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Abstract

In literature lower and upper bounds were obtained for arithmetic Asian and
basket options based on comonotonicity results and by conditioning upon one
variable. In this paper, we derive analytical expressions for the comonotonic
bounds of stop-loss premiums of sums of dependent random variables by
conditioning upon two variables. We also use the idea of several conditioning
variables to develop an approximation for cases for which it is cumbersome
to obtain a comonotonic lower bound. The numerical analysis shows that

conditioning on two variables leads to very sharp results.
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1. Introduction

Pricing of arithmetic Asian and basket options where the underlying is modelled in a Black & Scholes
(1973) setting, boils down to computing stop-loss premiums of sums of dependent lognormal random
variables. In Vanmaele et al. (2002) and in Deelstra et al. (2004) we derived lower and upper bounds
based on comonotonicity results and on conditioning on one variable. A natural extension is to condition
on more than one variable, because one intuitively expects in this way to improve those bounds. Note
however that conditioning on more than two variables introduces additional computational difficulties
such as multiple integration. Therefore we restrict ourselves to the case of two conditioning variables,
although the formulae presented in this paper could be generalized to n conditioning variables.

We derive analytical expressions for the comonotonic bounds of stop-loss premiums of sums of depen-
dent random variables and generalize in this way the results of Dhaene et al. (2002a) by conditioning
on two variables.

Following the ideas of Deelstra et al. (2004), the stop-loss premium of a sum of random variables is
decomposed in two parts, one of which can be simplified and turns out to be an exact part in case of

lognormal variables. As expected, the number of integrals in the comonotonic bounds increases with
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the number of conditioning variables. However in case of two conditioning variables, the lower bound
uses only one integration if the conditional density function is known. We specify this lower bound in
the case of a sum of lognormal variables. In this case, the exact part of the stop-loss premium of a
sum of lognormals does not need numerical integration. Different technical complications show up, in
particular with respect to constraints on the choice of the conditioning variables. However, numerical
results show that conditioning on more variables leads to very sharp lower bounds.

We concentrate upon these comonotonicity conditions in case of basket options in the Black & Scholes
(1973) setting. A basket option is an option whose payoff depends on the value of a portfolio (or basket)
of assets (stocks). Thus, an arithmetic basket call option with exercise date T', n risky assets and exercise
price K generates a payoff (> . ; a;S;i(T) — K)_ at T, that is, if the sum § = S aiSi(T) of asset
prices S; weighted by positive constants a; at date T is more than K, the payoff equals the difference;

if not, the payoff is zero. The price of the basket option at current time £ = 0 is given by

BC(n,K,T)=¢ "TE¥ [(Zn: a;Si(T) — K) ] (1)
=1 +

under the risk-neutral martingale measure @ and with r the risk-free interest rate.

Next, we consider an approximation of the stop-loss premium of a sum of random variables by deriving
an improved comonotonic upper bound (by using a conditioning variable A3) of the sum of conditional
expectations of the random variables with respect to a conditioning variable A;. This approach is useful
for example in the case of basket options where the basket contains more than two not-all-positively-
correlated assets since in that case, it is difficult to obtain a comonotonic lower bound.

In the settings of Asian options where the sum of dependent variables in the option payoff is not far
from being comonotonic itself, Vyncke et al. (2004) propose a convex combination of a lower bound and
an upper bound, namely the comonotonic upper bound and the improved comonotonic upper bound.
In this paper, we adapt their method to the settings of basket options, where the sum of dependent
variables is far from being comonotonic, and improve it by using the partially exact/comonotonic upper
bound from Deelstra et al. (2004).

The paper is organized as follows. Section 2 recalls from Dhaene et al. (2002a) procedures for obtaining
the lower and upper bounds for prices by using the notion of comonotonicity in case of one conditioning
variable. In Section 3, we derive bounds based on comonotonicity by conditioning on two variables. In

Section 4, we analyze an approximation by a ‘comonotonic upper bound of a non-comonotonic lower
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bound’. In Section 5, we study different convex approximations. Section 6 is devoted to numerical

results. Section 7 concludes the paper.

2. Some theoretical results

In this section, we recall from Dhaene et al. (2002a) and the references therein the procedures for
obtaining the lower and upper bounds for stop-loss premiums of sums S of dependent random variables
by using the notion of comonotonicity. A random vector (X§,...,XZ2) is comonotonic if each two

possible outcomes (z1,...,2,) and (y1,...,yn) of (X§, ..., XZ) are ordered componentwise.

In both financial and actuarial context one encounters quite often random variables of the type
S = Y, X; where the terms X; are not mutually independent, but the multivariate distribution
function of the random vector X = (X;,Xo,...,X,) is not completely specified because one only
knows the marginal distribution functions of the random variables X;. In such cases, to be able to
make decisions it may be helpful to find the dependence structure for the random vector (X1, ..., X,,)
producing the least favourable aggregate claims S with given marginals. Therefore, given the marginal
distributions of the terms in a random variable S = >~ , X;, we shall look for the joint distribution with
a smaller respectively larger sum, in the convex order sense. In short, the sum S is bounded below and

above in convex order (=<.x) by sums of variables which will be introduced in the following paragraphs:

4
S Sex S Sex s Sex Sca

where X is said to precede Y in conver order sense, notation X <., Y, if and only if

EX] = E[Y]

E[(X =b)y] < E[Y =b)4],

for —oo < b < +o00. This definition of convex order implies that

E[(S* = b)4] <E[(S - b){] < E[(S* —b){] < B[(S° —b)]

for all b in R, while E[Sf] = E[S] = E[S%] = E[S¢] and var[$¥] < var[S] < var[S¥] < var[S9].
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2.1. Comonotonic upper bound

As proven in Dhaene et al. (2002a), the convex-largest sum of the components of a random vector

with given marginals is obtained by the comonotonic sum §° = X§{ + X§ + - - + XS with
cd _
5 By (), (2)

where U denotes in the following a uniform(0,1) random variable and where the usual inverse of a

distribution function, which is the non-decreasing and left-continuous function F'y 1(p), is defined by
Fyl(p) =inf{z € R| Fx(z) >p}, pel01],

with inf ) = +o00 by convention.

Kaas et al. (2000) have proved that the inverse distribution function of a sum of comonotonic random
variables is simply the sum of the inverse distribution functions of the marginal distributions. Moreover,
in case of strictly increasing and continuous marginals, the cumulative distribution function (cdf) Fge(z)
is uniquely determined by

Py (Bse () = Y Py (Fse () =2, Fg'(0) <2 < Fg'(1). (3)

i=1
Hereafter we restrict ourselves to this case of strictly increasing and continuous marginals.
In the following theorem Dhaene et al. (2002a) have proved that the stop-loss premiums of a sum of

comonotonic random variables can easily be obtained from the stop-loss premiums of the terms.

Theorem 1. The stop-loss premiums of the sum S° of the components of the comonotonic random
vector (X, X5,...,XE) are given by

k23

E[s°—b).] =3 E [(XZ- — Pl (B (b)))J . ELN0)<b< FLM1). (4)

i=1

If the only information available concerning the multivariate distribution function of the random vector
(X1,...,X,) are the marginal distribution functions of the X;, then the distribution function of $¢ =
Fgll(U) +F gzl(U) +- -+ F );j(U) is a prudent choice for approximating the unknown distribution
function of S = X7 + -+ + X,,. It is a supremum in terms of convex order. It is the best upper bound

that can be derived under the given conditions.
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2.2. Improved comonotonic upper bound

Let us now assume that we have some additional information available concerning the stochastic
nature of (X1,...,X,). More precisely, we assume that there exists some random variable A with a
given distribution function, such that we know the conditional cumulative distribution functions, given
A = A, of the random variables X;, for all possible values of A. In fact, Kaas et al. (2000) define the

improved comonotonic upper bound S* as

% = Fy | \(U) + F )\ (U) + -+ F L (U),

where U is a uniform(0, 1) variable independent of A, F'y | ' ((U) is the notation for the random variable
f:(U, A), with the function f; defined by fi(u,\) = F Xl‘ a—x(u). In order to obtain the distribution
function of S*, observe that given the event A = A, the random variable S* is a sum of comonotonic
random variables. If the marginal cdfs Fx, s—» are strictly increasing and continuous, then Fsu s—» ()

is a solution to
Z X \A A FS" | A:)\(m)) =, HAS (ngl‘ A:)\(O)anzl‘ A:)\(l)> ) (5)

and the cdf of S* then follows from

+oo
Fyu(z) = Faujaer (@) dFA(N).

