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Abstract

A way to model the clustering of jumps in asset prices consists in combining a di�usion process
with a jump Hawkes process in the dynamics of the asset prices. This article proposes a new alterna-
tive model based on regime switching processes, referred to as a self-exciting switching jump di�usion
(SESJD) model. In this model, jumps in the asset prices are synchronized with changes of states of
a hidden Markov chain. The matrix of transition probabilities of this chain is designed in order to
approximate the dynamics of a Hawkes process. This model presents several advantages compared to
other jump clustering models. Firstly, the SESJD model is easy to �t to time series since estimation
can be performed with an enhanced Hamilton's �lter. Secondly, the model explains various forms of
option volatility smiles. Thirdly, several properties about the hitting times of the SESJD model can be
inferred by using a �uid embedding technique, which leads to closed form expressions for some �nancial
derivatives, like perpetual binary options.
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1 Introduction

A careful observation of �nancial time series reveals that jumps of prices arrive grouped and are usually
triggered by a �ood of news. This relation is studied by Rangel (2011) who demonstrates the causal link
between the economic announcements and the clustering of jumps in stock markets. Ficura (2015) ob-
serves the same phenomenon when studying high frequency data of four major foreign exchange rates. The
existence of jump clustering has important implications in many areas of �nance and insurance. Fulop et
al. (2015) emphasize the role of jumps in the valuation of options. Hainaut and Moraux (2018) underline
that the e�ciency of quadratic hedging strategies is considerably reduced in presence of jump clustering.

A way to deal with the clustering of jumps is to decompose the overall price variability into two com-
ponents - a continuous Brownian process and a discontinuous self-exciting jump process, called Hawkes
process1. For instance, Chen and Poon (2013), Boswijk et al. (2015), and Carr and Wu (2016) investigate
some self-exciting jump di�usion processes for modeling stock index returns and/or stock index options.
Dassios and Zhao (2011) introduce a dynamic contagion process, by extending the Hawkes process with

∗Postal address: Voie du Roman Pays 20, 1348 Louvain-la-Neuve (Belgium) . E-mail to: donatien.hainaut(at)uclouvain.be
†Postal address: CP210, boulevard du Triomphe, 1050 Bruxelles (Belgium) . E-mail to: griselda.deelstra(at)ulb.ac.be
1The very �rst process, developed by Hawkes (1971), has been used in seismology to model the frequency of earthquakes

and aftershocks.
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self-exciting and externally-exciting jumps. Chavez-Demoulin and McGill (2012) or Bacry et al. (2013)
study the clustering of �nancial events with Hawkes processes. In insurance, Dassios and Jang (2003)
evaluate catastrophe reinsurance and derivatives in presence of self-excitation. We also refer the inter-
ested reader to the literature review of Bacry et al. (2015) for a survey of applications of Hawkes processes
in �nance. However, these processes have two important drawbacks. Firstly, �tting self-exciting jump
di�usions still seems to be a di�cult exercise. Parameters may be estimated by a generalized method of
moments as in Aït-Sahalia et al. (2015). But this method is not fully reliable since the moments can only
be approximated. An alternative method consists in using a peak over threshold procedure, as suggested
by Embrechts et al. (2011) and applied by Hainaut (2016 a and b) to interest rates and to a stock index.
However, this approach is sensitive to the choice of thresholds. Chen and Poon (2013) use instead a par-
ticle Markov Chain Monte-Carlo method to estimate parameters. But this approach is time-consuming
and the de�nition of the parameters prior distribution is challenging. The model proposed in this article
does not present this drawback and is estimated with a robust �ltering technique.

A second drawback of Hawkes processes is that hitting time properties are di�cult to obtain for self-
exciting jump di�usions and are still unavailable in explicit form, which implies that American or exotic
derivatives only can be evaluated by time-consuming numerical methods in the framework of Hawkes pro-
cesses. Except in the Brownian case, we do not know the distribution of the hitting time for the stock
price process to upper or lower boundaries. This makes the valuation of exotic options di�cult. When
the stock price is ruled by a di�usion with double-exponential jumps, Kou and Wang (2003) show that
the Laplace transform of �rst passage times to �at boundaries admits a closed form expression. It is then
possible to evaluate barrier options by inverting this transform with e.g. the Talbot's method such as
detailed in Abate and Whitt (2006). This framework has been extended by Jiang and Pistorius (2008)
to phase-type jump di�usions, by Levendorskii (2008) to multi-factor models and by Boyarchenko and
Levendorskii (2009) to switching jump di�usion processes. Stochastic volatility models, as the Heston's
process (1993), explain better than Lévy processes the behaviour of stock prices because their increments
are not independent and identically distributed. However for these models, there is no alternative to
Monte-Carlo simulations for pricing barrier options. The impact on option prices of jumps clustering
modeled with Hawkes processes is studied in Yong and Wu (2017) or in Hainaut (2016 b), but again path
dependent options must be computed by simulations. The model proposed in this article does not present
this drawback because the moment generating function of hitting times admits a closed form expression.

This article proposes a new alternative to Hawkes processes, based on regime switching processes. In
a pure regime switching model as in Honda (2003) or Guidolin and Timmermann (2008), the parameters
are modulated by a hidden Markov chain that represents the economic conditions. Even if this category
of processes has an excellent explanatory power, they cannot duplicate the clustering of jumps because
they use memory-less exponential random variables for de�ning the length of the period of staying in a
certain regime. To remedy to this issue, we construct a Markov chain with several ordered states. Each of
these regimes corresponds to a value for the intensity of a discretized self-exciting counting process. These
intensities are involved in the de�nition of the matrix of transition probabilities. This matrix is designed
such that when the chain moves to a higher state, the probability of climbing again in the scale of states
increases instantaneously. If the chain does not move up, the probability that it falls in the scale of states,
raises also with time. This Markov chain serves in the modelling of the asset price dynamics. Indeed, the
asset returns are modeled by the sum of a di�usion and a jump process, where the jumps of the prices are
synchronized with the transitions of the Markov chain towards higher states. This model will be called a
Self-exciting Switching Jump Di�usion (SESJD) model. Chourdakis (2005) or Hainaut and Colwell (2016)
combine jumps synchronized to Markov chain transitions with jumps in a two or three switching regime
model but the SESJD model di�ers from these articles in two directions. Firstly, the state space of our
Markov chain has a much larger dimension than 2 or 3 regimes. Secondly, we exclusively consider syn-
chronous jumps in order to model the clustering of jumps. Notice that Dassios and Zhao (2014) proposes
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a Markov chain model for contagion. But their framework di�ers from our approach and is designed for
modeling the clustering arrival of loss claims with delayed settlement for an insurance company.

In this paper, we will concentrate upon the case that the jumps of the prices are double-exponential
random variables, as in the model of Kou (2002) for option pricing. Compared to Hawkes processes,
this SESJD model presents several substantial advantages. First and foremost, this model is easy to �t.
Indeed, a slightly modi�ed version of the Hamilton's �lter leads to a simple parameter estimation method.
Secondly, the model explains various forms of option volatility smiles. Thirdly, �uid embedding techniques
of e.g. Rogers (1994), adapted by Jiang and Pistorius (2008) to jump processes, can be applied in order
to deduce properties about the hitting times of the SESJD. This leads to closed form expressions for some
�nancial derivatives, like e.g. prices of perpetual binary options.

The paper is organized as follows: Section 2 explains how self-exciting processes can be approximated
by using a Markov chain. The SESJD model is then introduced in Section 3. Section 4 is devoted to the
SESJD parameter estimation by using a modi�ed Hamilton �lter. Section 5 presents a family of measure
changes and the dynamics of the SESJD model in a risk-neutral world. European option prices and the
related volatility smiles are studied in Section 6. In Section 7, we concentrate upon the SESJD hitting
time properties and apply them in order to obtain explicit formula for perpetual binary option prices.
Section 8 concludes the paper.

