpe(z)pe(x)de.

It appears that increasing the volatilitythe densities tend to move further away from each other.

o | HD(S}4;5%)

0.2 | 0.001756845
0.3 | 0.001831938
0.4 | 0.001949698

Table 5: Hellinger distance between comonotonic lower and upper bouhd of

We also computed the distance between the densiti€$. pfand ofS% , which isS* with con-
ditioning variableA (14). This distance was found to be of the magnitude @f'?, and also

increasing with increasing.

2.6 Hedging thefixed strike Asian option

Hedging is an important concept for managing risks in the market. Most traders use quite sophisti-
cated hedging schemes which involve calculating several “measures” in order to characterize risk
exposure. These measures are referred to as “Greek letters”, or “Greeks”. Each Greek measures
a different aspect of the risk in an option position. Delta represents the sensitivity with respect to
S(0), the initial value of the underlying asset. It is defined as a rate of change of the option price
w.r.t. the price of the underlying asset. Gamma of a portfolio of derivatives is a rate of change of
the portfolio’s Delta w.r.t. the asset price. Vega characterizes the rate of change of the value of the

portfolio w.r.t. the volatility of the underlying asset.

In this Section we show that from the analytical expressions in terms of Black and Scholes
prices for the lower and the upper bounds we can easily obtain the hedging Greeks which are

summarized by the following proposition. Note, however, that these expressions for the Greeks do
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Bound

Delta (A)

~Z®(pr_ioV/T — i —

ICUBA | [} I2(v)dv

LBA | X te >~ (Fye (nK)))

n—1 " "
=0 n

PECUBA
UBA Arpa + S5—

fo \/CI(U

UBAy Arpa + g(dy)[1 + n(dy)]

- . B (d} . . 1 OdXi
®(pr_ioVT—i—dy) + fo N L()dv + [x(d}) + 11 (®(d}))p(d3)]) pcds

Gammarl)

LBA e ™ Tn [%]2¢(<I>71(Fse(nf())) [2?701 f('apT_i\/ﬁ]

—1

—1

2 1 -
ICUBA | e Thn [%] / (& (Fau|y—o(nK)) {Z Ki( —n(T—9) \/l—pT NT—i| dv
0
677"1" n— - " Ox(d
PECUBA | [~ Y75 pi(@(d})) + 202(9(d}) + ggEA]w(dnas(mw(dmasw)g+w<dA>h<<1><dA>>
-1
2 [®(d}) — EE—
+e”%[%} /0 (& (Fau|y =y (nK)) {Z YT (T=1 \/l—pT NT—i| dv
UBA I'ea
* on(dy Ad
UBA4 | Tiea + 39(d) [(1 +n(dp)ndq) + T3] oy
Vega (V)
.
LBA | S S0 Ripr /T =] (@ (Fy (nK))
1
ICUBA / alal—(v)dv
B (o2
i ody | =T n-1 . PR 91 (v)
PECUBA [X(dR)Jrh(‘I’(d*))w(d*)} ek S(0)e(dy) 3275 pi(q)(dA))pT—i\/T*Z‘F/O 5 W
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UBA | Vipa + St C’(”)
0 Va(v) 9o
. ad’
UBA4 Viga + 2 g(d ) C(dR) 52
Notations
pi(U):e(TiTprl)(T )epT ioVT—1® 1() g(dz):5;7 A)I/Qh(dZ)l/Q
n—1
pi(v _ T " di h(d*
L(v) =1 er(;f)z) (eS8 (0)@(d1 i (v)) — e~ T Ki(0)B(da,i (v)) g(d,\):gﬁdgi + A e
=0
n—1
v —rT * ad’;
Ia(v) = SE5) = = gva)@(du(v» n(dy) = ZC(dR) pusy
2 (mi i T—q)— ) —3 —7 " w , Od 82d}
ey = e (Tt T =) =g —or—; VT=VT=) () =o(dy) |- dA(—as”i%))“—as(o?z}
n—1
qij = e CT=i=i)+oor—ipr s VT=IVT= (¢, — 1) x(dy) =e "To(d}) {K - 5o $ pi(é(di))}