— 00

In this case, we also find that for any b € ( SH‘A ,(0), FSJA A(l)) :

E[S*=b), |A=2=>"E {(X ~ Fyazs (FS"\A:A(b))>+ | A= /\} ; (6)
i=1
from which the stop-loss premium at retention b of S* can be determined by integration with respect to
A over the real line.
2.3. Lower bound

Let X = (X4,...,X,,) be arandom vector with given marginal cdfs Fx,, Fx,, ..., Fx,. Assume again
that there exists some random variable A with a given distribution function, such that we know the
conditional distribution, given A = A, of the random variables X, for all possible values of A. We recall

from Kaas et al. (2000) that a lower bound, in the sense of convex order, for S = X7 + Xo+ -+ X, is

SC=E[S|A]. (7)
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This idea can also be found in Rogers and Shi (1995) for the continuous case. We stress that S* is not
necessarily a comonotonic sum.

Let us further assume that the random variable A is such that all E[X; | A] are non-decreasing and
continuous functions of A. In that case S* is a comonotonic variable, see e.g. Dhaene et al. (2002a). If in
addition we assume that the cdfs of the random variables E [X; | A] are strictly increasing and continuous,

then the cdf of S¢ is also strictly increasing and continuous, and we get for all 2 € (stl (0), stl (1)),

ZF b (Fael@) =z & ZE[X”A:FA*(FSK(QE))]:Q:, (8)

which unambiguously determines the cdf of the convex order lower bound S* for S. Using Theorem 1,

the stop-loss premiums of ¢ can be computed as:

B[ -b).] = ZE[XWA BIX: | A= Fy (), |, (9)

which holds for all retentions b € (stl (0), stl (1)) .

So far, we considered the case that all E[X; | A] are non-decreasing functions of A. The case where
all E[X; | A] are non-increasing and continuous functions of A also leads to a comonotonic vector
(E[X1 | AlLE[X2|A],...,E[X, | A]), and can be treated in a similar way but will not be dealt with in

this paper.

3. Bounds by conditioning on two variables

n
Now we study the case that the random variables X; in the sum S = Y X; are conditioned on two
i=1
random variables A1 and As of which the joint distribution is known.

3.1. Lower bound

A general lower bound for the stop-loss premium in case of two conditioning variables can be found

from the following theorem.

Theorem 2. Let Ay and Ao be two random wvariables with some known joint distribution. Then the

lower bound for the stop-loss premium E[(S — b)1] is given by

+oo
m&—wgz/ BISS, _y, — D) 1fa, (A)dAs, (10)

— 00
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where fa, denotes the probability density function (pdf) of A1, b€ (FSI1 0),F.t (1)), and where

Al =X Ap=X1

Shioa = EISIAT = A1, Ag] = ZE[X,-|A1 = A1, Ag), (11)

i=1

implying that the expectation under the integral is taken w.r.t. Aa]A1 = A1.

Proof. By the tower property for conditional expectations the stop-loss premium E[(S — b)1] with
n
S= > X, equals
=1

E[E[(S = b)1[A1, As]] (12)

for some conditioning variables A; and As. Next applying Jensen’s inequality and taking into account

the relation between the joint pdf fa,a,, the marginal pdf fa, and the conditional pdf fa,|a, we obtain
E[(S =b)] = E[E[S —b)[A1, Ag]]
> E [(E[S|A1,Ag] = 1) ]

“+oco “+oco
= [T A = da e = 2l ) O, A

+oo +oo M
= / (/ (Z E[X;]A1 = A, As = Ao] — b)+fA2A1A1(/\2|)\1)d/\2> fa(M)dr

where the inner integral represents the stop-loss premium of th: 5, (11), ie.

+oo T
E[(S}, -5, —b)+] = / O EIXG|AL = A1, Az = Ao] —b) 4 fagia, =, (A2l A1)dAs. (13)
% 4=1
Note that (13) always holds independent of whether th: A, 1S a comonotonic sum or not. O

3.2. Decomposition and bounds for the stop-loss premium

In this section we decompose the stop-loss premium starting from (12), an idea which goes back at
least to Curran (1994).
Assuming that there exists a ba, such that A; > ba, implies that S > b for any value of Ag or such that
A1 < by, implies that S > b for any value of Ag, the stop-loss premium can be split in two parts. We

concentrate upon the decomposition in the first case, the second case can be treated in a similar way
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with the appropriate integration bounds:
bAl +OO
E[(S-b){] = / / = b)4 A1 = A1, Ag = Mol faa, (A1, Ag)dArdAo
“+o0 “+o0
Jr/ / E[(S — b)|A1 = M, A = Ao fa,a, (M1, A2)dA1dAs
ba,

— L+ Iy (14)

where fa,a, (A1, A2) is the joint pdf of A; and As.

The second integral can further be simplified to

too T
/ / ZE XilA1 = A1, Aa = Aol fa,n, (A1, Aa)dArd)g
ba,

+oo
— b/ </ FAL A, (/\1,/\2)d)\2> dAq, (15)
bay —00 g

Ia (/\1)
1= Fa, (bAl)
where Fy, stands for the cdf of A1, while for the first integral I; we develop bounds.

Note that we assumed that there exists a by, independent of As. In this way the integration bounds
are constant which simplifies the problem under consideration.

Another technique is to approximate S|s, a, by a known distribution with the same mean and
variance. However this leads to a double integral requiring involved numerical computations.

Starting from the decomposition (14) we can construct the lower bound for the first integral I; by

using the following theorem.

Theorem 3. Let A1 and Az be two random variables with some known joint distribution. Suppose there
exists a bpa, such that A1 > bp, implies that S > b for any value of Aa. Then the lower bound for 11 in
the decomposition (14) of the stop-loss premium E[(S — b)1] is given by

ba, ,

LB(n) = [ Bl — 0l O, (16)
where th:)\l is defined in (11) and its stop-loss premium is given by (13), where fx, denotes the pdf
of Ay and b e (F,"  (0),F," (1)).

A1=X1 A1=X1
When th:)\l is moreover a comonotonic sum then its stop-loss premium (13) is given by

E[(S}, -5, — ZE {( [XalA1 = A1, Ao] — B[X3|Ar = M, A = Fy (B

o) [,an

+
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where the outer expectation is taken w.r.l. Aa]A1 = A1.