2 A Markov chain approximation for self-exciting processes

A self-exciting process has sample paths depending upon its history. One of the most studied self-exciting
processes was developed by Hawkes (1971). He proposed a jump process in which the intensity increases
as soon as a jump occurs and reverts next to a long term level. A common approach to model stock prices
consists in combining a Brownian motion part with a self-exciting jump process. However, the econometric
calibration of this type of process is problematic and requires advanced �ltering techniques. On the other
hand, the moment generating function of prices only admits a semi-closed form expression. Its evaluation
usually implies to solve numerically a system of ordinary di�erential equations. Furthermore, we do not
have any information about the hitting times of a certain threshold in the case of Hawkes processes. The
present paper proposes an alternative solution to introduce a self-excitation mechanism in the dynamics
of stock prices. It consists in approaching a Hawkes process by a continuous Markov chain, with a �nite
number of states. These states are ordered and the stock price jumps when the Markov chain moves from
a low to a higher state. Before introducing this Markov chain, we �rst recall the de�nition of a Hawkes
process and its main features.

A Hawkes process is a counting process denoted by (Nt)t≥0 with an intensity process (λt)t≥0, which
reverts to a level θ at a speed α and increases of η (α, θ, η ∈ R+) when Nt jumps by one unit:

dλt = α (θ − λt) dt+ ηdNt. (1)

This intensity process (λt)t≥0 is a Markov process and by direct integration, it is clear that the in�uence
of past jumps on the current value of the intensity decays exponentially:

λt = θ + e−αt (λ0 − θ) +

∫ t

0
ηeα(u−t)dNu. (2)

The integrand in this last expression is called the kernel function. The expected intensity is in this case
equal to (for a proof see e.g. Hainaut and Moreaux, 2018),

E (λt | F0) =

(
αθ

η − α
+ λ0

)
e(η−α)t − αθ

η − α
. (3)
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From this last relation, we infer that the process is stable only if η − α ≤ 0. In this case, the asymptotic
value to which the expectation of λt converges when t tends to in�nity is �nite and equal to the following
ratio

λ∞ := lim
t→∞

E (λt | F0) =
αθ

α− η
.

The next proposition recalls that the moment generating function of (Nt)t≥0 is an a�ne function:

Proposition 2.1. The moment generating function (mgf) of Ns for s ≥ t with ω1 ∈ C−, is given by the

relation:

E
(
eω1Ns | Ft

)
= exp (A(ω1, t, s) +B(ω1, t, s)λt + ω1Nt) ,

where A(ω1, t, s), B(ω1, t, s) are solutions of the system of ordinary di�erential equations (ODE's):{
∂
∂tA = −αθB
∂
∂tB = αB − [exp (Bη + ω1)− 1] ,

(4)

with the terminal conditions A(ω1, s, s) = 0, B(ω1, s, s) = 0.

We refer the reader to Errais et al. (2010) for a proof. The next corollary is an immediate consequence
of the previous proposition:

Corollary 2.2. The probability generating function (pgf) of Ns for s ≥ t, is given by the following

expression

E
(
uNs−Nt | Ft

)
= exp (A(lnu, t, s) +B(lnu, t, s)λt) ,

where A and B are de�ned by the ODE's given in (4).

We aim to approximate the dynamics of the intensity process (λt)t≥0 by a Markov chain with a �nite
dimensional state space. Therefore, we consider a probability space (Ω,F ,P) on which a Markov chain
(δt)t≥0 is de�ned which takes values in a set E0 = {e0, . . . , en} of unit vectors of Rn+1. The sub-�ltration
of Ft generated by the Markov chain (δt)t≥0 is denoted by {Gt}t≥0. Let us de�ne ∆λ := η

m and assume
that the number of states of the Markov chain, n, is a multiple of m. To each state of the Markov chain,
we associate a value λt = δt

>λ where λ is the following vector:

λ := (λi)i=0:n = θ + i∆λ for i = 0, ..., n.

The next step consists in building the matrix of instantaneous probabilities of transition for δt, such that
λt has a similar behaviour to the intensity of the Hawkes process, λt, as de�ned in equation (1). The
generator associated to this matrix is a (n+ 1)× (n+ 1) matrix denoted by Q0 := [qi,j ]i,j=0:n, whose
elements satisfy the following standard conditions:

qi,j ≥ 0, ∀i 6= j, and
n∑
j=0

qi,j = 0, ∀i ∈ {0, ..., n}. (5)

The probability of transiting from state i to j for i 6= j over a short period of time ∆t is equal to
qi,j∆t +O(∆t) . As

∑n
j=0 qi,j = 0 then qi,i = −

∑
j 6=i qi,j < 0 and the probability of staying in state i over

∆t is 1 + qi,i∆t +O(∆t). The matrix of transition probabilities over the time interval [t, s] is denoted as
P (t, s) and is the matrix exponential of this generator matrix times the length of the time interval:

P (t, s) = exp (Q0(s− t)) , s ≥ t. (6)
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The elements pi,j(t, s) of this transition probability matrix represent the probabilities of switching from
state i at time t to state j at time s:

pi,j(t, s) = P (δs = ej | δt = ei), i, j ∈ {0, ..., n}. (7)

The probability of the chain being in state i at time t, denoted by pi(t), depends upon the initial proba-
bilities pk(0) at time t = 0 and the transition probabilities pk,i(0, t), with k = 0, . . . , n, as follows:

pi(t) = P (δt = ei) =
n∑
k=0

pk(0)pk,i(0, t), ∀i ∈ {0, ..., n}. (8)

When considering a small time interval denoted by ∆t, then the probability of switching from the state
i to j is given by qi,j∆t for i 6= j. Furthermore, in view of equation (1), the probability of observing two
jumps over ∆t is nearly null given that Nt|λt is an inhomogeneous Poisson process.

So as to build the generator Q0 of δt such that the dynamics of λt := δt
>λ approaches the dynamics

of λt over a short period ∆t, we analyze two scenarios:

1. Nt does not jump,

2. Nt jumps.

Each scenario will be associated to a transition of δt from a state i to a state j. In order to construct the
matrix Q0, we consider the discrete version of the dynamics of λt in equation (1):

λt ≈ λt−∆t + α (θ − λt−∆t) ∆t + η (Nt −Nt−∆t) . (9)

First scenario: no jump for the process (Nu)u between t−∆t and t. From relation (9), if the chain is in
state i at time t−∆t, we infer that λt must be equal to

λt = θ + i∆λ −
⌈
α (θ + i∆λ − θ)

∆t

∆λ

⌉
∆λ

= θ + i∆λ − dα i∆te∆λ

which corresponds to the regime i− dα∆tie of δt.

Second scenario: a jump of the process (Nu)u between t − ∆t and t. In a discretized framework,
Nt jumps one unity with a probability λt∆t. When δt−∆t = ei and if we ignore the drift term, the arrival
state of δt corresponds to the following values for λt:

λt = θ + (i+m) ∆λ,

which corresponds to the regime i + m of δt. These points suggest then that a generator compliant with
the discretized dynamics of λt can be de�ned as:

(qi,j)i,j=0:n =



λi if j = i+m
1

∆t
− λi if j = i− dα∆tie

−
∑

j 6=i qi,j j = i
1

∆t
− λi if j = 0 , i− dα∆tie < 0 , j 6= i

λi if j = n , i ∈ [n−m+ 1, n− 1]

0 else .