n—1n—1

=YY qi; i — olpr—iVT =i+ pr—;/T — j))

i=0 j=0

=0
Q n—1n—1 2
S|A
o) = varu),zzpz w%—{zm }
1=0 j=0

Table 6: Delta, Gamma and Vega for bounds.
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not represent the bounds for the hedging parameters. Instead, they can be considered as an approx-
imation to the hedging Greeks. Nielsen and Sandmann (2003) also derived the Greeks for their

bounds, noticing that this approximation was quite good in numerical examples.

Proposition 1. The Delta, Gamma and Vega positions of the bounds (9), (16), (48), (27), and (37)

are given by the expressionsin Table 6.

The proof for obtaining the hedging Greeks is a straightforward application of partial differ-
entiation of the combinations of Black and Scholes type prices that we found for the bounds (cf.

Theorems 2 and 4).

In the next section we discuss different methods for pricing European-style discrete arithmetic

Asian options with floating strike through the bounds developed in previous sections.

3 Floating strike Asian optionsin a Black & Scholes settings

By arbitrage arguments, the price at current time 0 of a floating strike Asian put option with

percentage is given by

APF(n,B,T) = ean E° (ni: S(T — i) — nﬁS(T))
i=0 +

under the risk-neutral probability measupe In the Black & Scholes model, the following change
of measure leads to results dealt with in Section 2. Let us define the probab#iguivalent ta)

by the Radon-Nikodym derivative

dQ _ S(T) _ o’
0= ST exp(——T +oB(T)). (54)

Under this probabilityQ, B(t) = B(t) — ot is a Brownian motion and therefore, the dynamics of

the share undep are given by

as(t) ) ~
5 = (r + 02)dt + odB(t). (55)
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Let us exemplarily consider the case of a forward starting floating strike Asian put option with
T—n+1>0.

Using the probability), the corresponding option price is given by

Sy S(T — 1)
( S(T) 5)]

From this formula, one can conjecture that a floating strike Asian put option can be interpreted

APF(n,3,T) = @EQ

as a fixed strike Asian call with strike prigeS(0). Henderson and Wojakowski (2002) have ob-
tained symmetry results between the floating and fixed strike Asian options in the forward starting
case of continuous averaging. They considered the Black & Scholes dynamics for the underlying
asset with a continuous dividend yiefd In Section 3.1, we prove similar results in case of the
European-style discrete arithmetic Asian options. The symmetry results become very useful for
transferring knowledge about one type of an option to another. However, there does not exist such

a symmetry relation for the options ‘in progress’.

3.1 Symmetry resultsfor arithmetic Asian options

In order to derive the similar results to Henderson and Wojakowski (2002) in case of discrete
averaging, we introduce some generalized notation. For the fixed strike Asian call option we use
the notation

AC(xh L2, X3, T4, L5, L6, 1'7),

where

x1 = strike price

xo = initial value of the proces§S(t)):>o
rg = risk-free interest rate

x4 = dividend yield

x5 = option maturity

x¢ = number of averaging terms
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7 = starting date of averaging

Analogously, for a put option we setP(x1, xy, 3, 24, x5, 6, 7). FOr example AP(K, S(0),
r,d, T,n,T —n + 1) denotes the Asian put option with fixed strike prifeand maturity datd”
which is forward starting with. terms and with the first term beirt(7" —n + 1), where(S(t)) >0
denotes as usual a Black and Scholes process with initial v&lteand with dividend yield.
The short-term constant interest rate equals

For floating strike options, we introduce a similar slightly modified notation. Namely, by