Proof. Relation (16) is the analogue of the lower bound (10) in Theorem 2 with the appropriate upper
integration bound by, .
When for given A7 = A; the sum > ;" E[X;]A1 = A, As], denoted by th:)\l, is comonotonic, the

quantiles of this sum follow from

521 (p) *ZF E[X:|A1= AI,AQ](p) p€(0,1). (18)

Ap=X1
If moreover the random variable As is such that g;(A2) = E[X;|A1 = A1, Ag] are strictly increasing and

continuous functions of As, these quantiles read for all p € (0, 1)

FSZ Al(P) =Y F oo (P Zgz (A2 =Fy ' (p ZE [(XilAr = A1, Ae = Pl (p)]. (19)

=1 i=1
If additionally the c¢df’s of the random variables E[X;|A1 = A1, As] are strictly increasing and continuous,
then the cdf of §§ _, is also strictly increasing and continuous and we get from (18) and (19) for all

ze (Fy'  (0),Fy,' (1)
Al=X1 Al=X1

ZF B A—ar, A (FS Alz)\l(m)) =z,
or equivalently

Z [XilA1 = A, Ao = F ) (B (2))] =, (20)

Ar=>g
which unambigously determines the cdf of th: A
Under these assumptions, applying (20) to the retention b in the stop-loss premium (13) of th: 5, and
invoking Theorem 1 leads to the expression (17). O
In order to further develop the expressions for Is and for the lower bound of I; we need to know the
distribution of X; and of X;|a,—x, Az=x,-

Note that when it is not possible to find an integration bound ba, in order to split the stop-loss
premium into two parts, one can find a lower bound from Theorem 2. This lower bound equals the sum

of Iz, (15), and the lower bound (16) of I;.

Remark 1. When for given A; = A1, the conditional distribution of X;|a,—x, A, is known, then by

convex ordering it holds that

ZX |a1= Aude Sex Z X \Al A1, A2 ),
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and thus the integral I; can be bounded above using the comonotonic upper bound and applying (3)
and Theorem 1. However, since this leads to a double integral and hence to the problem of a numerical

integration of a multiple integral, we will not further proceed with this upper bound.

3.3. Case of sum of lognormal random variables

In this paragraph we further develop the expressions for the lower bound when the random variables
X; in the sum S are lognormal.
We assume that X; = a;e¥t with Y; ~ N(E[Y;],0v,) and o; € R. In this case the stop-loss premium

with some retention b;, namely E[(X; — b;) |, is well-known from the following lemma.

Lemma 1. Let X be a lognormal random variable of the form ae¥ with Y ~ N(E[Y],0y) and o € R.

Then the stop-loss premium with retention b equals for ab > 0

E[(X —b);] = sign () "% B(sign (o) di) — b®(sign (@) ds), (21)

where
i =1Inja| + E[Y] o= oy (22)
dlzw dy—dy— o (23)

and where ® stands for the cdf of a standard normal random wvariable. The cases ab < 0 are trivial.

We now develop the conditional density function of a normally distributed random variable given n
normally distributed conditioning variables. This result will be crucial in what follows where it is

applied for two conditioning variables.

Lemma 2. Let X, A1,..., A, denote n + 1 random wvariables which are multivariate normally dis-
tributed, with

X ~N{ux,0x) and A; ~N(pa,,04,) i=1,...,n.

Introducing the vectors A = (A\1,...,\n) and pp = (pa,, ..., pa, ), the conditional density function of

X given A =\, ..., A, = Ny, is given by

2
1 1 12— px — RYS, (A= pp)

_ exp |1
V2T % — RE S Ry ok — BXS Ry

TXIA =21, An=2n (E| A1, AR) 5

(24)
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where X1, s the variance-covariance matriz of A1,..., Ay
ox, cov(A1,As) -+ cov(Ag, Ay)
cov(Aq, A o3 <o+ cov(Asg, Ay
S (o) (25)
cov(Aq,Ay) cov(Asg,Ay) - ain
and
ng = (COV(X, A1) - cov(X, An)) (26)

Proof. The conditional density function of X given A; = A\q,..., A, = )\, is defined as the ratio of
the joint probability density function of X, A1, ..., A, and the joint pdf of Aq,..., A,:

_ SxA A (T, M1, .., )

_ _ AL,y A 27
fX\Alf)\l,...,Anf)\n(aﬂ 1 ’ ) fAl...An(/\1,~~~,)\n) ( )
The joint pdf of X, Ay, ..., A, is given by
Ixaroa (@A, )= %; e%(w*#)Tzfl(wfﬂ)’ (28)
’ yrrydin (27‘(‘)% \/E
where @ = (x, M\, ..., \n), 0 = (ix, fAy, - - -, BA,, ), |A| = determinant of a square matrix A and where
3. is a block matrix:
o R%
=% T with B =[S (03( . Rf(z:;anX) . (29)
RX 2:171
The joint pdf of Ay, ..., A, reads
1 1 _lia_ Tsi—1lia_
Tavetn s M) = O (30)

(27(-)% \Y |21n|

Using the technique of block inversion one obtains the following block matrix as the inverse matrix 3!

Sl [ ~FxZin
>t = |2’|’ (31)
~¥,Rx 0%3, - By, Bx S, Ry + 31, Rx R %,
Applying block matrix multiplication we arrive at
_ [T Ex
(xS =) = (o—px (A= p)T) S
A—pp
|21n| — _

= (& — nx = RxZ1,0)% + (A = pa) S0 (A = ) (32)

=
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Finally, dividing the right-hand-side of (28) by the right-hand-side of (30) while taking into account (29)
and (32), relation (24) follows from (27). O

The following theorem gives a closed-form expression for the lower bound (10). Hereto we concentrate
on the stop-loss premium of S§ _; .
We denote
RiT = (Ril Ri2> = (COV(Yi,Al) COV(Yi,A2)> .
Theorem 4. Consider the normal random variables A1 ~ N(pa,,0n,) and Ao ~ N(pa,, 0n,) which
satisfy the assumptions of Theorem 2, and such that (Y;, A1, As) are multivariate normally distributed

for all i. Assume that th:)\l given by (11) is a comonotonic sum, i.e. for all i it holds that sign(cy;) =

sign((R} %75)2) when (RT3 )2 # 0. Then the lower bound in (10) is given by

no 1
LB = Z/ fi(u)du
i=1+0
with

—1 —1 —1 - —
f’i (U) :aieE[YiH’%(agfi 7R;‘T212 Ri)+[(R?212 )1O'A1 +(R;‘T212 )QO'AQ T]‘I) l(u)aAl X

x B RIEL)I0R, 17 g [Sign(ai) ((RZ.TE;;)ZO—AQ\A 2y d)] ~b® (sign(as)d),  (33)
where U = ® (AI(;—A“AI> and 7 = corr(A1, As),
1

b aeED/i]+%(o-§’i7R?2;21Ri)+(R’z‘T21721)10A1¢71(u)+(R?2;21)20A2¢71(F§g ®)
i = O '

O (u) — o LBy (5)

and Fge (b) being the solution to

d—

n — — — — —
3 PR B R HRT B o @ BBy )y (34)
=1

Proof. From Lemma 2 with n = 2 the distribution of Y; given A; = A and Ay = A5 follows:

)/i|A1:)\17A2:)\2 ~ N(ED/@] + szle ()‘ - H’A)a \/U}ZQ - szleRi ) (35)
and hence, recalling (30) for n = 2, we obtain

EleY?