(10)
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For such a generator, the probability of switching from a state i to j over a small time-interval ∆t (equal to
qi,j∆t ) is either null, either equal to λi∆t or to 1−λi∆t. By construction, the probability of staying in the
same state over ∆t is nearly null. To ensure the positiveness of non-diagonal elements of the generator, we
impose that 1

λn
> ∆t. Each state of δt corresponds to a certain value of λi. The remainder of this section

focuses on properties of this Markov Chain δt de�ned by this generator in order to introduce self-excitation
in stock prices by a new model, presented in the following section. For this purpose, we de�ne new point
processes counting the number of transitions between states. To each pair of distinct states (i, j) in the
state space of the Markov chain δt, we de�ne a point process Ni,j(t) as follows

Ni,j(t) :=
∑

0<s≤t
1{δs−=ei}1{δs=ej} ,

where 1 is the indicator function. Ni,j(t) counts the number of transitions from states i to j up to time t.
We further de�ne the following intensity process

λi,j(t) := qi,j1{δt−=ei} . (11)

Compensating the counting process Ni,j(t) by the integral of λi,j(.), the resulting process

Mi,j(t) := Ni,j(t)−
∫ t

0
λi,j(s)ds ,

is a martingale. The total number of changes of regime over the interval [0, t] from a state i to j with
i < j, is denoted by

Ñt :=

n∑
i=0

n∑
j=0, j 6=i

1{j>i}Ni,j(t).

Ñt counts the number of transitions of (δt)t towards states with a higher intensity than the current one.

The compensator of this point process is
∫ t

0 λ̃sds where

λ̃t =
n∑
i=0

n∑
j=0, j 6=i

1{j>i}λi,j(t) (12)

=
n∑
i=0

1{δt−=ei}

n∑
j>i

qi,j .

:= δt−λ̄

where λ̄ =
(
λ̄i
)
i=0,...,n

and λ̄i =
∑n

j>i qi,j . The jump process Ñt is determined by six parameters

(α, θ, η,∆t, n,m) and is self-exciting by construction : when δt moves from a state i to j > i, the proba-

bility that δt switches again, increases as λj > λi. Given that
(
Ñt

)
t≥0

counts the number of transitions

to states with a higher intensity than the current one, the probability that Ñt jumps again, also rises
instantaneously. To our knowledge, there is no easy way to prove the convergence of this point process Ñt

to the Hawkes process Nt when n→∞ and ∆t → 0. However, we can compare numerically their moment
and probability generating functions based upon the following proposition and corollary:

Proposition 2.3. The moment generator function (mgf) of Ñs for s ≥ t with ω1 ∈ C−, is given by the

following expression

E
(
eω1Ñs | Ft

)
= exp

(
A(ω1, t, s, δt) + ω1Ñt

)
,
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where

Ã(ω1, t, s) =
[
eA(ω1,t,s,e0), ..., eA(ω1,t,s,en)

]>
=
[
Ã(ω1, t, s, e0), ..., Ã(ω1, t, s, en)

]>
is a n-vector of functions, solution of the system of ODE's:

0 =
∂

∂t
Ã(ω1, t, s, ek) +

n∑
j 6=k

qk,j

(
Ã(ω1, t, s, ej)e

1{j>k}ω1 − Ã(ω1, t, s, ek)
)
,

under the terminal boundary condition:

Ã(ω1, s, s, ek) = 1 k = 0, . . . , n.

Proof of Proposition 2.3. If we assume that E
(
eω1Ñs | Ft

)
= f(t, Ñt, δt) for some function depend-

ing only on t, Ñt and δt, then this function f is by Itô's lemma solution of the following equation with
δt = ek:

Af(t, Ñt, ek) = 0,

with A the in�nitesimal generator

Af(t, Ñt, ek) =
∂f

∂t
+

n∑
j 6=k

qk,j

(
f(t, Ñt + 1{j>k}, ej)− f(t, Ñt, ek)

)
. (13)

Let us assume that the function f is an exponential a�ne function of Ñt:

f(t, Ñt, ek) = exp
(
A(ω1, t, s, ek) +B(ω1, t, s)Ñt

)
,

where A(ω1, t, s, ek) for k = 0, . . . , n and B(ω1, t, s) are time dependent functions with terminal conditions
A(ω1, s, s, ek) = 0 and B(ω1, s, s) = ω1. The partial derivatives of f are then given by:

∂f

∂t
=

(
∂

∂t
A(ω1, t, s, ek) +

∂

∂t
B(ω1, t, s)Ñt

)
f,

whereas the sum in equation (13) is equal to

n∑
j 6=k

qk,j

(
f(t, Ñt + 1{j>k}, ej)− f(t, Ñt, ek)

)
=

n∑
j 6=k

qk,j

(
eA(ω1,t,s,ej)+B(ω1,t,s)(Ñt+1{j>k}) − eA(ω1,t,s,ek)+B(ω1,t,s)Ñt

)
= f

n∑
j 6=k

qk,j

(
eA(ω1,t,s,ej)−A(ω1,t,s,ek)+1{j>k}B(ω1,t,s) − 1

)
.

Injecting these expressions into equation (13), leads to the following relation:

0 =

(
∂A

∂t
+
∂

∂t
B Ñt

)
eA(ω1,t,s,ek) +

n∑
j 6=k

qk,j

(
eA(ω1,t,s,ej)+1{j>k}B(ω1,t,s) − eA(ω1,t,s,ek)

)
,
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from which we deduce that B(ω1, t, s) = ω1. Using this fact allows to infer that the functions A are
solutions to the following system of ODE's:

0 =
∂A

∂t
eA(ω1,t,s,ek) +

n∑
j 6=k

qk,j

(
eA(ω1,t,s,ej)+1{j>k}ω1 − eA(ω1,t,s,ek)

)
.

If we de�ne Ã(ω1, t, s) = (eA(ω1,t,s,ek))k=0,...,n = (Ã(ω1, t, s, ek))k=0,...,n, this equation becomes:

0 =
∂

∂t
Ã(ω1, t, s, ek) +

n∑
j 6=k

qk,j

(
Ã(ω1, t, s, ej)e

1{j>k}ω1 − Ã(ω1, t, s, ek)
)
.

�

Corollary 2.4. The probability generating function (pgf) of Ñs for s ≥ t, is given by

E
(
uÑs−Ñt | Ft

)
= exp (A(lnu, t, s, δ(t))) ,

where Ã(lnu, t, s) =
[
eA(lnu,t,s,e0), ..., eA(lnu,t,s,en)

]>
is a vector of functions, solution of the ODE system:

0 =
∂

∂t
Ã(lnu, t, s, ek) +

n∑
j 6=k

qk,j

(
Ã(lnu, t, s, ej) (u)1{j>k} − Ã(lnu, t, s, ek)

)
with the terminal boundary Ã(lnu, s, s, ek) = 1 k = 0...n.

This corollary is an immediate consequence of the last proposition. In appendix A, we illustrate the
convergence of the pgf of the point process Ñt towards the pgf of the Hawkes process Nt in a numerical
example.

3 The Self-exciting Switching Jump Di�usion (SESJD) Model

In this section, we propose a price process St for a �nancial asset with jumps induced by Ñt. This process
is de�ned on Ω and the �ltration generated by the asset prices is denoted by {Ht}t≥0. We recall that
the information about the Markov Chain (δt)t≥0 is contained in the �ltration {Gt}t≥0. The augmented
�ltration that gathers information about both processes is denoted by Ft = Gt ∨ Ht. Assuming that
(Wt)t is a Brownian motion under P, the instantaneous return of the asset price process is modeled by the
following sum of a drift term, a Brownian motion term, and a compensated jumps part:

dSt
St−

= µtdt+ σtdWt +
(
eJ − 1

)
dÑ(t)− λ̃tE

(
eJ − 1

)
dt , (14)

or formulated in an alternative way:

dSt
St−

= µtdt+ σtdWt (15)

+
n∑
i=0

n∑
j=0, j 6=i

1{j>i}
((
eJ − 1

)
dNi,j(t)− λi,j(t)E

(
eJ − 1

)
dt
)
.

