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Abstract— Inspired by the ideas of Rogers and Shi (1995), Chalasani, Jha & Varikooty
(1998) derived accurate lower and upper bounds for the price of a European-style Asian
option with continuous averaging over the full lifetime of the option, using a discrete-time
binary tree model. In this paper, we consider arithmetic Asian options with discrete sampling
and we generalize their method to the case of forward starting Asian options. In this
case with daily time steps, the method of Chalasani et al. is still very accurate but the
computation can take a very long time on a PC when the number of steps in the binomial
tree is high. We derive analytical lower and upper bounds based on the approach of Kaas,
Dhaene & Goovaerts (2000) for bounds for stop-loss premiums of sums of dependent random
variables, and by conditioning on the value of the underlying at the exercise date. The
comonotonic upper bound corresponds to an optimal superhedging strategy. By putting in
less information than Chalasani et al. the bounds lose some accuracy but are still very good
and they are easily computable and moreover the computation on a PC is fast. We illustrate
our results by different numerical experiments and compare with bounds for the Black &
Scholes model (1973) found in another paper Vanmaele et al. (2002). We notice that the
intervals of Chalasani et al. do not always lie within the Black & Scholes intervals. We have
proved that our bounds converge to the corresponding bounds in the Black & Scholes model.
Our numerical illustrations also show that the hedging error is small if the Asian option is in
the money. If the option is out of the money, the price of the superhedging strategy is not as
adequate, but still lower than the straightforward hedge of buying one European option with
the same exercise price.

Keywords— Comonotonicity, Asian options, superhedging strategy.

1. INTRODUCTION

The binomial tree model of the Cox-Ross-Rubenstein (CRR) (1979) model can be consid-
ered as a discrete-time version of the Black & Scholes (B&S) (1973) model. The European
option prices have well-known formulae in this model. For example when the life time T’
of the option is divided into N time steps of length T'/N, we have for a European call
option:

EC(K,T) =" i <N>p7(1 )N (SO dV — K) (1)
’ = ] +’

where r is the risk-free rate of interest, S(t) is the price of the underlying asset at time ¢, p
the risk-neutral probability that the price goes up with a factor u = 1/d = exp(c+/T/N)

erT/N _g

with o the volatility of the underlying. It is known that p = <—+%. Although in the
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CRR-model, American option pricing turns out easily numerically (see e.g. Hull (1989)),
the pricing of Asian options remains an open question. Chalasani et al. (1998) have worked
out a numerical recipe to obtain a very accurate price-interval for the Asian option price
in the CRR-model. Their method is based upon grouping paths with the same geometric
stock-price average that end at the same stock price. This is realised by conditioning on
some well chosen vector Z = (X (T'), x(T')), where X (T') denotes the number of increases

until time 7" and x(7') is defined by x(T') = Z;VZO Zzzl X(({T/N). Denoting by AV (T)
the average stock price at time T" in the CRR-model with N time steps, i.e.

N
AV(T) = % Z S(0)uXUT/N) gN=XGT/N) @)
§=0

it follows by Jensen’s inequality and from Rogers and Shi (1995) that:
E[(E[AV(T) | Z] - K)4] < E[(AV(T) = K)4] < E[(E[AV(T) | Z] - K)+] +&  (3)

where

e %E [VVar [AV(T) [ 2] (4)

Multiplying by the discount factor e™"7 relation (3) prevails a lower and an upper bound
for the Asian option price. Chalasani et al. stipulate that for N large enough (say 30 to
40) those bounds give a precise price-interval for the Asian option in the Black and Scholes
framework with a continuous averaging over the whole lifetime of the option.

In what follows we focus on FEuropean-style Asian options with discrete sampling which
are forward starting, i.e. the averaging has not yet started at the beginning of the lifetime
of the option and takes only the daily prices into account during the time interval [T —
n + 1,T]. Recalling that X (T — i) stands for the number of increases until time 7" — ¢,

1 =0,1,...,n — 1, we denote this arithmetic average in the CRR-model with time step
one day as
1 1 n—1
S= = S(0 X(T*i)deX(Tf’i) 5
255 2SO (5)

and the price of the Asian option is given by

AC(n, K, T) = e’TTE[(%S ~ K, (6)

where we work under the risk-neutral probability p = ‘i:;. The method of Chalasani
et al. (1998) can easily be generalized to this case of forward starting Asian options and
is very accurate for the CRR-model. However, the computations of the bounds are very
time consuming on a PC in particular when the number of steps in the binomial tree is
high. Note that the number of time steps cannot be chosen freely since it is at least equal
to the number of sampling days of the lifetime of the option, for example 60 or 120 days.
Thus when we average say for example over the last 10 days, we have to keep track of the
whole tree of the underlying asset for the whole lifetime of the option.