ACF(y17 Y2,Y3, Y4, Ys, Ys, y7)

we denote the floating strike Asian call option with

y1 = initial value of the proces§S(t)):>o
Y2 = percentage

y3 = risk-free interest rate

y4 = dividend yield

ys = option maturity

Yy = number of averaging terms in strike

y; = starting date of averaging

For example ACF(S(0), %, 0,7, T,n,0) denotes the European-style floating strike Asian call
option with percentagg%) and maturity datd” which is forward starting wit terms and with

the first term beingS(0), where(S(t));>o denotes as usual a Black and Scholes process with
initial value S(0) and with dividend yield-. The constant short-term interest rate is equal.to

Analogously, for a floating strike put option we s€P F'(y1, y2, y3, Y4, s, Y6, Y7)-

Using these notations, we obtain the following symmetry results, which are proved in Ap-

pendix B.

Theorem 9.
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AP(K, S(0),r,6.T,n, T —n+1) — ACF(S(O),%,&,T, T.m,0)

and

K
AC(K,S(0),r,0,T,n, T —n+1) = APF(S(0), %,5, r,T,n,0)

APF(S(0),8,r,6,T,n, T —n+1) = AC($S(0),5(0),6,r,T,n,0).

From the equalities above it is clear that by using the results of Section 2, one can obtain bounds
for a floating strike Asian option through the bounds for a fixed strike Asian option. Note that the
interest rate and the dividend yield have switched their roles when going from a floating to a fixed

strike Asian option or vice versa.

3.2 Direct approach

In what follows we show that, instead of using symmetry, we can directly derive bounds for the
floating strike Asian options. We also stress that these bounds can manage both ‘in progress’ and
forward-starting floating strike Asian options as opposed to the approach using symmetry. Writing

down the formulae fo6(7" — i) and.S(T") in the Black & Scholes setting leads to

n— . n—1 n—1
_ Zi:ol S(T' —1) o (D Yito (B(T—1)—B(T)) _. Y;
S = 0T —Ze 2 —.Zaie

1=0 =0

0'2 - . ~ ~ . . .
with o; = e~ and withY; = o(B(T — i) — B(T)) a normally distributed random variable
with meanE® [Y;] = 0 and variancey, = io”. Note that,e’ is in fact a constant. Clearly is

a sum of lognormal variables and thus we can apply the results of Section 2.

Denoting the price of an European-style discrete arithmetic floating strike Asihroption

with exercise datd’, n averaging dates and percentagey

(nﬁS(T) — HZS(T — z’)) ] :

=0

—rT

(& EQ
n

ACF(n,3,T) =
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we find from the put-call parity at the present:

APF(n. 8.T) — ACF(n.3.7) = 2D L= _ 5600, (56)

n 1—eT

Hence, we can derive bounds for the Asian floating strike call option from the bounds for the put.

In the remaining of the section, we only work out in detail the forward starting case as the ‘in

progress’ case can be dealt with in a similar way.

3.2.1 Lower bound

In order to obtain a lower bound of good quality for the forward starting Asian option, we consider
as conditioning variable a normal random variabhleshich is as much alike &$. Inspired by the

choice for the fixed case, we take
n—1
A=Y B(B(T —i) - B(T)) (57)
=0

0'2 ; - .
with some positive real numbers. In particular forg; = e~ "+%) we find the first order ap-

roximation ofS. If 3, equals——L—— for all i, thenA = M is the standardized
P P equals g oAl Veardlng]

logarithm of the geometric averadie

n—1 . 1/n n—1 9 1/n
G = (H %) = (H exp {—(7’ + %)z’ +o(B(T —i) — B(T))D ,  (58)

=0 1=0
with
BnG) = —(r+ )"t
n = —(r+—
2 2
2n71 n—1 2
9 o o o 1 1 1

iG] = 7 mnmuﬁ::55(§n3—§n2+én).