The drift rate µt, and the Brownian volatility σt are modulated by the Markov chain δ. That is, µt = δ(t)>µ̄
and σt = δ(t)>σ̄ where µ̄ = (µ̄0, . . . , µ̄n)> ∈ Rn+1 and σ̄ = (σ0, . . . , σn)> ∈ Rn+1

+ . λij(t) and λ̃t are de�ned
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in the previous section by equation (11) and (12). We call this model the self-exciting switching jump
di�usion (SESJD) model. Applying Itô's lemma to lnSt leads to the following representation:

d lnSt =

(
µt −

1

2
σ2
t

)
dt+ σtdWt (16)

+
n∑
i=0

n∑
j=0, j 6=i

1{j>i}
(
JdNi,j(t)− λi,j(t)E

(
eJ − 1

)
dt
)

from which we infer that St is equal to the following exponential process:

St = S0 exp

(∫ t

0

(
µs −

1

2
σ2
s

)
ds+

∫ t

0
σsdWs

)
(17)

× exp

 n∑
i=0

n∑
j=0, j 6=i

1{j>i}

(∫ t

0
JsdNi,j(s)−

∫ t

0
λi,j(s)E

(
eJ − 1

)
ds

) ,

or

St = S0 exp

(∫ t

0

(
µs −

1

2
σ2
s − λ̃sE

(
eJ − 1

))
ds

)
(18)

× exp

(∫ t

0
σsdWs +

∫ t

0
JsdÑs

)
In the remainder of this article, we assume that jumps are i.i.d. copies of a double-exponential distribution.
A double-exponential distributed random variable J may take positive or negative values. Its probability
density function (de�ned on R) is given by

ν (z) = pρ+e−ρ
+z1{z≥0} − (1− p) ρ−e−ρ−z1{z<0}, (19)

while the associated cumulative distribution function equals

P [J ≤ z] = (1− p) e−ρ−z1{z≤0} +
[
(1− p) + p

(
1− e−ρ+z

)]
1{z>0}.

This distribution depends on three parameters: ρ+ ∈ R+, ρ− ∈ R−, and p ∈ (0, 1), where p (resp.
(1 − p)) denotes the probability of observing an upward (resp. downward) exponential jump, and 1

ρ+

(resp. 1
ρ− ) gives the size of an average positive (resp. negative) jump. When only unidirectional jumps

are considered, all developments remain valid with p = 1 or p = 0, for positive and negative exponential
jumps. The expected value of the size of the jumps (J) is the weighted sum of these average sizes;
E(J) = p 1

ρ+
+ (1− p) 1

ρ− . The moment generating function of J is given by

ψ(ω) = E
(
eωJ
)

= p
ρ+

ρ+ − ω
+ (1− p) ρ−

ρ− − ω
. (20)

By construction
(
Ñt

)
t≥0

behaves like a self-exciting process: when δt moves from a regime i to j > i, St

jumps by J and the instantaneous probability of observing a new jump (proportional to λ̃t) increases.

To simulate sample paths of St, we use an Euler discretization of the equation (14) with daily steps
of time (255 trading days per year). If on day t we have that δt = ei, we simulate the next state of
the Markov chain by drawing a random uniform number on [0, 1] and inverting the discrete cumulative
distribution function built with (pi,j(1day))j=0,...n. Next we generate a random number from a normal

distribution with mean δ>(t + 1)µ̄ 1
255 and variance

(
δ>(t+ 1)σ̄

)2 1
255 . If the chain does not switch to a
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higher regime, this Gaussian number is the geometric daily return. If the chain moves to a higher state,
we add a random double-exponential jump to the Gaussian return.

A consequence of this self-excitation is that jumps arrive grouped as observed in stock markets dur-
ing periods of �nancial turmoil. This feature, called �jump clustering�, is visible in Figure 1 which presents
a simulated sample path for λ̃t, δt, St and

dSt
St

over a period of 5 years. The right upper graph presents the
di�erent states through which the Markov chain passes. A comparison with the left upper graph clearly
shows the relation between λ̃t and the regime through which the chain δt transits. We also observe in the
lower graphs that jumps in the price sample paths occur at transition times of δt and arrive grouped.

Figure 1: Simulated sample path for λ̃t, δt, St and
dSt
St

. The parameters de�ning the Markov chain δt are:

α = 8, θ = 10, η = 5, ∆t = 1
200 , λ0 = θ, and m = 20. The drift and the Brownian standard deviation do

not depend upon the state of δt: µ = 0.05, σ = 0.10. The double -exponential distribution of J has the
following parameters: p = 0.5, ρ+ = 0.07−1 and ρ− = −0.07−1.

We conclude this section by studying the moment generating function of the log-return of St. Hereto
we introduce some new notations. First, the drift of d lnSt is denoted by µ̃t:

µ̃t := µt −
1

2
σ2
t − λ̃tE

(
eJ − 1

)
(21)

such that the log-return Xt := ln St
S0

is given by:

Xt := ln
St
S0

=

∫ t

0
µ̃sds+

∫ t

0
σsdWs +

n∑
i=0

n∑
j=0, j 6=i

∫ t

0
1{j>i}JdNi,j(s) . (22)
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By construction, µ̃t takes its value in a Rn+1 vector (µ̃0, ..., µ̃n). According to Itô's lemma for semi-
martingales, any function f(t,Xt, δt) : R+ × R × E0 → R that is C1 with respect to time and C2 with
respect to Xt admits the following relation for Xt = x and δt = ek:

df(t, x, ek) =

(
∂f

∂t
+
∂f

∂x
µ̃t +

1

2

∂2f

∂x2
σ2
t

)
dt+

∂f

∂x
σtdWt

+
n∑
j 6=k

(
f(t, x+ 1{j>k}J, ej)− f(t, x, ek)

)
dNkj

t .

and its in�nitesimal generator Af(t, x, ek) is equal to:

Af(t, x, ek) =

(
∂f

∂t
+
∂f

∂x
µ̃t +

1

2

∂2f

∂x2
σ2
t

)
+

n∑
j 6=k

λk,j(t)

∫ (
f(t, x+ 1{j>k}z, ej)− f(t, x, ek)

)
ν(z)dz .

We use these results to infer the moment generating function of Xs which is used in section 6 for European
option pricing:

Proposition 3.1. The mgf of Xs for s ≥ t with ω ∈ C−, is given by the following expression

E
(
eωXs | Ft

)
=

(
St
S0

)ω
exp (A(ω, t, s, δt)) , (23)

Where Ã(ω, t, s) =
[
eA(ω,t,s,e0), ..., eA(ω,t,s,en)

]>
is a vector of functions, solution of the ODE system:

0 =
∂

∂t
Ã(ω, t, s, ek) +

(
ω µ̃k + ω2 σ

2
k

2

)
Ã(ω, t, s, ek) +

+

n∑
j 6=k

qk,j

(
Ã(ω, t, s, ej)ψ(1{j>k}ω)− Ã(ω, t, s, ek)

)
under the terminal boundary condition:

Ã(ω, s, s, ek) = 1 k = 0, . . . , n.

Proof of Proposition 3.1. Let us denote f(t,Xt, δt) = E
(
eωXs | Ft

)
. If δt = ek, this function is

solution of the following equation, implied by the usual argument based on Itô's lemma:

0 = ft + fX µ̃k + fXX
σ2
k

2
+ (24)

n∑
j 6=k

qk,j(t)

∫ (
f(t, x+ z1{j>k}, ej)− f(t, x, ek)

)
ν(z)dz

Let us further assume that f is an exponential a�ne function of Xt:

f(t,Xt, ek) = exp (A(ω, t, s, ek) +B(ω, t, s)Xt) ,

where A(ω, t, s, ek) (for k = 0, . . . , n) and B(ω, t, s) are time dependent functions with terminal conditions
A(ω, s, s, ek) = 0 and B(ω, s, s) = ω. The partial derivatives of f with respect to the state variables are
given by:

ft =

(
∂

∂t
A(ω, t, s, ek) +

∂

∂t
B(ω, t, s)Xt

)
f,

11



fX = B(ω, t, s)f fXX = B(ω, t, s)2f .

The last term in equation (24) can be developed as follows

n∑
j 6=k

qk,j

∫ (
f(t, x+ 1{j>k}z, ej)− f(t, x, ek)

)
ν(z)dz

= eB(ω,t,s)Xt

n∑
j 6=k

qk,j

∫ (
eA(ω,t,s,ej)+1{j>k}B(ω,t,s)z − eA(ω,t,s,ek)

)
ν(z)dz

= eB(ω,t,s)Xt

n∑
j 6=k

qk,j

(
eA(ω,t,s,ej)ψ(1{j>k}B(ω, t, s))− eA(ω,t,s,ek)

)
.