The paper is composed as follows. In section 2 lower and upper bounds for the price of
arithmetic Asian options with discrete sampling are derived. In section 3 the convergence
of those bounds to the corresponding bounds in the Black & Scholes setting is considered.
In section 4 we comment a numerical example, with special attention to the speed of the
calculations on PC. Section 5 concludes.



2. BOUNDS FOR THE PRICE OF ARITHMETIC ASTAN
OPTIONS WITH DISCRETE SAMPLING

2.1 COMONOTONIC BOUNDS AND BOUNDS WITH
CONDITIONING ON THE FINAL VALUE OF THE UNDERLYING

2.1.1 LOWER BOUND

In order to obtain a lower bound in the binomial case, we condition on the value of the
asset price at the final time 7', that is equivalent to conditioning on the number X (7) of
increases of the price process until maturity date 7"

AC( K, T) = " (B[S | X(T)] - nK).]
T T n—1
- = Z(ZE T—i)| X(T >—ﬂ—nK> PIX(T) = . (7
3=0 +

Since In S(T —4)/S(0) = X(T — i) In (%) + (T — i) Ind with X(T — i) a binomial random
variable with parameters (7' — i) and p,

min(j,T—1) ‘ (T_Z)(i)
ES(T -9 X(T)=41= Y SOufdl=H-t L0 (8)
¢=max(0,5—1%) (j )

and the lower bound is found to be:

e T I T nol minGT~) 0 T—i—t (TK_Z> (jiz)
n Z(]) (Z > SOu'd T—”K +- (9)

1=0 ¢=max(0,j—1)

2.1.2 ROGERS AND SHI UPPER BOUND

An upper bound can be deduced by applying the approximation error (4) to the case of
the average 1S with X (7T') as conditioning variable:

E[Var1/2[ S| X(T ZVarl/Q S]X( ) = JIP[X(T) = j] (10)
7=0
where
Val 8| X(1) == Bl(38) | X(D) =i~ BLS | XD =P ()

The second term on the right-hand side can be obtained from (8) while the first term can
be expressed as

2 —_
E[(—s) | X(T)=j] = %Z T i) | X(T) = j]
=0

%Zi S(T— k)| X(T) =], (12)
=0 k
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where the first term in the last expression is obtained analogously as in (8):

min(j,7—1%) A (T—i) ( K )
E [SZ(T N Z) | X(T) _ ]] _ Z S(O)Qu%dQ(T—z)—Zﬁ 4 TJ 14 (13)
{=max(0,j—1) (j )

and where the second term equals
E[S(T —i)S(T — k) | X(T) = j]

min(j,7—k) min(T—i—s,j—s,k—1) (k) (k—z) (j—(s+t))
— Z Z S(O)2u28+td2T—(i+k)—(28+t) S t 9 ) (14)

(5)
s=max(j—k,0) t=max(j—i—s,0) J

Due to the fact that for some values of the conditioning variable X (T"), some terms vanish
in the difference

EI(S ~ K), | X(T)] ~ (BL-S| X(T)] - K)s.

and thus can be omitted, one obtains an improved approximation error dependent on K:

T
1
e(K) = > Varl/Q[ﬁS | X(T) = jIP[X(T) = j], (15)
Smin<Kj/\:S[2naz7j>K
where
S(0) = 7o )
Smin = a— d Smax j — Smm ]a 16
” g% an j u (16)

leading to an improved upper bound for AC(n, K,T) consisting of the lower bound (9)
plus the approximating error £(K) in (15). This idea is in fact a natural one and Nielsen
and Sandmann (2003) used a similar idea in the B&S-setting.