A=A, Ao = Xa)faa, (A1, A2)

E[Yi]+R3ﬂ2;21()\pr)+%(o-§,i7R1T2;21Ri) . #efé(A*#A)Tzﬁl()\*#A). (36)

27'('\/ |212|

— €
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From (35) and the first factor in (36) it follows that
Shon = O BIXilA1 = A1, Ag]
i=1
— Z aieE[Yz‘H% (6%, —RIZ 5 R)H(RI S5 )1 (a —pa) )HRTS 52 (Ao —pay)
i=1
_ ZaieE[YiH%(aifRiTz;;RiH(R?z;;)l(Alqu1)+(R?2;;)zaA2@*I(V)’ (37)
i=1
where V = @(%) is a (0,1) uniform random variable and (&); denotes the ith component of the
2
vector .
The sum th: 5, is comonotonic as a non-decreasing function of Az, or equivalently of o, & 1(V), when
for all it holds that sign(c;) = sign((RY 15 )s) when (RT'X1;)s # 0. Then an analytical expression for
the stop-loss premium (17) is obtained by adapting Lemma 1 taking into account that the expectation

is taken with respect to A2|A; = A1 and denoting 7 = corr(Aq, As):
BI(Sh, s, — )]

Ar=x1

ZE{( XA = A, As] — E[XAL = A, Ao = ) (B ()]

17 HAp

+

n
- Z Yil+3(o%, R B, R+ (R 1oa; +(RI S )20, 7 72 +§(R1T2;21)§ai2(142)x

X ® [Sign(ai) ((RZ.TE;;)Z% VI—2 d)] . an bi® (sign(a)d) , (38)

where

E[Yi]+1(0% RIS, R)+(RT S, )1 (M —pay ) (RIS, )20a, @ (Fye ()
bi — Qu€ Ay=X1

PR G N (Fy (D)

A A Py
d: 1 1=A1

m ’

and with Fg  (b) according to (20) and (37) the solution to

1=21

ZO&, + (O'Y leRi)ﬂL(RzTE;Ql)l()\l*,uAl)+(R?2f21)20A2‘bil(Fgﬁl:/\l(b)) _ b (39)

When, in addition, we put U = & (AI(;—A“AI> or, equivalently, A1 — pp, = oa, ® 1(U) in relations (38)
1
and (39), we obtain the lower bound (33)-(34). O
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Remark 2. When the sum th: 5, 18 not comonotonic due to a bad choice of the conditioning variables
A7 and Ag, it is clear from relation (13) in Theorem 2 that the lower bound in (10) contains a double
integral. This case is not preferred since the error made by numerical integration is hard to control and
could spoil the property that we are dealing with a lower bound.

The following theorem states an expression for the exact part and the lower bound for the remaining

part in the decomposition (14) of the stop-loss premium E[(S — b),].

Theorem 5. Consider the normal random variables A1 ~ N(pa,,0n,) and As ~ N(pa,, 0n,) such
that (Y, A1, As) are multivariate normally distributed for all i. Further assume that the assumplions of

Theorem & are satisfied. Then the lower bound of B[(S — b)1] (14) is given by
LB = I, + LB(IY),

where

= : R;
I = 3 oue T < - bzl) — b (~3,) (10)
=1

UAI

and
n

oL(b%,)
LB(h) = / Ji(u)du, (41)

i=1

with by, = lml;% and the function f;(u) given by (33).
1

Proof. We prove only (40) as (41) directly follows from Theorem 4 by considering the appropriate
integration bound.

The expression (36) can be rewritten as

Efe¥ A1 = A, As = Xo] fa,a,(M1, A2)

E[Yil+3o3,
= 67 e % [(A*#A)Tzﬁl (A*#A)*ZR?EIQI (A*#A)ﬂLRzTEle R . (42)

27'('\/ |212|

The exponent can further be rearranged as follows

(A = ) "B (A = pp) = 2RIZ (A — ) + RIS, Ry
= A —pp — R)EL (A —py) - RIS (A - py — Ry)
=A—py—R)"EH A —pp) - (A—py - R)ELR;

— (A= pp— R)TE ) (A - py — Ry). (43)
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We also note that

Fa,(ba,) = P(Ay < ba,) = P (Al —ElM] by - E[Aﬂ) S Pz <By) = o) (44)

UAI UAI

with Z ~ N(0,1), by, = (ba, — E[A1])/04,.
Combining relations (42)-(44) into (15) yields

+oo  ptoo M E[Yil+30%,
/ € C e*%[(A*#A*Ri)TEIQI(A*#A*Ri)]d/\ld/\z —b(1 — B(b},))
ba,

o —————

—c0 ; 21/ | 212
n 0 co L1 _ _RYTslian— _R.

:ZaieE[Yi]qL%U%/i /jL /jL ¢ 2[()\ - Rl) 212 ()\ - R’)] d/\2 d)\l
i=1 ba; —o0 27'('\/ |212|

—b(1 — (b},)), (45)

where the integrand is the joint pdf of two normally distributed random variables with mean p, +R; and
variance-covariance matrix 3q5. Since the second random variable is integrated out over the real line we
end up with the marginal distribution of the first random variable which is normally distributed with
mean pa, + Ry where R;; = cov(Y;, A1) = oy, o, corr(Y;, A1) and variance op, . After standardization

of this normal random variable we end up with an exact expression for Is:

. oo 1 2
= i E[YIH»%O'%I/ —iz dz — b(1 — ®(b*
e ety
= : ba, — R;
- ZaieE[YzH%U?@. 1— (AL THM TNy (b )
i=1 Thy Thy '
- : R;
=3 Mg <a : —b*Al) — b®(—b3,).
i=1 A

Note that As plays no role anymore in this exact part.

We now take a closer look at the condition for comonotonicity: sign(c;) = sign((RY %15 )2) for all i.

According to (25) and (26) we have

R} = (COV(Yi,Al) COV(Yi,A2)>

- (O'yiO'AlTﬂ O'}/iO'AQTﬂ)



Approximation by conditioning on two variables 17

with r;; = corr(Y;, A;), i =1,...,n, j=1,2, and

. 1 o3, —cov(Aq, As)
12 |212| )
—cov(A1, Ag) ox,
B 1 0%2 —Op, Op,T
| 12| . 5
—OpA, 0N, T ox,

with [X15| = 03 0%, (1 —7%) and 7 = corr(A1, As), and thus

_ 1 .
(R{Z15)2 = m[amamm(—ammﬂ) + 0y, 08,7203, |
oy,0% O
LSO [rio — 7517)
o]
oy, ~
- 7?[7“1'2 — 77l
op, (1 —72)

When for example sign(c;) = 1 for all ¢, we require that
rig—rﬂfZO, 7::1,...,11, (46)

which is not trivially fulfilled as is illustrated for basket options.
Example (Basket options). We consider basket options with payoff (>} | a;S;(T) — K) . at time T'

and therefore with price

BC(n,K,T)=¢ "TE“ [(Zn: a;Si(T) — K) ]
i=1 +

under the risk-neutral martingale measure @@ and with r the risk-free interest rate. We assume that
under this measure @

dSi(t) = rS;dt + 03.5;dW;(t),

where {W;(t),t > 0} is a standard Brownian motion associated with the price process of asset ¢. Further,

we assume the different asset prices to be instantaneously correlated according to
COI‘I‘(dVVi, de) = pwdt (47)

For basket options the weights a; are always positive which implies that the coefficients «; are also

positive.
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Let us consider the simple case of 2(= n) conditioning variables A; and Az with
2 2
A= ZﬁmWi, Ay = Z'Yiaim~
i=1 i=1

Then, we find that the comonotonicity conditions (46) for n = 2 lead to the following two-dimensional

system of inequalities

—Ba2(B1y2 — fFoy1) > 0

Bi(Bry2 — B2m1) =0,
which are independent of 7. Obviously, 81 and 32 should have different signs. Which sign is accorded to

31 (and hence the opposite to 82) does not matter since conditioning on A or upon —A will lead to the
same results. This symmetry in the sign pattern of the coefficient of 3; does of course no longer hold

when considering basket options with more than two underlying assets.

4. Approximation by a ‘comonotonic upper bound of a non-comonotonic lower bound’

4.1. Introduction

Let us consider again a sum S of n dependent random variables X, ..., X,, ie.
n
S=Y"Xi.
i=1

As seen in paragraph 2.3, this sum can be bounded below in the convex order sense by S, i.e.

k23 k23

§f = ZE[Xi|A1] Zex S = ZXi

i=1 i=1

where we take a conditional expectation w.r.t. A;. Let us denote E[X;|A1] by X;, then S is again a
sum of n dependent random variables X;. When A; is properly chosen, this sum can be comonotonic.
However, this procedure for finding a comonotonic lower bound can be rather involved. We think
hereby at the case of a basket option where the basket consists of more than two assets which are not
all positively correlated.