Injecting these expressions into equation (24), leads to the following relation:

0 =

(
∂

∂t
A+

∂

∂t
B Xt

)
eA(ω,t,s,ek) +B µ̃ke

A(ω,t,s,ek) +

+B2 σ
2
k

2
eA(ω,t,s,ek) +

n∑
j 6=k

qk,j

(
eA(ω,t,s,ej)ψ(1{j>k}B(t, s))− eA(ω,t,s,ek)

)
,

from which we infer that B(ω, t, s) = ω. Regrouping terms allows to conclude that A(ω, t, s, ek) for
k = 0, . . . , n are solutions of a system of ODE's:

0 =
∂

∂t
AeA(ω,t,s,ek) + ω µ̃ke

A(ω,t,s,ek) +

+ω2 σ
2
k

2
eA(ω,t,s,ek) +

n∑
j 6=k

qk,j

(
eA(ω,t,s,ej)ψ(1{j>k}ω)− eA(ω,t,s,ek)

)
.

If we de�ne Ã(t, s) = (eA(ω,t,s,ei))i=0,...,n, this last equation is rewritten as follows:

0 =
∂

∂t
Ã(ω, t, s, ek) +

(
ω µ̃k + ω2 σ

2
k

2

)
Ã(ω, t, s, ek) +

+

n∑
j 6=k

qk,j

(
Ã(ω, t, s, ej)ψ(1{j>k}ω)− Ã(ω, t, s, ek)

)
.

�
The moment generating function of Xt may be inverted numerically by a discrete Fourier's transform

(DFT) to obtain the pdf and to eventually �t the model to a time series of stock returns. However, in the
next section we will present a more e�cient alternative way to �t the model to a time series of �nancial
data.

4 SESJD Parameters estimation with a modi�ed Hamilton's �lter

As far as we know, there exists no simple way to �t a self-exciting jump di�usion process to a time series.
One could use a generalized moment matching method as in Aït-Sahalia (2015) but this approach is based
on some approximations of the moments. Further, one could implement a Markov Chain Monte Carlo
(MCMC) procedure but this method is time-consuming and the convergence depends upon the choice of
the prior distribution of parameters. Contrary to self-exciting jump di�usion processes, the SESJD model
does not present this drawback and can be �tted to a time series with an enhanced version of the Hamilton
�lter (see Hamilton, 1989). This procedure requires the following result:
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Proposition 4.1. The probability density function of the sum J + σtW∆ where ∆ is a time interval and

when δt = ei is equal to:

g(z | δt = ei) = pρ+ exp

(
1

2

(
ρ+
)2
σ2
i ∆− ρ+z

)
Φ

(
z − ρ+σ2

i ∆√
∆σi

)
(25)

− (1− p) ρ− exp

(
1

2

(
ρ−
)2
σ2
i ∆− ρ−z

)(
1− Φ

(
z − ρ−σ2

i ∆

∆σi

))
for z ∈ R and where Φ(.) is the cdf of a standard normal random variable N(0, 1).

Proof of Proposition 4.1. g(z | δt = ei) is the convolution of densities of J and σiW∆ (denoted by
f̃),

g(z | δt = ei) =

∫ +∞

−∞
ν(u)f̃(z − u)du

= pρ+

∫ +∞

0
e−ρ

+u 1√
2π∆σi

exp

(
−1

2

(z − u)2

σ2
i ∆

)
du

− (1− p) ρ−
∫ 0

−∞
e−ρ

−u 1√
2π∆σi

exp

(
−1

2

(z − u)2

σ2
i ∆

)
du ,

which can be rewritten as

g(z | δt = ei) =
pρ+

√
2π∆σi

∫ +∞

0
exp

(
−1

2

(z − u)2 + 2ρ+σ2
i ∆u

σ2
i ∆

)
du (26)

−(1− p) ρ−√
2π∆σi

∫ 0

−∞
exp

(
−1

2

(z − u)2 + 2ρ−σ2
i ∆u

σ2
i ∆

)
du .

Since clearly

(z − u)2 + 2ρ+σ2
i ∆u =

(
(z − u)− ρ+σ2

i ∆
)2 − (ρ+σ2

i ∆
)2

+ 2ρ+σ2
i ∆z,

the �rst integral in equation (26) can be rewritten as

1√
2π∆σi

∫ +∞

0
exp

(
−1

2

(z − u)2 + 2ρ+σ2
i ∆u

σ2
i ∆

)
du

=
exp

(
1
2 (ρ+)

2
σ2
i ∆− ρ+z

)
√

2π∆σi

∫ ∞
0

exp

(
−1

2

(
(z − u)− ρ+σ2

i ∆
)2

σ2
i ∆

)
du . (27)

Using the substitution v =
(
(z − u)− ρ+σ2

i ∆
)
implies that u =

(
(z − v)− ρ+σ2

i ∆
)
and du = −dv.

Moreover, if u = 0 then v = z − ρ+σ2
i ∆ and when u = +∞, v = −∞. As a consequence, the integral in

equation (27) becomes:

1√
2π∆σi

∫ ∞
0

exp

(
−1

2

(
(z − u)− ρ+σ2

i ∆
)2

σ2
i ∆

)
du

=
−1√

2π∆σi

∫ −∞
z−ρ+σ2

i∆t

exp

(
−1

2

v2

∆σ2
i

)
dv

=
1√

2π∆σi

∫ z−ρ+σ2
i∆t

−∞
exp

(
−1

2

v2

∆σ2
i

)
dv

= Φ

(
z − ρ+σ2

i ∆√
∆σi

)
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where Φ(.) is the cdf of a N(0, 1) random variable.
On the other hand, the second integral in equation (26) is equal to

1√
2π∆σi

∫ 0

−∞
exp

(
−1

2

(z − u)2 + 2ρ−σ2
i ∆u

∆σ2
i

)
du (28)

=
exp

(
1
2 (ρ−)

2
σ2
i ∆− ρ−z

)
√

2π∆σi

∫ 0

−∞
exp

(
−1

2

(
(z − u)− ρ−σ2

i ∆
)2

∆σ2
i

)
du

Analogously, using the substitution v =
(
(z − u)− ρ−σ2

i ∆
)
implies that u =

(
(z − v)− ρ−σ2

i ∆
)
and

du = −dv. Moreover, if u = 0 then v = z − ρ−σ2
i ∆ and when u = −∞, v = +∞. Therefore, the integral

in equation (28) turns out to equal

1√
2π∆σi

∫ 0

−∞
exp

(
−1

2

(
(z − u)− ρ−σ2

i ∆
)2

∆σ2
i

)
du

=
−1√

2π∆σi

∫ z−ρ−σ2
i∆

+∞
exp

(
−1

2

v2

∆σ2
i

)
dv

=
1√

2π∆σi

∫ +∞

z−ρ−σ2
i∆

exp

(
−1

2

v2

∆σ2
i

)
dv

=

(
1− Φ

(
z − ρ−σ2

i ∆

∆σi

))
.

Combining these expressions (26)-(28) leads to the results. �

In the rest of this section, we denote by x1, x2, ..., xT , the time series of log-returns of a �nancial
asset, measured at times t1, . . . , tT equally spaced by ∆ (which is not necessary equal to ∆t involved in
the de�nition of Q0 for δt):

xi = ln

(
Sti−1+∆

Sti−1

)
i = 1, ..., T .