2.1.3 INVERSE DISTRIBUTION FUNCTIONS

Let X be a random vector with cumulative distribution function (cdf hereafter) Fiy. Then

the usual inverse function of Fx is the non-decreasing and left-continuous function F)}l (q),
defined by

Fillg) =inf{z €R | Fx(2)>q}, qe0,1], (17)

with inf ) = 400 by convention; for any « € [0, 1], the (non-decreasing) a-mixed inverse
function of F'x is defined as follows:

F' @) = a Fy' @)+ (1—a) Fx'(e), g€ (0,1), (18)
with the non-decreasing and right-continuous function Fi '™ (p) defined as

Fi'(q) =sup{z e R| Fx(x) < ¢}, q€[0,1]. (19)



2.1.4 COMONOTONIC UPPER BOUND

In financial and actuarial situations one encounters quite often random variables of the
type S = Z?;ol Y, where the terms Y; are not mutually independent, but the multivariate
distribution function of the random vector Y = (Yp, Y1,...,Y,—1) is not completely spec-
ified because one only knows the marginal distribution functions of the random variables
Y;. Kaas et al. (2000) use comonotonic counterparts to derive bounds for such sums.

The comonotonic counterpart S¢ of S with S = Z?:_()l S(T —1i), is the random variable
se=3"Fgl () U Z(0,1)-uniform. (20)

The reasoning of Simon et al. (2000) leads to the fact that the price of an Asian option
can be bounded above by an optimal linear combination of European vanilla call options:

n—1

1 —ri —1() .
AC(n, K, T) < ~ Z; e [FS(T_i) (Fse(nk)),T — i (21)

where EC(-,-) is defined in (1) and where « is determined by
Fe ) (Fse(nK)) = nkK. (22)

From (22) and the geometric interpretation (see Dhaene et al. (2001)) of stop-loss pre-
miums, one obtains that for any stochastic process (S(¢);¢ > 0) for the risky asset, the
following inequality holds

e~ T n-1
AC(K.T) < —— 3 F {(S(T—i)—F&%i) (Fsc(“K))>+]
i=0

e—rT

[nK — F.' (Fse(nK))] (1 — Fse(nKk)). (23)

We apply this inequality in the case of the binary tree model where

FGT i) = PIS( =) < st~ = 3 (T - p e
=0

fori=0,... ,n— 1. Hence, for 0 < ¢ < 1, we find that

S

Fg(é_i)(q) =) SO d" T Ipo11—iy<q< PGT—1): (25)
J

Il
=)

where I denotes the indicator function, and therefore

n—1
Fse(nK) = sup {q € (0,1] | ZFS_(IT,Z-)(Q) < nK}

=0
n—1T—1 A o nKk

=supq g€ (0,1] | Z Zu]dT_Z_]IF(j—1,T—i)<q§F(j,T—i) < 50 ( (26)
=0 j=0



Further, we remark that due to comonotonicity (see Kaas et al. (2000))

Fg' (Fse(nK)) = Y Fiip_y (Fse(nK))

n—11T—1
= Z Z S0)u?d" ™ I g1 7 i) < Fae (nK) < F (G T—i) - (27)

i=0 j=0

Clearly, Fsc(nK) will be one of the cumulative distribution functions F'(j, T —i). Therefore,
we first concentrate on the ordering among them for different j and 4.

We consider the cdf-values F'(j,T—1) as elements Fj;,j =0,... ,T—i,i=0,... ,n—1,
in a ((T'+ 1) x n)-matrix F. Then only the elements F}j; with j < T — i are taken into
account. It is obvious that Fj; = 1 for j = T — 4 and that Fj; > F}j; for 7/ > j. One can
show that also Fjy > F}; for ' > i and that

Fji =1 =p)Fjit1 +pFj—1ip1 = Fj_1i41 < Fji < Fjiq. (28)