i=0 j=0

This choice ofA is similar to the choice (14) of Nielsen and Sandmann (2003) in the fixed strike
setting.
For generals;, we have that; | A = X is normally distributed with meahi‘;—f/\ and variance
oy, (1 —r}) wherero = 0 and fori > 1
cov (B(T — i) — B(T), A) B 27:—01 3, min (i, §)
Vion VIS S B min (i)

ri =

(59)
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For both choices ok that we consider, these correlationsre positive. We thus find analogously
to Theorem 1 the following lower bound for the price of the forward starting Asian floating put

option:

[y

n

0) §

i

APF(n,3,T) > e i [am/i (R (nﬁ))} —5(0)8 (1 — Fy(nf)),

3‘
Il
=)

whereFg (n/3) is obtained from

i exp [— (7" + #) i+ ri0Vid (Fy (nﬁ))} =np.
i=0

3.2.2 Improved comonotonic upper bound

Analogously to the case of the improved comonotonic upper bound for the Asian fixed strike, we

have found that also in the Asian floating strike case, the conditioning variable

T T—i
A==3"Wi with W, iid. N(0,1) suchthatB(T —i) £ > Wi, i=0,...,n—1,
k=1

k=1
leads to a sharper upper bound than other choices, for example the conditioning variable in the

lower bound.

The theory of comonotonicity (see (23) and (21)) then leads to the following upper bound

with the correlations given by; = \/; i=1,...,n—1andr, = 0. Invoking (19)-(20), the

conditional distribution®s. -, (z) and the cdf o§" can be obtained.

3.2.3 Boundsbased on the Rogers & Shi approach

By a similar reasoning as in Section 2.2, it is easy to derive an upper bound based on the lower

bound by following the ideas of Rogers and Shi (1995) and Nielsen and Sandmann (2003). Indeed,
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by using our conditioning variabl& given by (57), we obtain
S(0 5
APF(n,6,7) < "L 50 (8 )] + c(ay)}

whered, is such tha > ng if A > d, and with

MlH

A - A

1

2

n—1n—1 %
v { oI+ o Vivi gy (d* —o(riVi+10/7) ) ( o? (min(i.j) —rir;Vivi) _ 1)}

=0 7=0

whered;, = =274 iy
OA

and with correlations; defined in (59).

In particular for the linear transformation of the first order approximation (FAJ,afamely
A= B(B(T —14) — B(T)) with ; = e~+% one gets
- nB -3 Loty

dpa =
o

For 3, = W with the geometric average (GA) defined in (58) A equals the standard-

ized logarithm of the geometric average and the correspontlirguals
- @)+ +5)5
deoa = -
9\/§n3 —3n?+§n

n

Notice also, that analogously to Theorem 5 one can obtain an upper bouA@6(n, 5, T) in

terms of a constant erret

3.2.4 Partially exact/comonotonic upper bound

Along similar lines as in Section 2.2.3, we can derive a partially exact/comonotonic upper bound
by recalling that for some normally distributed varialllethere exists al, such thatA > d,

impliesS > ng:

,_.

n—

0)

APF(n, 8,1) <20
n

eTD(rioVi — ) — S(0)3(—d)

=0
1

n 2 4 (d})
+ —Sfl ) Z e(’”rgﬂi)% e oVieT )CID(\/l —r20Vi— o1 (FSuW:U(nﬁ)))dv
o(dy)
—S(0)8 | ®(d}) — /o Fsupy—o(nf) dv)
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— EQ[A — EQ[A
dy— ER[A] A ERIA]
OA OA }
The first two terms of the upper bound are composing the exact pé@n )(EQ[(S —nf3)4], while

whered) =

the last two terms define the improved comonotonic upper bound for the remaining part of it.

3.3 Numerical illustration

In this section we shall give a numerical example of a floating strike Asian put option.