We assume that the Markov chain δt only changes of regime at times ti for i = 1, . . . , T . Hence, if the
economy stays in the jth state over the period of time [ti−1, ti], the log-return is normally distributed
Xi ∼ N(µ̃j∆, σj

√
∆). If the system switches from regime i to j, the density of the log-return is equal to

g(z | δt = ei) given by equation (25). We denote by

Θ =
(
µ̄, σ̄, α, θ, η, p, ρ+, ρ−

)
the set of parameters of the SESJD model. ∆t, m and n are not considered as parameters and are chosen
a priori. Using the Bayes' rule, we reformulate the log-likelihood of observed returns as follows:

log f(x1, ..., xT |Θ) = log f(x1|Θ) + log f(x2|Θ, x1) + log f(x3|Θ, x1, x2)

+ . . .+ log f(xT |Θ, x1, . . . , xT−1)

where f(xk|Θ, x1, . . . xk−1) is the density function of the return on the kth period, for parameters Θ and
conditionally to previous observations x1, . . . xk−1. The parameters are estimated by maximizing this log-
likelihood function.
Therefore, we concentrate upon the terms in the right-hand side of this log-likelihood. Conditioning upon
the state of δk allows us to infer that f(xk|Θ, x1, . . . xk−1) is equal to:

f(xk|Θ, x1, . . . xk−1) =
n∑
i=0

n∑
j=0

pi(tk−1|Θ, x1, . . . xk−1) pi,j(tk−1, tk|Θ)

×f(xk|Θ, δtk = ej , δtk−1
= ei)
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where

• f(xk|Θ, δtk = ej , δtk−1
= ei) is

� either the Gaussian density of the return in state i, N(µ̃i∆, σi
√

∆) if j ≤ i,
� or either g(z − µ̃i∆ | δt = ei) if i < j, with g(z | δt = ei) the probability density function of the
sum J + σtW∆ as given by equation (25).

• pi,j(tk−1, tk|Θ) is the probability of transition, as de�ned by eq. (7), from state i at time tk−1 to
state j at time tk for the set of parameters Θ,

• pi(tk−1|Θ, x1, . . . xk−1) is the probability of presence in state i at time tk−1, conditionally to all
observations up to tk−1.

Using again the Bayes' rule, the probability pi(tk−1|Θ, x1, . . . xk−1) may be inferred recursively from
f(xk−1|Θ, x1, . . . xk−2) as follows:

pi(tk−1|Θ, x1, . . . xk−1) (29)

=

∑n
j=0 pj(tk−2|Θ, x1, . . . xk−2) pj,i(tk−2, tk−1|Θ) f(xk−1|Θ, δtk−1

= ei , δtk−2
= ej)

f(xk−1|Θ, x1, . . . xk−2)

In order to initiate the recursion, we need to determine f(x1|Θ). If the Markov chain has been running
for a su�ciently long enough period of time, we assume that the probability of presence in a given state
is equal to its stationary probability, denoted pi(Θ) for i = 1, ..., n . Then, we infer that

f(x1|Θ) =

n∑
i=0

n∑
j=0

pi(Θ) pi,j(t0, t1|Θ) f (x1|Θ, δt1 = ej , δt0 = ei) .

Therefore, the log-likelihood is evaluated by recursion and maximized numerically to estimate parameters.
After this calibration, we �lter the states through which the Markov chain transits by using the relation:

E

δ>tk
 0

...
n

 |Htk
 =

n∑
i=0

pi(tk|Θ, x1, . . . xk) i.

To illustrate this modi�ed Hamilton �lter, we �t the SESJD model to a time series of the S&P 500
stock index, containing daily returns in the period between 19/6/2007 and 22/5/2017 (2500 observations).
In order to limit the number of parameters to estimate, the drifts (µ̄0, ..., µ̄n) and standard deviations
(σ̄0, ..., σ̄n) are assumed to be constant and respectively equal to µ and σ. The parameter of discretization
m ranges from 3 to 16. n is assumed to be equal to 7m whereas ∆t = 1

200 and ∆ is chosen to be equal
to one trading day (∆ = 1

252). Table 1 reports the log-likelihood of several tested models. As we could
expect, the goodness of �t is better for the SESJD model than for a pure di�usion process. Moreover,
increasing m and therefore the number of states of δt, improves the log-likelihood. Table 2 presents the
parameter estimates for m = 5 and n + 1 = 36. On average, we observe at least 2.83 jumps per year (θ
is the lowest value allowed for the intensity). A jump is negative with a probability of 60%. Whereas the
mean sizes of positive and negative jumps are respectively equal to 2.11% and to -2.13%. The parameter
estimate of η turns out to be 17.01. As the speed of mean reversion α is higher than η, the chain easily
returns to states in which the intensity is close to θ. The standard deviation of the di�usion is around 11%.

We also compare our model to a jump-di�usion process with Hawkes jumps. In the latter model, the
stock price is ruled by the SDE (14) but the intensity of jumps is driven by equation (1). We �lter the
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intensity of Hawkes jump with an enhanced version of the �peaks over threshold� (POT) of Embrechts et
al. (2011) and detailed in Hainaut (2016 a) and Hainaut and Moraux (2018). This procedure, reminded
in appendix B, is less accurate that MCMC approaches but is much easier to implement. Parameters of
the Hawkes jump di�usion model are reported in the fourth column of Table 2 and are clearly consistent
with SESJD estimates. However, jumps in the SESJD are smaller on average because the POT method
ignores the di�usion part on days for which a jump is detected and then overestimate jumps. The last
column of Table 2 reports results of Boswijk et al. (2015) who �t a jump-di�usion with self-excitation to
the S&P 500. Their model di�ers from our approach on the following points. Firstly, we assume that
jumps are distributed according to a double-exponential law instead of being normal random variables.
Secondly, we do not consider stochastic volatility. However, a comparison of parameter estimates with
these reported in Boswijk et al. (2015) allows us to understand the origin of the volatility in each model.
The speeds of mean reversion α are comparable (20.83 in our model versus 18.16) but the mean reversion
level is much higher in our model. In Boswijk et al. (2015), self-exciting jumps correspond to rare and
violent economic shocks whereas other variations are explained by the stochastic volatility. As we do not
include this feature in the dynamics of stock prices, jumps are more frequent in our setting and explain a
larger variety of events.

Model Loglikelihoods

Brownian Motion 7279

m = 3 7813

m = 5 7820

m = 9 7823

m = 16 7825

Table 1: The �rst line presents the log-likelihood for a di�usion with a drift �tted to S&P 500. The other
lines present the log-likelihood for the SESJD model, with di�erent levels of discretization.

Parameters Estimates Standard POT Boswijk et al.
Deviations

α 20.83 0.9410 18.85 18.16

θ 2.83 0.2723 5.42 0.32

η 17.01 0.8908 15.30 16.62

p 0.40 0.0259 0.37
ρ+ 47.41 2.6270 30.31
ρ− -46.87 1.6908 -33.59
µ 0.1620 0.0237 0.2110
σ 0.1084 0.0027 0.1197

Table 2: First and second columns: Parameter estimates of the SESJD and standard errors for m = 5,
n + 1 = 36 and ∆t = 1

200 . Third column: parameter estimates of the Hawkes jump di�usion model with
the POT method. Last column: parameter estimates in Boswijk et al. (2015).

The �rst plot of �gure 2 presents the �ltered states of the SESJD Markov chain to daily S&P 500
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log-returns. δt climbs in the scale of states during the periods of high volatility: from September 2008 to
the end 2009 (the US credit crunch period), from September 2011 to February 2012 (the second period of
the double-dip recession) or the �rst months of 2016 (the fear of de�ation). The second plot of �gure 2
compares �ltered intensities λ̃t of the SESJD process and λt of the Hawkes di�usion process. λ̃t exhibits
the same behaviour as λt, excepted that λ̃t is upper bounded because the number of regimes is limited
to 36 in our illustration. We will use the set of parameters reported in Table 2 for further numerical
illustrations in the next sections.
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Figure 2: The upper graph shows the �ltered sample path of the Markov chain δt. The second graph
compares �ltered intensities λ̃t of the SESJD process and λt of the Hawkes di�usion process. The last plot
presents daily log-returns of the S&P 500 from 2007 to 2017.