In other words, walking through rows in one column of the matrix F, the value of the cdf
increases. The same happens when walking trough columns in one row. This implies that
given a cdf-value F(j,T — i) there are precisely two elements in each column such that
F(j,T — i) lies between these elements. Therefore, the double sum in (26) reduces to a
sum with at most n terms. In fact the problem in (26) turns down to determine by an
algorithm the largest ¢ = F'(j(i),T — i) such that

n—1
> w0 < nk/S(0). (29)
=0

Note that at the same time, the sum in (25) reduces to one term v/ d”~*=3()  Substituting
the computed relations (25)-(26)-(27) into (23), we obtain a value for the upper bound.
As mentioned in Albrecher et al. (2003), this comonotonic upper bound (21) corre-
sponds to the price of a static superhedging strategy consisting of buying and holding
European call options on the same underlying asset, and that mature at the respective
exercise dates.
Our numerical illustration will show that the hedging error is small if the Asian option is
in the money. If the option is out of the money, the price of the superhedging strategy
is not adequate, but still lower than the straightforward hedge of buying one European
option with the same exercise date. The comonotonic hedge is usefull because European
call options are typically available on the market.
Moreover, among all superhedging strategies which are constructed as linear combinations
of European calls on the same underlying asset, the comonotonic superhedge is optimal
in the sence that it is the one with the smallest cost.

2.2 IMPROVED COMONOTONIC UPPER BOUND

We assume from now on that 22: o Te=0for a >b. Let

v N d .
St = Z FS(%Lz’)\X(T)(U) U = (0, 1)-uniform. (30)
i=1



then we obtain an improved comonotonic upper bound, analogously as in (21)-(23):

AC(n, K, T)
,TT T
- (”K FSZ|X( T)=j (FS“IX(T):J‘(”K))) (1- FS"IX(T)J'(”K))}
e—rT T T ) .
=— ;)(j.)p](l—p) 7%

) i
% (S(O)UKdT ‘ Fs(lT i) X(T)=j (FS“IX(T):J'(”K)))
=0 ¢=max(0,j—1) (J)

n—1 min(j,T—1) (T—i)(i
J

~ (K = Falxryy (Fsupxn=(nk))) (1Fsu|X<T>—j(”K))}

By the comonotonicity property, we have that

1
Feuix(r)= Z S(T )X (T)= (@) 0<g<1 (32)
with
min(j,T—1)
~1 s jT—i—s
FS(T—Z')\X(T)=J' (a) = Z S(0)u*d IFj(sfl,Tfi)<q§Fj(s7T7i), (33)
s=max(0,j—1)
where
0 s < max(0,j — 1)
()G
Fi(s,T —i) = > ——F max(0,j—d) <s<min(j,T—i)  (34)

T
f=max(0,7—1) (j )

1 s > min(j, T — 7).

\

Hence, the cdf of S* given the event X (7") = j can be found from

Fsu|X( )_(TLK)
n—1 min(j,T—1i)

S —i—8 nk
=sup{ q € (0,1] | Z Z ud" Ip;(s—1,17—iy<q<F;(s,T—i) < 50 (- (35)
=0 s=max(0,j—1)

As for the comonotonic upper bound, Fsu|x(7)—; will be one of the distribution functions
F;(s,T — 1) or will be zero in case of an empty set. The cdf’s Fj(s,T — i) can also be
ordered in a matrix which has similar properties as for the comonotonic upper bound.
Thus, a cdf-value Fj(s,T — 1) lies precisely between two elements in each column and the
sum (33) reduces to one term and hence the double sum (32) to at most n terms. Once
we found for each fixed j, the largest ¢ = Fj(s,T — i) by a search algorithm, we can easily
compute (33), (32) and hence obtain the value of the improved comonotonic upper bound.

7
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3. CONVERGENCE

When we consider steps with length equal to a fraction of one day, say 1/m day, and let m
go to infinity, we can prove that the lower bound and the comonotonic upper and improved
comonotonic upper bound converge to the corresponding bounds for a European-style
arithmetic forward starting Asian option with discrete sampling in the Black & Scholes
setting, i.e. the underlying asset follows a geometric Brownian motion, see Vanmaele et al.
(2002). The proof follows the ideas of convergence of the CRR-model to the B&S-model.