In Table 7 we display different lower and upper bounds for a floating strike Asian put option
with an initial stock priceS(0) = 100, a maturity of120 days and an averaging periadof 30
days. The choices for volatility and risk-free interest rate are the same as in Section 2.5.2. The
percentage’ is chosen so thatS(0) corresponds to the respective strikein Section 2.5.2. We
obtained Monte Carlo price estimates (based @000 simulated paths) by adapting the Kemna
and Vorst (1990) control variate technique. Indeed, by applying the change of measure (54), we
can interpret a floating strike Asian put option as a fixed strike Asian call option with strike price
3S(0). Hence we can simulate the dynamics of the stock price according to (55), and use the
geometric averag@ given by (58) as our control variate.
Note that by using the put-call parity result (56) one can easily obtain the price for the floating
strike Asian call option. For example, consider the entry in Table 7 @ith 1.0, 0 = 0.2, and
r = 0.05. By applying (56), we obtain that LBA = 1.387410, LBGA = 1.387411, UBGA,; =
1.388847, UBFA,; = 1.388792, PECUBGA =1.557532, and ICUBBy =1.575395.

We observe similar behaviour of the lower and upper bounds as for the fixed strike Asian call

option apart from some interesting particular cases:

1. foroc = 0.2,0.3,0.4 and3 = 0.8 the lower and the best upper bounds coincide up to three
or four decimals and thus give almost exact results. Although the Monte Carlo price es-
timate is slightly higher, the interval/C' — SE, MC + SE] overlaps with the interval
[LBA,UBA,] for A = FA or A = GA. Notice that for = 0.8 (o = 0.2,0.3) — which is a
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r = 0.09

o 16 MC (SE x 10%) LBFA LBGA UBGA, UBFA, UBFA PECUBGA ICUBBT
0.2 0.8 19.64351 (2.5) | 19.643331  19.643331 | 19.643331 19.643331  19.652053  19.643118  19.643284
0.9 9.644117 (2.5) 9.643903 9.643903 9.643923 9.643934 9.652625 9.645429 9.646147
1.0 1.113866 (2.1) 1.113997 1.113998 1.119154 1.118720 1.122719 1.283311 1.301119
1.1 0.001167 (0.6) 0.001154 0.001155 0.010306 0.010293 0.009876 0.004286 0.004762
0.3 0.8 19.64376 (5.6) | 19.643332  19.643332 | 19.643333  19.643334  19.662815  19.642851  19.643255
0.9 9.670844 (5.3) 9.670327 9.670324 9.671056 9.671175 9.689810 9.704453 9.708673
1.0 1.752636 (5.0) 1.753406 1.753406 1.764434 1.763671 1.772889 2.008637 2.034843
1.1 0.040901 (3.2) 0.040840 0.040844 0.060394 0.060568 0.060323 0.084571 0.089851
04 0.8 19.64452(9.9) | 19.643666  19.643666 | 19.643700 19.643762  19.678319  19.645280  19.645424
0.9 9.784575 (9.1) 9.784545 9.784533 9.788040 9.788243 9.819198 9.891788 9.904717
1.0 2.391664 (9.1) 2.393883 2.393884 2.412935 2.411692 2.428536 2.734542 2.769381
1.1 0.191081 (7.4) 0.192114 0.192128 0.224217 0.224551 0.226767 0.320139 0.334277
r = 0.05
0.2 0.8 19.80180 (2.5) | 19.801637  19.801637 | 19.801637 19.801637  19.810313  19.801423  19.801590
0.9 9.802297 (2.5) 9.802114 9.802114 9.802131 9.802141 9.810790 9.803394 9.804074
1.0 1.188935 (2.2) 1.189061 1.189061 1.193931 1.193664 1.197736 1.359169 1.377045
1.1 0.001407 (0.7) 0.001377 0.001377 0.010502 0.010525 0.010052 0.004943 0.005479
0.3 0.8 19.80200 (5.6) | 19.801638  19.801638 | 19.801638 19.801640 19.821132  19.801156  19.801557
0.9 9.826784 (5.3) 9.826301 9.826299 9.826970 9.827101 9.845795 9.858436 9.862434
1.0 1.830198 (5.1) 1.830953 1.830953 1.841571 1.841046 1.850447 2.086848 2.113107
1.1 0.044667 (3.3) 0.044669 0.044671 0.064136 0.064355 0.064163 0.091056 0.096617
0.4 0.8 | 19.80267(10.0) | 19.801942 19.801942 | 19.801972 19.802032  19.836644  19.803444  19.803566
0.9 9.935006 (9.2) 9.935044 9.935035 9.938357 9.938621 9.969747  10.038765  10.051296
1.0 2.470755 (9.2) 2.473011 2.473011 2.491532 2.490598 2.507713 2.814307 2.849193
1.1 0.202340 (7.6) 0.203494 0.203505 0.235379 0.235795 0.238196 0.335905 0.350466