When S is not comonotonic, we can construct an improved comonotonic upper bound (S9)* as in
paragraph 2.2.

Assume that given As = Ay the cdf of X; is known, then:
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Note that when S is a comonotonic sum (§°)* = §*. If not, then (S)* is an approximation to S. For

the stop-loss premia it holds that
BIS* = b),] <BIS —b),] <BIS* —b);]  and  BIS’ —b),] < E[(8Y)* - b).] < B[S — b)),

where the first set of inequalities follows by definition of S, S, S* and the definition of convex order,

while in the second set of inequalities the last inequality is shown below in Theorem 6.

Theorem 6. Let (SY)* =37 | F)ilmg (U) and S* =377 | F);il‘AQ (U), where the uniform (0,1) random

variable U is independent of A1 and As. Then

B[((S)* = b)1] S E[S* —b)4].

Proof. First note that (S)* = (0, B[Xi|A1]|A2)° = (7, Xi|A2)®. By setting b = S0, b; and

using obvious properties of the maximum function (-);, we obtain:

EI((8)* —b)+] = E[E[((Z XilA2)® = b)]]

< E[ZE[(()NMAZ)C —bi).]]
= > E[E[(Xi — bs)1|As]]
< ZE[E[(X,- — bi)+|As]],

where the second equality is true since the components of a comonotonic counterpart have the same
marginals as the original ones, and where the second inequality is based upon the fact that X; <5 X;.

Since we can choose b; = F);il‘AQZ)\Q (Fsu|aAs=x, (D)), Theorem 1 leads to:

E[((S)* —b)4] < ZE[E[(Xi — bi) [ As]] = E[(S* —b)1].

O
In fact, since the expectations of the sums S, S and S¥ are the same we even have the following result

in convex order sense:

S <er S =ee S* and  SF =g, (SHY = S
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This motivates why one can consider (S°)* as an approximation to S. As a consequence, in case S*
is not comonotonic, the stop-loss premium E[((S)* — b),] can be considered as an approximation to

E[(S — b)4] which is, according to (6) and (5), given by

+oo
B((8)* - b)4] = / BI((8" = ) 4[A2 = Aalfa, (\2)d

zn:/:oE{(X ~ I e Q(F(SK)H\AQ:AQ(b))L

where for each A2, Fstyu|p,—, (b) is a solution to

Fas (A2)dAa, (48)

Z % oneag (Flstysias—2a (B) = b.

The relation (48) can be further developed when a distribution for the X; and for A;, Ao is assumed.

We study the case of lognormal random variables X; and normally distributed conditional variables.

4.2. Case of lognormal random variables X

Assume that X; = aze¥* with Y; ~ N(E[Y],0y.) and o; € R, i.e. the random variables X; are
lognormal random variables.
Given a normal random variable A; ~ N (E[A1], 04,) such that (Yi, A1) is bivariate normal for all ¢, then

Yi|a;=», is again normally distributed with mean E[Y}]

(/\1 E[A4]) and variance (1 — 7)oy, ,

where we recall that r;1 is the correlation between Y; and A1:

Y, A
rir — corr(Y, Ay) — XAy (49)
Oy, 0A,
Hence, we find
[X |A ] _ al [ ]+Tzl X (Al [Al])+%(177’i21)0%’i’ (50)

or, when noting that AI#E[M ~ N(0,1),
1

E[X;|A1] = aieE[}/i]+Ti10Yi@71(V1)+%(17T?1)0§,i ’

where the random variable V; = @ (M;TE[AIU is uniformly distributed on (0, 1).

1
The lower bound S* = E[S | A4] is not comonotonic when there exists some i with sign(a;) = sign(r;1)
and some j with sign(a;) # sign(r;1). In that case we proceed by deriving the upper bound (S%)% using

a second conditioning variable As which is correlated with A; according to ¥ = corr(Aq, As).
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Theorem 7. Suppose S’ is not a comonotonic sum. Then the upper bound E[((SY)* — b),] is an

approximation to the stop-loss premium E[(S — b)4| and is given by

E[((8°)* — b)+]

k23
L2 x2y 2
_ § aieE[Yz]Jﬁg(l )oY, o

=1
1
% / Ty, @ H(v2) g (\/1 — 72 |ri1|oy,sign(c;) — qu(F(Sg)u‘VQ:vQ (b))) dvy
0
—b(1 — Figeyu(b)), (51)

where the cdf of (SY)* is the integral
1
F(SK)"(b) :/0 F(SK)"\VQZvQ (b)dvs, (52)

with the integrand being the solution to the equation

n

Ll 2 N2 —1 . ] —. 1
2 :aieE[}’l]+§(1 Til)ayi+rrllayi‘l> (v2)+sign(ai)V1—-72|ri1|oy, ® (F(SK)"\VQ:vQ(b)) — b (53)
i=1

Proof. As explained in Section 4.1, E[((S*)* — b),] is an approximation to the stop-loss premium
Bl(S - b).].
Since each term X; = E[X;|A;] in the sum S is again a lognormal random variable it can be expressed

in the form

X; = aze’
with
&; — BT OrR)ol, (54)
% = raoy, P (0, o). (55)

1
Conditionally, given Ay = Ay with Ay ~ N (E[As], 0a,), Y; is also normally distributed with mean fi(3)

and variance 5(i)? given by

~ O'f/z

f(i) = E[Yi] + T2

- Ay — E[A
(A2 — E[As]) = Faz|raloy, A2 — HlAy]
O'A2 O'A2

(56)

5(i)2 =(1- 7:@'22)037. =(1- 7:@'22)7"1'210%@
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where

- ri10y, cov(A1, Ag)

Ti0 = corr(Y;, As) = = sign(r; )eorr(Aq, As). (57)
oA, O§,0A,
Recalling the notation
7= corr(Aq, As),
(57) implies
Fio|ran| =F-ra  and Ty =7

Thus X;|a,—», is distributed as

G e Fsign(a) (e (U)

with U a uniform random variable on (0, 1). Therefore, the inverse distribution functions of the marginal

distributions read for p € (0,1)

-1 _~ R(d)+sign(og)E(8)D T (p)
FXi\Agz)\g(p) - O‘zeu & P

ElYi]+i(1-r? )0}, +7riioy, '\Q;qutsign(ai)\/lfﬁ\nl\o—yi o (p)
— e B 2

or, equivalently, when putting Vo = ® (M;TE[AZU,
2
—1 E[Y:]+ 3 (1—r2)el +7riov, @ (va)+sign(on)VI—72|riloy, @1 (p) _, -1
Folhan, (P) = i€ (et 2tr)ey Hiras @ ) sign(enVi-Hra o o6 Fg Vo )

E |:()~(z - F)il\Vz:vz (Fistys|vy—vs (@))J dvs

i=1+0
n 1
=2 die%ﬁla%"(lqz)/J”“"Yi‘yl(”)@(\/ L —72|ry|oy,sign(es) — @ (Fseyu|vy—v, (b)) dv2
i=1 0
—b(1 — Figeyu(b)), (58)

where the cdf of (S*)* can be expressed as

1
Flgeyu(b) = /0 Fistyu|vy—v, (b)dv2, (59)
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with, according to (5), the integrand being the solution to the equation
1
F(S[) “|Va=va (F(SK)H‘VQZUQ (b)) =b
© Z Vi (Fls ¥ (8)) = b

o Za e Yil+4(1— Tzl)"Y +rraoy; & ! (va)+sign(as)vVI— P2lriloy, @7 (F(§[)’”“V2:’U2 (®) — b

In (58) the factor dieéﬁlag’i(lfig) equals

ElY; H’ (1— TZI)O-Y +2 zlay.(lfig) _ . JElY H’ (1— T121T2)‘7Y

;e i = q;e

O
When dealing with basket options, we assume that the different asset prices are instantaneously cor-
related according to (47) (see Example on basket options). Conditioning variables are taken of the

form
> BioWy(T). (60)
j=1

When the correlations p;; are not all positive, it is not a priori guaranteed that for these choices all r;;
in (50) will be positive (of course it is possible to construct a conditioning variable A such that all r;
are positive and thus the sum S¢ is comonotonic, see Deelstra et al. (2004) Theorem 2), and hence this

new approximation can be applied.