4. A NUMERICAL EXAMPLE

We illustrate our results by some numerical examples. We consider the case of an European-
style arithmetic forward starting Asian option with discrete sampling that in practice is
used for protection against price manipulation. For this purpose, averaging over the last
10 days of the life time of the option is sufficient. Intuitively it is clear that this is a case
where conditioning on the final value of the underlying asset will perform well. When one
takes a longer averaging period into account, the weight of the final value diminishes and
hence also the quality of the bounds. This can be seen by comparing the results for an
expiration time 7' = 120 (days) but with different averaging periods n, namely n = 10
in table 1 and n = 30 in table 3. In table 2 we report for the case of an expiration time
T = 60 (days) and n = 10 averaging days. In all cases, the risk-free interest rate r equals
9% yearly. The initial stock price S(0) is fixed at 100. Further, we consider several exercise
prices K in the range of 90 to 110 by steps of 5 or 10. We also study the influence of
different volatilities o (=0.2, 0.3 and 0.4) on the quality of the bounds. From tables 1-3
we observe the following:

1. The method of Chalasani is accurate for the CRR-model since the lower (LBC') and
upper bound (UBC') coincide.

2. The lower bound (LB) with conditioning on the final value of the underlying asset to-
gether with the comonotonic upper bound (CUB) or with the improved comonotonic
upper bound (ICUB) gives a price-interval which contains the bound LBC=UBC.

3. The Rogers and Shi approach for the upper bound (LB +&(K)) is of very bad quality
in the sense that it leads to very large upper bounds that in all cases are larger than

CUB and ICUB.

4. The relative error (ICUB-LB)/LB increases with increasing exercise price K which
implies that the bounds are better for options in-the-money than out-of-the-money.

5. The absolute difference as well as the relative difference between the value LBC' and
LB increases with volatility or with , increasing number of averaging days for a fixed
T or with decreasing life time of the option for a fixed n.

6. Chalasani et al. (1998) remark that 'For N = 30 (resp. N = 40) our algorithm
computes the lower and upper bounds in about 5 (resp. 20) seconds on a Sun Ultra-
SPARC workstation’. Speed is indeed very important for traders who have to make
their decisions in a few seconds. But normally they don’t use a Sun UltraSPARC
but a PC. Note moreover that for the forward starting case the number of steps NV in
the binomial tree equals 7" which is 60 or 120 in our example (while n, the number
of averaging dates, equals 10 or 30). This implies a higher CPU-time with their
approach than for the case T' = N = 30 or 40 they reported. It turns out that in
the forward starting case the calculation time of our bounds on a Pentium IIT with
128Mb Ram is much shorter. For example the lower bound is very fast, it needed
around 0.35 CPU-time seconds when T" = 60 and n = 10, up to 4.6 CPU-time sec-
onds when T' = 120 and n = 30 . The calculation time of the superhedging strategy
equals 0.6 (7' =60 and n = 10) to 2.9 (T' = 120 and n = 30) CPU-time seconds.



Table 1: Bounds when T' = 120 and n = 10.

T n o | K LB LBC LBBS | UBBS | ICUB | CUB LB
= UBC +e(K)

120 10 0.2 | 90 || 13.077 | 13.081 || 13.100 | 13.101 | 13.106 | 13.113 | 13.894
95 9.120 9.123 9.135 | 9.154 9.163 | 9.176 | 9.866
100 || 5.872 5.891 5.931 | 5.932 5.940 | 5.960 | 6.538
105 || 3.498 3.502 3.544 | 3.546 3.566 | 3.571 | 4.000
110 || 1.906 1.911 1.950 | 1.953 1.958 | 1.972 | 2.283

120 10 0.3 | 90 || 14.350 | 14.353 || 14.395 | 14.397 || 14.408 | 14.424 | 15.500
95 | 10.894 | 10.902 | 10.954 | 10.967 || 10.972 | 10.992 | 11.939
100 || 7.984 8.012 8.072 | 8.076 8.087 | 8118 | 8.960
105 || 5.695 5.701 5.762 | 5.767 5.782 | 5.807 | 6.508
110 || 3.909 3.927 3.988 | 3.994 4.007 | 4.029 | 4.632

120 10 0.4 | 90 || 15.956 | 15.963 || 16.027 | 16.031 || 16.048 | 16.074 | 17.421
95 || 12.825 | 12.836 | 12.909 | 12.915 || 12.934 | 12.959 | 14.211
100 || 10.115 | 10.152 || 10.232 | 10.239 | 10.252 | 10.294 | 11.409
105 || 7.885 7.905 7.987 | 7.995 8.016 | 8.045 | 9.074
110 || 6.054 6.064 6.146 | 6.155 6.171 | 6.198 | 7.129

Table 2: Bounds when 7' = 60 and n = 10.