5 Changes of measure and risk neutral world

In this section, we �rst present a family of change of measures for point processes Zi,j(t) :=
∑Ni,j(t)

k=1 Jk.
Let νb(.) be a density of probability de�ned on the same domain as ν(.), the pdf of the jumps J under P.
We de�ne the following log-ratio:

φ (h, u) := ln

(
h
νb(u)

ν(u)

)
(30)

where h ∈ R+ and u is in the support of ν(.). For any hi,j ∈ R+ such that hi,j > −1 for i, j = 0, ..., n, the
following compensated jump process

17



Mi,j(t) =

Ni,j(t)∑
k=1

(
eφ(hi,j ,Jk) − 1

)
−
∫ t

0
λi,j(s)E

(
eφ(hi,j ,Jk) − 1 | F0

)
ds

=

Ni,j(t)∑
k=1

(
eφ(hi,j ,Jk) − 1

)
−
∫ t

0
λi,j(s) (hi,j − 1) ds , (31)

is a martingale by construction. The second equality in equation (31) follows from the relation:

E
(
eφ(hi,j ,Jk) − 1 | F0

)
= hi,j

∫ ∞
−∞

(
νb(u)

ν(u)

)
ν(u)du− 1.

We will later see that hi,j is involved in the de�nition of a risk neutral measure. Notice that one could
consider the generalization that hi,j is an Ft−adapted process but, in this case, the process δt would no
longer be a Markov chain under the equivalent measures.

In the next proposition, we will de�ne an interesting family of equivalent measures and the law of
the point process Zi,j(t) under the new measure. This result follows from Girsanov theorem for semi-
martingales, but we include the proof for comprehension in this speci�c case.

Proposition 5.1. Let Zi,j(t) be point processes de�ned by

Zi,j(t) :=

Ni,j(t)∑
k=1

Jk ,

for i, j = 0, ..., n. If hi,j > −1, the processes Li,j(t) de�ned as follows

Li,j(t) = exp

(∫ t

0
φ (hi,j , Js) dNi,j(s)−

∫ t

0
λi,j(s) (hi,j − 1) ds

)
, (32)

for i, j = 0, ..., n, are Radon-Nikodym derivatives dPb
dP from the real measure P to a new probability measure

Pb. Under Pb, Zi,j(t) is still a point process but its dynamics are modi�ed as follows

Zi,j(t) =

Nh
i,j(t)∑
k=1

Jbk , (33)

where Nh
i,j(t) is a counting process of intensity λi,j(t)hi,j and J

b
k are i.i.d. jumps with pdf νb(u) . According

to the de�nition (11) of λi,j(t), the matrix of transition probabilities of (δt)t≥0 under Q is equal to QQ
0 =

(qi,jhi,j)i,j=1:n.

Proof of Proposition 5.1. From equation (31), Mi,j(t) is a martingale satisfying the SDE:

dMi,j(t) =
(
eφ(hi,j ,J) − 1

)
dNi,j(t)− λi,j(t) (hi,j − 1) dt .

We can construct a martingale Li,j(t) with geometric dynamics given by:

dLi,j(t) = Li,j(t) dMi,j(t)

= Li,j(t)
(
eφ(hi,j ,J) − 1

)
dNi,j(t)− Li,j(t)λi,j(t) (hi,j − 1) dt

18



If we apply Itô's lemma to the function ln Li,j(t), the di�erential of ln Li,j(t) clearly equals

d ln Li,j(t) = φ (hi,j , J) dNi,j(t)− λi,j(t) (hi,j − 1) dt ,

from which equation (32) follows.
The expectation of Zi,j(t) under the measure Pb de�ned by the Radon-Nikodym derivative Li,j(t), is given
by

EP
b
(
euZi,j(t)|F0

)
= E

(
e
∫ t
0 (uJs+φ(hi,j ,J))dNi,j(s)−

∫ t
0 λi,j(s)(hi,j−1)ds|F0

)
. (34)

If the �ltrations of Ni,j(t) and λi,j(t) are momentously denoted by Gi,jt ⊂ Ft and H
i,j
t ⊂ Ft, using nested

expectations allows to rewrite the expectation (34) as follows:

E
(
e
∫ t
0 (uJs+φ(hi,j ,J))dNi,j(s)−

∫ t
0 λi,j(s)(hi,j−1)ds|F0

)
(35)

= E
(
e−
∫ t
0 λi,j(s)(hi,j−1)dsE

(
e
∫ t
0 (uJs+φ(hi,j ,J))dNi,j(s)|Gi,jt ∨H

i,j
t ∨F0

)
|F0

)
= E

e− ∫ t0 λi,j(s)(hi,j−1)dsE

Ni,j(t)∏
k=1

E
(
euJ+φ(hi,j ,J)|Gi,jt ∨H

i,j
t ∨F0

)
|Hi,jt ∨F0

 |F0

 .

By de�nition of φ(.), we have that E
(
euJ+φ(hi,j ,J)|Gi,jt ∨H

i,j
t ∨F0

)
=
∫
hi,je

uzνb(z)dz = hi,jE
(
euJ

b
)
.

Furthermore, conditionally to Hi,jt ∨F0, Ni,j(t) is a inhomogeneous Poisson process with the following
moment generating function:

E

Ni,j(t)∏
k=1

hi,jE
(
euJ

b
)
|Hi,jt ∨F0

 = E
(
e
Ni,j(t) ln

[
hi,j E

(
euJ

b
)]
|Hi,jt ∨F0

)

= exp

(∫ t

0
λi,j(s)

(
hi,jE

(
euJ

b
)
− 1
)
ds

)
.

We infer from this last equation that the expectation (35) is equal to

E
(
e
∫ t
0 uJs+φ(hi,j ,J)dNi,j(s)−

∫ t
0 λi,j(s)(hi,j−1)ds|F0

)
= E

(
e
−
∫ t
0 λi,j(s)(hi,j−1)ds+

∫ t
0 λi,j(s)

(
hi,jE

(
euJ

b
)
−1
)
ds|F0

)
= E

(
exp

(∫ t

0
hi,jλi,j(s)

(
E
(
euJ

b
)
− 1
)
ds

)
|F0

)
which turns out to be the moment generating function of Zi,j(t) under the equivalent measure Pb. �

To avoid arbitrage opportunities, �nancial derivatives are priced under an equivalent risk neutral
measure under which discounted (non-dividend paying) asset prices are martingales. In the remainder of
this section, we consider a �nancial market composed of two assets: a risk free cash account and a stock.
The interest rate depends on δt and is de�ned as rt = δtr̄

> where r̄ = (r0, ..., rn)> ∈ Rn+1. The stock
price St is de�ned by equation (17). By construction, the risk neutral measure is not unique. We consider
Radon-Nikodym derivatives of the following form

Lt =

n∏
i,j=0

exp

(∫ t

0
φ (hi,j , Js) dNi,j(s)−

∫ t

0
λi,j(s) (E (hi,j | F0)− 1) ds

)

× exp

(
−1

2

∫ t

0
β2
sds+

∫ t

0
βsdWs

)
. (36)
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where (βt)t≥0 is a Ft measurable process. The last factor in the de�nition of this Radon-Nikodym derivative
implies that

dW β
t = dWt + βtdt

is a Brownian motion under the new equivalent measure. The next proposition establishes the dynamics
of St under such a new martingale measure, which will be denoted by Q.

Proposition 5.2. The dynamics of the asset price under the equivalent measure Q de�ned by the Radon-

Nikodym derivative (36) equals

dSt
St

= (µt − σtβt) dt+

n∑
i=0

n∑
j=0, j 6=i

1{j>i}λi,j(t)
(
hi,jE

(
eJ

b − 1
)
dt− E

(
eJ − 1

)
dt
)

+σtdW
β
t +

n∑
i=0

n∑
j=0, j 6=i

1{j>i}

((
eJb − 1

)
dNh

i,j(t)− hi,jλi,j(t)E
(
eJ

b − 1
)
dt
)
.