5. Convex approximations

Vyncke et al. (2004) used a moment matching technique of a convex combination of a lower bound and
an upper bound in case of Asian options. In particular, they concentrate upon the comonotonic upper
bound and the improved comonotonic upper bound. Since Asian options usually can be approximated
by precise lower bounds and the convex combination puts much weight upon the lower bound, the
convex combination leads to good approximations but do not improve the lower bounds significantly.
Moreover, there is almost no difference among a convex combination with the comonotonic upper bound
and the convex combination with the improved comonotonic upper bound.

Since a basket option is a stop-loss premium of a sum of dependent random variables which is far from
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being a comonotonic sum, numerical results show that convex combinations with different upper bounds
lead to different convex approximations. In this section, we therefore improve the method of Vyncke et
al. (2004) by using better upper bounds.

The approach of Vyncke et al. (2004) can be shortly explained as follows. Recalling that the sum S

is bounded below and above in convex order (<.x):
Sf Zex S Zox S Zex S,
one can consider convex combinations like
S™m =284 (1-2)S° or S =28+ (1-2)S* (61)

for z € [0, 1]. The first case is referred to as a convex combination of the lower bound and the comonotonic
upper bound, whereas the second case uses a convex combination of the lower bound and the improved
comonotonic upper bound. Clearly, E[S™] = E[S]| and Vyncke et al. (2004) determine z such that
var[S™] = var[S], namely

. var[S°] — var[§] w  var[S*] — var[S]
27 = m or z = m. (62)

In this paper, we use the partially exact/comonotonic upper bound (PECUB) from Deelstra et al.
(2004) which turned out to be a better upper bound than the improved comonotonic upper bound.
Similarly to the construction of the upper bound based on the decomposition in Section 3.2, the upper
bound PECUBA; of E[(S — K)] consists in an exact part and an upper bound to the remaining part

by using the improved comonotonic upper bound $*:
bay
PECUBA1 = exact part A1 + [(Su — K)+ | A1 — /\1]dFA1 (/\1),

where ba, is chosen such that A; > by, implies that S > K and where

“+o0
exact part A = E[S| A1 = M]dFA, (M) — K(1 — Fa, (by))). (63)

ba,
In case of lognormal random variables, this exact part can be reformulated in a closed-form by using
the cumulative distribution function of the normal distribution.

Also each lower bound based on say Ay can be decomposed in an exact part and the rest:

ba
LBA2 = exact part A2 +/ ’ (E[S | A2 = /\2] — K)+dFA2 (/\2),

— 00
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where this exact part is given by substituting Az in (63).

Therefore, a convex combination of the lower bound with the partially exact/comonotonic upper

bound leads to a convex combination of the different exact parts and integrals:

(1 — 2) exact part Aj + z exact part As + (64)
ba, bay
+(1-2) (8 = K) 4 | Ax = MdFa, (A1) + Z/ (B[S [ Az = o] = K) 1 dFj, (A2)-

In the special case that A; = A3 =: A, both the exact parts are the same and one clearly sees that the
approximation by the convex combination is only due to a convex combination of the approximating
integrals. Since the exact parts take more than 90% of the value into account, the use of PECUB
upper bounds should intuitively lead to better approximations — a conjecture that has been proved by
numerical results. However in the case of PECUB upper bounds, it is difficult to determine the convex
weight which leads to equal variances. But since the non-exact part is constructed by using S* for given
A1, a first idea is to use the z* of Vyncke et al. (2004) explained above.

For completeness we state the expressions of the different terms in numerator and denominator of (62)
in case of a sum of lognormal variables as in Section 3.3 such that they can be easily applied below to
the basket option case in the Black & Scholes framework:

n n
(a3 2 L
Var[S] — Z Z aiajeg(ayi+ayj) [eo'yi oY pi _ 1]

i=1 j=1

n n
1,22 2_2
s(riosy, +rios. I 3 .
Var[Sé] = g g aiajeg( tvi g YJ)[e“TJJYIJYJ —1]

i=1 j=1
n o n
1.2 2
E ,E: 5(0%, +o%, oy
Var[SC] = aiaj€2( Y; YJ) [6‘71’1 oyv; _ 1]
i=1 j=1

n n
152 2 . — 2 )
Var[S“] _ E :2 :aiajeg(ayi+ayj) |:€(’r’17’_70'yi0'yj+\/1 riy/1-riov,ov;) _ 1
i=1 j=1

Here and in what follows, we drop the second subscript j in r;; when only one conditioning variable A
is considered, i.e. r; = corr(Y;, A).
In the special case that A; = As =: A, one can apply a moment matching technique to a convex

combination of the terms under the integrals for each fixed A. In other words we will define the convex
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approximation

ba
exact part A+/ (B[S A=) —K)+dFA(/\)+/ (1—2(\))B[(S* — K)4 | A = NJdFA(N), (65)

— 00 — 00

ba

where we define z(\) such that var[S | A = A] = z(M)var[E[S | A = N]]+ (1 — z(A))var[S* | A = )],

namely

var[S* | A = A] — var[S | A = }]

2 = var[S* | A — )] ’ (66)

since var[E[S | A = A]] = 0, or equivalently

var[S | A = A]
l—2z(N)= ———F——.
*N = s A
In case of lognormal variables as in Section 3.3, the numerator equals
v $0-rD)ot, +30—r)od +(rioy, +750v,)® 1 (0) [_ov,ov, (pij—Tirs)
Var[S|A:/\]:ZZaiaj€2( v, T2 3)9Y; i fi |:€ Y; v (Pij Fi _1:|
i=1 j=1

and the denominator equals

Var[S“ | A= /\] _ i i s 46%((17T?)Ugfi+(177}2’)0§/j)+(7’iayi +Tjayj)<1>*1(v) |:€‘ /12,1720y, ov, _ 1}
=\ = e .

i=1j=1
6. Numerical illustration: basket options

In this section, we start by observing some numerical results in case of basket options in the Black &
Scholes model. This choice is motivated by the fact that such a basket option forms a typical example
of a (discounted) stop-loss premium involving a sum of lognormals which is usually far from being
comonotonic. Therefore the approach of conditioning on one variable as in Deelstra et al. (2004) does
sometimes lead to lower bounds and upper bounds which do not always have the desired precision
that one might need as an approximation. We show in this section that conditioning on two variables
improves the results in a promising way. Note that our theory can also be applied to the pricing of Asian
options but as the bounds found in Dhaene et al. (2002b) and in Vanmaele et al. (2002) by conditioning
on one variable were already very precise, the improvements of conditioning on more variables can only
be noticed by observing the sixth decimal, see Liinev (2003) for details.