T n o | K LB LBC LBBS | UBBS || ICUB | CUB LB
= UBC +e(K)

60 10 0.2] 95 | 7.064 | 7.076 7.107 | 7.108 || 7.120 | 7.135 | 7.824
100 || 3.685 | 3.723 3.767 | 3.768 | 3.780 | 3.810 | 4.353
105 || 1.593 | 1.607 1.650 | 1.653 1.666 | 1.685 | 2.035

60 10 0.3 ] 95 | 8.191 | 8.219 8.275 | 8277 | 8.299 | 8.326 | 9.260
100 || 5.146 | 5.203 5.269 | 5.273 | 5.290 | 5.336 | 6.134
105 || 3.010 | 3.035 3.102 | 3.107 || 3.129 | 3.163 | 3.778

60 10 0.4 | 95 || 9.476 | 9.508 9.587 | 9.592 || 9.622 | 9.657 | 10.898
100 || 6.615 | 6.690 6.778 | 6.785 | 6.806 | 6.868 | 7.925
105 || 4.469 | 4.514 4.603 | 4.612 || 4.643 | 4.685 | 5.643

Table 3: Bounds when 7" = 120 and n = 30.

T n o | K LB LBC LBBS | UBBS | ICUB | CUB LB
= UBC +e(K)

120 30 0.2 | 90 || 12.693 | 12.725 || 12.760 | 12.762 | 12.784 | 12.801 | 14.137
100 || 5.359 5.443 5.522 | 5.526 5.574 | 5.615 | 6.742
110 || 1.514 1.581 1.653 | 1.662 1.697 | 1.728 | 2.639

120 30 0.3 | 90 || 13.762 | 13.843 || 13.925 | 13.930 || 13.981 | 14.019 | 15.907
100 || 7.288 7.414 7.535 | 7.546 7.614 | 7.678 | 9.349
110 || 3.300 3.400 3.518 | 3.535 3.595 | 3.649 | 5.158

120 30 0.4 | 90 || 15.166 | 15.297 || 15.424 | 15.436 || 15.512 | 15.571 | 18.024
100 || 9.236 9.403 9.564 | 9.584 9.671 | 9.756 | 11.978
110 || 5.214 5.359 5.518 | 5.546 5.627 | 5.701 | 7.795
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In the tables, we included also a price interval [LBBS,UBBS] for the corresponding Asian
option in the Black & Scholes setting, see Vanmaele et al. (2002). We may conclude that:

1. The price interval [LB,ICUB] in the CRR~model contains the price interval [LBBS,
UBBS| and hence contains not only the price of the Asian option in the CRR~-model
but also in the B&S-model.

2. The method of Chalasani leads to an accurate price in the CRR-model but not in
the B&S-model. It gives only a lower bound in the latter case.

5. CONCLUSIONS

In this paper, we have concentrated on the CRR-model with daily time step and we
have derived price intervals for arithmetic Asian options with discrete sampling which are
forward starting. Our method is based on comonotonicity and on conditioning on the final
value of the underlying asset. Moreover, it can be shown that our upper and lower bounds
in the CRR-model converge to those of the B&S-model.

We also generalized the method of Chalasani et al. (1998) to this setting. Their method
turns out to be still very accurate but the computations are very time consuming. We
further noticed that the Chalasani et al. results form a lower bound for the price of an
arithmetic Asian option with discrete sampling in the B&S-model, but that this lower
bound is of a lesser quality than the B&S lower bounds found in Vanmaele et al. (2002).
Moreover, among all superhedging strategies which are constructed as linear combinations
of European calls on the same underlying asset and with exercise dates corresponding to
the averaging dates, the comonotonic superhedge is optimal in the sence that it is the one
with the smallest cost.

As a conclusion, we can suggest that if the continuous B&S-model is an acceptable model,
then one could better work with the B&S-bounds, see Vanmaele et al. (2002). If one
prefers to work in the CRR-model itself for pricing arithmetic Asian options with discrete
sampling which are forward starting, then it turns out that on a PC the calculation time of
our bounds is much shorter than the one of the bounds based on the (generalized) method
of Chalasani et al. and is therefore recommended.

An interesting question is to look at American-style Asian options in the CRR-model.
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