Table 7. Comparing bounds for a floating strike Asian put option

T = 120,n = 30, o : yearly volatility, 3 : percentage S(0) = 100

MC : Monte Carlo price together with its standard err§%) based ori0 000 paths

LBFA : lower bound withA = 37~} (T_Lz)(T_j)B( -7

LBGA : lower bound withA = (In G — E2[In G])//var@ (In G)

UBGA, : upper bound equal to lower bound B pluse(dga )S(0)/n

UBFA, : upper bound equal to lower bound EB pluse(dz4)S(0)/n

UBFA : upper bound equal to lower bound EB! plus constantS(0)/n

PECUBGA :  partially exact/comonotonic upper bound with= (In G — EQ (In G})/\/varé(ln G)
ICUBBT : improved comonotonic upper bound with= Zle Wy, 4 B(T)

case of theoretical interest as this rarely happens in practice — the values of PRAGUE

ICUB By suffer from numerical instabilities caused by the involved numerical integration.

2. foro = 0.2 and0.3, and = 1.1 the value for upper bound UB4, is larger than the one
for UBFA which must be caused by the additional&er inequality in the derivation of the

error bound:(dz, ).
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3. the partially exact/comonotonic upper bound PECUBs the best of all upper bounds for

oc=0.2andg =1.1.

4 Conclusionsand futureresearch

We derived analytical lower and upper bounds for the price of European-style discrete arithmetic
Asian options with fixed and floating strike. Hereto we used and combined different ideas and
techniques such as firstly conditioning on some random variable as in Rogers and Shi (1995),
secondly results based on comonotonic risks and bounds for stop-loss premiums of sums of de-
pendent random variables as in Kaas, Dhaene and Goovaerts (2000), and finally adaptation of the
error bound of Rogers and Shi as in Nielsen and Sandmann (2003). All bounds have analytical
expressions. This allows a study of the hedging Greeks of these bounds. For the numerical experi-
ments it was important to find and motivate a good choice for the conditioning variables appearing
in the formulae. We note that the expressions found for the bounds are not only analytical but
also easily computable. The numerical results in the tables show that the upper bourds UB

or UBFA, are in general the best ones except for extreme values of the strike/pices; then
ICUBBr or PECURZA outperforms all the other upper bounds. The lower bound&A Bnd

LB FA are practically equal and very close to the Monte Carlo values.

This approach has also been used to derive upper and lower bounds for basket options and
Asian basket options, see Deelstra et al. (2004). The derivation of bounds for Asian options by

using binomial trees was investigated by Reynaerts et al. (2004).

We mention that in view of recent developments for modelling the asset prices by exponential
Levy process, Albrecher and Predota (2002, 2004) have applied the comonotonic upper bound of
Kaas et al. (2000) when the asset price dynamics is driven by a Normal Inverse Gaussian (NIG)
and Variance Gamma (VG)avy processes. Moreover, Albrecher et al. (2004) present a general
case of this upper bound and illustrate super-hedging of Asian options using European call options

in a buy-and-hold strategy. We note also that in context @fyLprocesses the results on the
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equivalence between fixed and floating strike Asian options are recently derived by Eberlein and

Papapantoleon (2005).