Another reason for concentrating upon basket options is that the Rogers and Shi (1995) lower bound is
not necessarily a comonotonic sum as needed in paragraph 2.3 and therefore our approach of approx-
imating the price by a comonotonic upper bound of a non-comonotonic lower bound turns out to be

useful.
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We continue with the example on basket options of Section 3.3. As concerns the conditioning
variables Z?:1 B;0;W;(T'), we consider three choices, namely two first order approximations of the sum

> 1 aiSi(T) and the standardized logarithm of the geometric average, with corresponding integration

bound bp:
FAL=Y" e(rf%)Taij(O)Ujo (T) brar = K = a;5; (O)e(’”*%)T,
j=1 j=1
n n 0_2
FA2 =) a;5;(0)0;W;(T) bpaz =K = a;8;(0)(1+ (r — 7). (67)
=1 =1
S0 ajos Wi(T) In(K) = 7y a; (In(,(0)) + (r — 3)T)
GA 2 baa = )

k23 7 7 k23
\/Zj:l 2 k=1 4jak0;% Pk T \/Zj:l 2 k=1 4jak0;% Pk T

We introduce the following notations where A can be FA1, FA2, GA: LBA for lower bound, PECUBA
for partially exact/comonotonic upper bound, and UBA for an upper bound which equals a lower bound
plus an error term based on A. See Deelstra et al. (2004) for the introduction of these definitions and a
motivation of the choices of the conditioning variables. In the following, not all numerical results for all
possible (combinations of) conditioning variables are reported but they are available from the authors.

The first set of input data is taken from Brigo et al. (2003), which was also used for illustration in
Deelstra et al. (2004). Here we consider two assets with weights 0.5956 and 0.4044, and spot prices of
26.3 and 42.03, respectively. Maturity is equal to 5 years. The discount factor at payoff is 0.783895779.
This example refers to a realistic basket, for which we allow the volatilities and correlations of individual

assets to vary in order to facilitate the comparative price analysis.

TABLE 1: Comparing bounds, different weights and spot prices, different volatilities

In Table 1, we compare the lower bound LB2 obtained by conditioning on two variables with some
values LBopt and UB from Deelstra et al. (2004) found by conditioning on one variable. The optimal
comonotonic lower bound LBopt is the solution to an optimization procedure over all conditioning
variables of the form (60). UB is the best upper bound obtained in these settings, as discussed
in Deelstra et al. (2004). The lower bound LB2 is based upon a first conditioning variable A; =

62 62
er—3)Tq, 8, (0)o, W (T) — el =) g58, (0)ooWo(T) and a second conditioning variable Az, being one
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of the three choices in (60) which all lead to the same result when rounded to 8 digits. We could not
use A; = FALl itself (or one of the other conditioning variables of (60)) since then the comonotonicity
condition (46) is not satisfied. One clearly sees that the lower bound LB2 obtained by conditioning
on two variables significantly improves the optimal lower bound LBopt and is very close to the Monte
Carlo values. Only for fairly low volatility and very high correlation (p12 = 0.99), the LBopt is already

so precise that one can no further improve.

As one might have the false impression that the amazing improvement of conditioning on two variables
is only due to the fact that the basket option contains only just two underlying assets, we concentrate
upon a second data set which has been taken from Milevsky and Posner (1998) (see also Beifier 2001)
which is an average over seven stock indices. Indeed, the underlying asset of the basket option is the

weighted average of the normalized G-7 stock indices
(T)

7

where the influencing parameters are given in Table 2 and Table 3.

Si
Si

TABLE 2: G-7 index-linked guaranteed investment certificate weightings

TABLE 3: Correlation structure

The risk-free interest rate r equals 6.3% and we compute bounds and approximations to the value of
the option for four different maturity dates (half a year, one, five and ten years). We use the conditioning
variables in (60) with a; = % As a consequence the correlations r; in (49) in case of FA2 and GA
coincide but the integration bounds still differ. This implies that both the lower bound and the improved
comonotonic upper bound are indifferent to the choice of FA2 or GA, which is however not the case for

the partially exact/comonotonic upper bound.

TABLE 4: Comparing bounds for 100 basket options of the G-7 stock indices

Table 4 mentions the best lower bound and upper bound when conditioning on one of our conditioning

variables (67), namely the lower bound based upon the first order approximation FA1 and the upper
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bound based upon the lower bound in case of the standardized logarithm of the geometric average GA
(see Deelstra et al. (2004)).

We further include the best lower bound LB2 in case of conditioning upon two conditioning variables.
The first conditioning variable is one of our traditional conditioning variables (67) where the different
terms in the signs are multiplied by the signs in the 7-tuple: for example FA1(1,...,1,—1) is the

conditioning variable

6
FAL(L,...,1,-1) = Y Bio;W;(T) — Bros W (T)
=1
o2
with 3; = e(T*TJ)Taij (0). The second conditioning variable is just one of the unadapted announced
conditioning variables (67). The adaptation of the signs of the §; for the first conditioning variable is
necessary in order to obtain a comonotonic sum. The easiest way to find a possible combination of plus-
and minus- signs is to check the comonotonicity condition (46) by a simple numerical routine. However,
an intuitive reasoning can explain why especially the two last terms need an adaptation in this case.
Indeed, we have noticed that the terms with the most important weight profit from a different sign. In
this example this is the case for the last two terms that have weights of respectively 20% and 25%.
Clearly, the lower bound LB2 improves also in this case the lower bound based on one variable and can

compete with the Monte Carlo estimates and this by using only a few seconds of computation time.

In Table 5, we compare different convex approximations for the G-7 basket. These convex approx-
imations are based on the method of Vyncke et al. (2004), applied to basket options and modified as
explained in Section 5. We use different notations for the convex approximations like LBPECUBGA
which means that both the lower bound and the partially exact/comonotonic upper bound are based
on the standardized logarithm of the geometric average GA. We state in a first column the results
using z(\) as in (65) and (66), and in a second column the values found when discounting formula (64)
which calls for z* from (62). In comparison with the Monte Carlo estimates, the first case seems to

underestimate a little bit, whereas the second case rather overestimates.

TABLE 5: Comparing convex approximations for 100 basket options of the G-7 stock indices

In Table 5, we further present under the names LBGACUB and LBICUBGA the results which are both
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based on the lower bound and then respectively upon the comonotonic upper bound and the improved
comonotonic upper bound, all by using the standardized logarithm of the geometric average. One easily
notices that both our convex approximations by using the partially exact/comonotonic upper bound
improve in a significant way the convex combinations LBGACUB and LBICUBGA adapted from Vyncke
et al. (2004).

As expected, the idea of using a moment matching method to instruments like basket options
where the underlying sum is far from comonotonic, leads to approximations which might be useful
in comparison with a lower bound based on one conditioning variable. Especially for small horizons,
the approximations are fairly good. This is due to the fact that for maturities up to 5 years, the exact
part represents a very important part of the option price. The lower bounds based on two conditioning
variables, however, are much more precise (even for large maturities) and have the advantage that they
are known to be lower bounds. This is in contrast with the convex combination approximation which

can deliver either smaller or larger values than the true price.

This basket option leads as in the previous data set to a comonotonic lower bound and therefore
the technique of Section 4 cannot be applied. To illustrate the ‘Comonotonic upper bound on a non-
comonotonic lower bound’, we consider a third example taken from Deelstra et al. (2004), namely with
weights a1 = 0.3 and as = 0.7, spot prices of 130 and 70 and volatilities 0.2 and 0.3, respectively. The
correlation among the assets equals p12 = —0.7. Maturity is equal to 1 year and the risk-free interest
rate is 0.05. The strike prices in Table 6 are chosen in such a way that the option moneyness ranges
from 10% in-the-money to 10% out-of-the-money.

In this example, the lower bound cannot be calculated by the usual comonotonicity formula since the
sum of conditional expectations is not a comonotonic sum. Therefore, one is forced to apply a numerical
recipe to calculate
ba [ M
E[(S! — b)4] = exact part A +/ (Z ElX; | A=) - b) dFy(N),
0 \i=1 +
which is an adaptation of a formula of Dhaene et al. (2002a). Indeed, we have split off the exact part

(63) such that we only need a numerical integration of the second part.

TABLE 6: Case of a non-comonotonic lower bound
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In Table 6, the non-comonotonic LB1 are calculated according to these formulae and the best result
for K = 83.26 is obtained by using the conditioning variable F'A1, respectively FA2 for K = 92.51 and
GA for K = 101.76. The optimization program explained in Deelstra et al. (2004) leads to the optimal
comonotonic lower bound LBopt when restricting to one conditioning variable of the form (60). LB2
shows the lower bounds based upon two conditioning variables, where the first conditioning variable
takes the form FA1(1,—1) while the second one can be either FA1, FA2 or GA since the results will
only differ in the 14th decimal. ‘ICUB after LBFA1’ is the comonotonic upper bound based upon the
non-comonotonic lower bound. LB1IPECUBGA denotes the convex combination of the lower bound
LB1 and PECUBGA according to (64) by using z* from (62). Clearly, our conditioning methods on two

variables lead to the best results.

7. Conclusion

In this paper, we studied methods of conditioning on two variables when valuing stop-loss premiums
of a sum of dependent random variables. In particular, we derived analytical expressions for the
comonotonic bounds of these stop-loss premiums. We applied our methods to the case of lognormally
distributed random variables. Especially the lower bound leads to a very useful result.

Confronted with the inconvenience that for some sums it is cumbersome to obtain a comonotonic lower
bound for the stop-loss premium, we used a comonotonic upper bound of the non-comonotonic lower
bound as an approximation.

We further adapted the method of Vyncke et al. (2004) to the case that the sum of dependent random
variables is far from being comonotonic, and this by studying convex approximations based on a lower
bound and the partially exact/comonotonic upper bound from Deelstra et al. (2004).

In this paper we concentrated mainly upon basket option evaluation. The lower bounds based on two
variables lead to very sharp results — even for large underlying baskets. Even when the underlying
assets in the basket have a negative correlation, the quality of the lower bound based on two variables
remains splendid. In this difficult case when a comonotonic lower bound is not straightforward to obtain,
we propose the comonotonic upper bound of the non-comonotonic lower bound as a very satisfying
approximation for the basket option price. The only disadvantage is that we no longer know whether it

is a lower or an upper bound and therefore it is difficult to judge which conditioning variables lead to
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the best approximation.

Further, our numerical results show that our convex approximations improve the convex combination
methodology of Vyncke et al. (2004) in case of the basket options. The convex approximations being no
specific bounds, however, we recommend to use the comonotonic lower bound based on two variables.
We further conclude that in the case of basket option pricing, which is an example of a stop-loss premium
of a sum of variables that is far from being comonotonic, both our methods based upon more conditioning
variables and our improved convex approximations lead to significant improvements in comparison with

the existing techniques.
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TABLE 1: Comparing bounds, different weights and spot prices, different volatilities

o1 09 CcOIT MC SE LBopt LB2 UB
01 03 02 26.2824  0.002923 26.2380 26.2840 26.7612
0.6 27.4454  0.003296 27.4356  27.4470 27.7353
0.99 28.5055 0.003681 28.5084 28.5084 28.5213
03 06 02 39.8587 0.011675 38.9640 39.8740 42.6078
0.6 42.5568 0.013208 42.3318 42.5685 43.9641
0.99 45.1953 0.013762 45.1926 45.1931 45.2273

TABLE 2: G-7 index-linked guaranteed investment certificate weightings

weight volatility dividend yield

country  index (in %)  (in %) (in %)
Canada TSE 100 10 11.55 1.69
Germany DAX 15 14.53 1.36
France CAC 40 15 20.68 2.39
UK. FSTE 100 10 14.62 3.62
Italy MIB 30 5 17.99 1.92
Japan Nikkei 225 20 15.59 0.81
U.s. S&P 500 25 15.68 1.66

TABLE 3: Correlation structure

Canada Germany France UK. TItaly Japan U.S.

Canada 1.00 0.35 0.10 0.27 0.04 0.17 0.71
Germany 0.35 1.00 0.39 0.27 0.50 —-0.08 0.15
France 0.10 0.39 1.00 0.53 0.70 -0.23 0.09
UK. 0.27 0.27 0.53 1.00 045 —-0.22 0.32
Italy 0.04 0.50 0.70 0.46 1.00 -0.29 0.13
Japan 0.17 —0.08 -023 -022 -0.29 1.00 -0.03

Us. 0.71 0.15 0.09 0.32 0.13 -0.03 1.00
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TABLE 4: Comparing bounds for 100 basket options of the G-7 stock indices

T K MC SE LBFA1 UBGA LB2 A1/As
05 0.95 7.37 0.001 7.3706  7.3938 7.3727 FA2( ,1,-1)
1 3.64 0.001 3.6351  3.7052 3.6354 FA2( ,1,-1)
1.05 1.34 0.001 1.3359  1.4616 1.3362 FA2( ,1,-1)
1 095 9.56 0.002 9.5569  9.6144 9.5592 FA2( ,1,—1)/FAl
1 5.90 0.002 5.8938  6.0181 5.8057 FA2( ,—1,1)
1.05 3.19  0.002 3.1869  3.3909 3.1892 FA2( ,—1,1)
5 095 2275 0011 22,7274 22.9426 22.7413  FA1( =11
1 19.53 0.011 19.4680 19.7928 19.4894 FAIL(1,...,—1,1)/FAl
1.05 16.47 0.012 16.4210 16.8772 16.4500 FAIl(1,...,—1,1)/FAl
10 0.95 33.64 0.022 33.6223  33.8701 33.6461 FA2(1,...,—1,1)/FAl
1 31.09 0.022 31.0761 31.4232 31.1103  FA2(1,...,—1,1)/FAl
1.05 28.62 0.022 28.5872  29.0530 28.6335 FA2(1,...,—1,1)/FAl

TABLE 5: Comparing convex approximations for 100 basket options of the G-7 stock indices

T K MC SE LBPECUBGA LBGACUB LBICUBGA
z(\) 24

0.5 095 7.37 0.001 7.3709 7.3720 7.3769 7.3769

1 3.64 0.001 3.6364 3.6395 3.6446 3.6447

1.05 1.34 0.001 1.3377 1.3424 1.3456 1.3457

1 095 9.56 0.002 9.5585 9.5621 9.5755 9.5755

1 5.90 0.002 5.8969 5.9046 5.9187 5.9189

1.05 3.19  0.002 3.1916 3.2034 3.2148 3.2151

5 0.95 2275 0011 22.7379  22.7583 22.8512 22.8508

1 19.52 0.011 19.4838 19.5171 19.6205 19.6210

1.05 16.47 0.012 16.4434 16.4926 16.6019 16.6031

10 0.95 33.64 0.022 33.6379 33.6543 33.7969 33.7953

1 31.09 0.022 31.0971 31.1239 31.2868 31.2858

1.05 28.62 0.022 28.6149 28.6554 28.8361 28.8361

TABLE 6: Case of a non-comonotonic lower bound
K MC(SEx 103) LB1 LBopt LB2 ICUBGA LBIPECUBGA PECUBGA
after LBFAL P

83.26 0.78671(1.612) 9.67734 9.71631 9.78122 9.79000 9.72526 10.6577
92.51 4.37694(1.736) 4.30100 4.30109 4.37695 4.43781 4.36086 5.53664
101.76 1.71031(1.321) 1.65567 1.68154 1.71349 1.71978 1.77196 2.59509