Further research includes extending the conditioning approach to more general distributions
than lognormal. For example, one candidate is the class of log-elliptic distributions which is a
better choice from the point of view of providing a better fit to the real data (cfr. Valdez and

Dhaene (2003)).
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Appendix A. Sometheoretical results

In this section, we recall from Dhaene et al. (2002a) and the references therein the procedures
for obtaining the lower and upper bounds for stop-loss premiums of Sushdependent random
variables by using the notion of comonotonicity and of convex ordering, see Section 2.1.

I mproved comonotonic upper bound

As proven in Dhaene et al. (2002a), the convex-largest sum of the components of a random vector

with given marginals is obtained by the comonotonic stfimsee (2). In the following theorem
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Dhaene et al. (2002a) have proved that the stop-loss premiums of a sum of comonotonic random

variables can easily be obtained from the stop-loss premiums of the terms.

Theorem 10. The stop-loss premiums of the sum S¢ of the components of the comonotonic random

vector (X7, XS,..., X¢) aregiven by
B ZE[X Fi! (Fs (d))) } (F51(0) < d < F3'(1)).

Let us now assume that we have some additional information available concerning the stochas-
tic nature of(Xy,...,X,,). More precisely, we assume that there exists some random variable
A with a given distribution function, such that we know the conditional cumulative distribution
functions, givenA = )\, of the random variableX’;, for all possible values ok. In fact, Kaas et

al. (2000) define the improved comonotonic upper bddihds in (3). Notice that

- (ZX | A>C.

In order to obtain the distribution function 8f, observe that given the evefit= ), the random

variableS* is a sum of comonotonic random variables. Hence,

Su‘A)\ Z X|A/\ 7 pE[O,l]

GivenA = ), the cdf ofS" is defined by

FSu|A,\(a:):sup{p6 0,1] Z X‘A NCZ }

The cdf ofS* then follows from

Fgu(l‘) = /+OO Fgum:/\(l‘) dFA(/\)

If the marginal cdfsF'x, 5—» are strictly increasing and continuous, thén ,—,(x) is a solution

to

Z e (B aaa@) =2 @€ (Bl 00, Bl oy (1) (60)
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In this case, we also find that for ariye <FSu}A A(0), Fiujae A(1)) :

E[S"—d), | A=) ZE[(X FX1|AA(Fgu|A:A(d))>+|A:)\], (61)

from which the stop-loss premium at retentidrof S* can be determined by integration with

respect to\.

L ower bound

Let X = (Xi,...,X,) be arandom vector with given marginal cdik,, Fx,,..., Fx,. We
assume as in the previous section that there exists some random vAneitbiea given distribution
function, such that we know the conditional cdfs, given= )\, of the random variableX;, for

all possible values ok. This random variablé, however, should not be the same as in case of
the upper bound. We recall from Kaas et al. (2000) how to obtain a lower bound, in the sense of

convex order, foS = X; + X5 + - - - + X, by conditioning on this random variable.

For the conditional expectaticit, see (4), let us further assume that the random varifle
such that all£' [X; | A] are non-decreasing and continuous functiond ofThe quantiles of the

lower boundS? then follow from

ZF s (®) =D E[X [ A=F)], pel0],

and the cdf o’ is given by

Fse(x) = sup {pe 0,1] | Y E[Xi|A=F'(p)] Sx}.

i=1

If we now additionally assume that the cdfs of the random variaBl&X; | A] are strictly
increasing and continuous, then the cdf6fs also strictly increasing and continuous, and we get

forall z € (F' (0), Fg' (1)),

ZF ooy (Fee(@) =z & D E[Xi|A=F (Fu()] =z, (62)

i=1
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which unambiguously determines the cdf of the convex order lower b8tfat S. Using Theo-

rem 10, the stop-loss premiumsS$fcan be computed as:
Bl -d),] = ZE[ XA - E[X A= F E@)]),]. (69)

which holds for all retentiong € (F,' (0), F5' (1)) .

So far, we considered the case thatfllX; | A] are non-decreasing functions &f The case
where allE' [X; | A] are non-increasing and continuous functiond @fiso leads to a comonotonic

vector(E [X; | A],E[Xs | A],..., E[X, | A]), and can be treated in a similar way.

Sums of lognormal variables

In this section, we study upper and lower boundsfdK(S — d). | whereS is a linear combination

of lognormal variables. Let us denote

S:iXi:iaieYi, (64)
1=1 i=1

with Y; a normally distributed random variable with me&nY;| and variancerf,i , andao; € R.
In this case the stop-loss premium with some retenfigmamelyE[(X; — d;) ], can be ob-

tained from the following theorem.

Theorem 11. Let X; be alognormal random variable of the form X; = a;e¥i with
Y; ~ N(E[Yi], ov,)

and a; € R. Then the stop-loss premium with retention d; equalsfor a;d; > 0
2

E[(X; — d;) ] = sign (o) et P(sign (a;) dij1) — d; P(sign (i) di2), (65)

where ® isthe cdf of the N (0, 1) distribution, and d; ; and d; » are determined by

) 2 _1nld.
dz‘,1 = pit o n| Z|> dz‘,2 = di,l — 0. (66)

0;
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The casesyd; < 0 are trivial.

We now consider a normally distributed random variabknd we slightly generalize Theorem

1 of Dhaene et al. (2002b) to our more general settings.

Theorem 12. Let S be given by (64) and consider a normally distributed random variable A
such that (Y;, A) ishbivariate normally distributed for all 7. Then the distributions of the improved

comonotonic upper bound S* and the lower bound S* are given by

S“ g Z F);}'A(U) _ ZCW eE[Yi]Jrrioyi<1>*1(V)+sign(ai)\/171"1,2 ayi<I>*1(U)’ (67)
=1 =1

s L SB[ A] = Y o POTont R ()ed, (68)
=1 =1

whereU andV = @ (A_E W) are mutually independent uniform(0,1) random variables, ® isthe

OA

cdf of the N (0, 1) distribution and r; is defined by

Vi, A
r; = corr (Y;,A) = LV[ ]
Oy, 0\

When for all 4 sign(«;) = sign(r;) for r; # 0, or for all i sign(«a;) = —sign(r;) for r; # 0, then S*

IS comonotonic.

Appendix B. Proof of symmetry resultsin Theorem 9

Proof. We only prove the first symmetry result since the others follow along similar lines.

AP(K,S(0),r,6,T,n,T —n+1)

=e"TE? (K — % ni S(T — i)) ]
_ T :e*(T*‘S)TS(T) KS(0) 1 < S(T —4)S(0)
- 5(0) S(T) n4<  S(T) N
_ TG (f;f;? _ % > S(0) exp {—(r 5+ L)ito (B(T - B(T))} ) J ,



where we defined as before the probabiliyequivalent toQ by the Radon-Nikodym derivative
but now by stressing the dividend yieid

dQ S(T 2
% - W - exp(—%T—F oB(T)).

Under this probabilityQ, B(t) = B(t) — ot is a Brownian motion and therefore, the dynamics of

the share undep are given by

dS(t) . 2 D,
S0 - ((r—9)+o%)dt + odB(t).

Due to the independent incremeniT' —i) — B(T') has the same distribution &) and— B (i),

and we can concentrate on the procgsst)), defined by
o? ~
S*(i) = S(0) exp {—(r -0+ ?)Z + UB(Z')] :

Indeed, then

i % n—1
AP(K,S(0),r,6,T,n,T —n+1) = e TE? (KS <T)—l§ js*(z')> ]
n
- +

orgo | (KS(T) _15- 4.
=|(5 -2 5) |

with the proces$S(t)), defined by
S() = S(0) exp {—(r — 5 %)i + aB(i)]

with (B(t)),; a Brownian motion undep.

As a conclusion,

AP(K, $(0),7,6,T,n, T — n+1) = ACF(S(0), % 5,7, T,n, 0),

which was to be shown. O
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