Proof of Proposition 5.2. Notice that equation (16) de�ning d lnSt can be rewritten as follows

dYt = d lnSt =

(
µt −

1

2
σ2
t − σtβt

)
dt+ σt(dWt + βtdt)

+

n∑
i=0

n∑
j=0, j 6=i

1{j>i}λi,j(t)
(
hi,jE

(
eJ

b − 1
)
dt− E

(
eJ − 1

)
dt
)

+
n∑
i=0

n∑
j=0, j 6=i

1{j>i}

(
dZi,j(t)− hi,jλi,j(t)E

(
eJ

b − 1
)
dt
)
.

Applying Itô's lemma to the function f(Yt) = eYt , leads to the dynamics under Q given by

dSt
St

= (µt − σtβt) dt+

n∑
i=0

n∑
j=0, j 6=i

1{j>i}λi,j(t)
(
hi,jE

(
eJ

b − 1
)
dt− E

(
eJ − 1

)
dt
)

+σtdW
β
t +

n∑
i=0

n∑
j=0, j 6=i

1{j>i}

((
eJb − 1

)
dNh

i,j(t)− hi,jλi,j(t)E
(
eJ

b − 1
)
dt
)
.

�

Given that under the risk neutral measure, all assets earn on average the risk free rate, one easily
obtains the condition that ensures that Lt de�nes a pricing measure:

Corollary 5.3. An equivalent measure de�ned by the Radon-Nykodym derivative (36) is a risk neutral

measure if and only if (βt)t≥0 , hi,j > −1 for i, j = 0, ..., n and νb(.) satisfy the following constraint:

δtr̄
> = (µt − σtβt) +

n∑
i=0

n∑
j=0, j 6=i

1{j>i}λi,j(t)
(
hi,jE

(
eJ

b − 1
)
− E

(
eJ − 1

))
.

6 European option pricing

Let us consider European call and put options of maturity T , written upon an underlying price process
(St)t as given by (17). In the following, we express their payo� and strike as functions of the log-return

ln(STS0
) and of the log-strike k = ln

(
K
S0

)
. We assume that the Markov chain process (δt)t≥0 is observable.
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For the sake of simplicity, the risk free rate is assumed constant. The available information is then carried
by the �ltration (Ft)t≥0. The prices at time t of call and put options, denoted by C(t, k, δt) and P (t, k, δt),
are functions of the log-strike k. It is well-known that prices are equal to their expected discounted payo�s
under the risk neutral measure (using EQ as notation), and therefore if the risk neutral density at time
t ≤ T of the log-return ln ST

S0
|Ft is denoted by ft,T (x, δt):

C(t, k, δt) = EQ
(
e−r(T−t)

(
S0e

XT −K
)

+
| Ft
)

= S0

∫ +∞

k
e−r(T−t)

(
ex − ek

)
ft,T (x, δt) dx ,

P (t, k, δt) = EQ
(
e−r(T−t)

(
K − S0e

XT
)

+
| Ft
)

= S0

∫ k

−∞
e−r(T−t)

(
ek − ex

)
ft,T (x, δt) dx

where r ∈ R+ is assumed to be the constant risk free rate. As C(.) (resp. P (.)) tends to St (resp. -St)
when k → −∞ (resp. k → +∞), C(.) and P (.) are not square integrable with respect to k and their
Fourier transforms are not de�ned. For this reason, we consider the modi�ed call and put prices denoted
by c(k) = eεkC(t, k, δt), p(k) = eεkP (t, k, δt), for which the Fourier transform exists for some damping
factor ε (ε > 1 for the call and ε < −1 for the put). The Fourier transforms of c(k) and p(k) are de�ned
as follows:

FC(ω) =

∫ ∞
−∞

eiωk c(k) dk ,

FP(ω) =

∫ ∞
−∞

eiωk p(k) dk .

Recalling that Υt,s(ω) = EQ
(
eωXs | Ft

)
follows from Proposition 3.1 with parameters under Q, a direct

calculation leads to the same expressions for FC(ω) and FP(ω):

FC(ω) = FP(ω) =
S0e
−r(T−t)

(iω + ε)2 + (iω + ε)
Υt,T (iω + ε+ 1) ,

except that ε is positive (resp. negative) for the call (resp. put). The values of call options are then
obtained by inverting the Fourier transform:

C(t, k, δt) =
S0e
−εk−r(T−t)

π

∫ ∞
0

e−iωk
Υt,T (iω + ε+ 1)

(iω + ε)2 + (iω + ε)
dω . (37)

As the same expressions hold for puts, except that ε < 0, we exclusively focus on call options in the
remainder of this section. The naive approach consists in calculating numerically the integral in equation
(37). Setting ωm = ∆ω(m−1) and lettingM be the number of steps used in the Discrete Fourier Transform
(DFT) as in Carr and Madan (1999), an approximation of the call price is then given by:

C(t, k, ej) ≈
S0e
−εk−r(T−t)

π

M∑
m=1

e−i ωm k%m

[
Υt,T (iωm + ε+ 1)

(iωm + ε)2 + (iωm + ε)

]
∆ω , (38)

where %m = 1
21{m=1}+ 1{m 6=1}. An judicious choice for the discretization steps in equation (38), allows us

to use a Fast Fourier Transform algorithm to speed up calculations. This point is detailed in the following
proposition.
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Proposition 6.1. Let M be the number of steps used in the Discrete Fourier Transform (DFT) and

∆k = 2kmax
M−1 , be the step of discretization. Let us denote %m = 1

21{m=1} + 1{m6=1} , ∆ω = 2π
M ∆k

and

ωm = (m− 1) ∆ω. The values of C(t, k, δt) at points kj = −M
2 ∆k + (j − 1)∆k are approximated by

C(kj) ≈
2S0e

−εk−r(T−t)

M ∆k
× (39)

Re

(
M∑
m=1

δm

(
Υt,T (iωm + ε+ 1)

(iωm + ε)2 + (iωm + ε)
(−1)m−1

)
e−i

2π
M

(m−1)(j−1)

)
.

This last relation can be computed with a fast Fourier transform algorithm.
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Figure 3: Implied volatility of European call options, for di�erent strikes and sets of parameters. The risk
free rate is constant and equal to 2%.

To conclude this section, we study the sensitivity of the implied volatility surface to modi�cations
of the jump dynamics. We use the parameters reported in Table 2 to evaluate European options. The
initial stock price is S0 = 100 and the strike K ranges from 90 to 120. The upper left graph of Figure
3 presents the smiles of implied volatility for 1, 2 and 6 months options when δ0 = e5. These smiles are
asymmetric and the curvature is inversely proportional to the maturity. The upper right graph emphasizes
the importance of the initial state on the smile. In a high regime, the probability that a shock occurs
increases. As jumps are on average negative, �In the Money� call options become cheaper and the smile of
volatility �attens. The mid left graph shows that reducing α has a similar impact: as the Markov chain
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reverts slower than in the initial case, the risk of observing several negative jumps increases, causing a
fall in call prices. On the other hand, reducing θ or η raises prices and implied volatility as jumps (on
average negative) are less frequent. The lower right graph of Figure 3 underlines the important role of the
parameter p on the volatility surface. When p increases, jumps are mostly positive and the probability
that the option will be exercised at expiry moves up, leading to higher prices and higher implied volatility.

7 Perpetual Binary options

To the best of our knowledge, there are no explicit results about hitting times of a threshold for a self-
exciting jump di�usion. Therefore, pricing path dependent options in presence of jumps clustering leads
to the need to run Monte Carlo simulations. Interest rates being low in Europe and US since the end
of the credit crunch of 2008, the pricing of perpetual path dependent options requires then to consider a
relatively long time horizon for simulations, which is computationally time consuming. Working with the
SESJD model o�ers in this case an interesting alternative. Jumps being triggered by changes of regime
of a hidden Markov chain, we can �nd the Laplace transform of the SESJD model hitting times with the
�uid embedding technique of Rogers (1994) and adapted by Jiang and Pistorius (2008) for phase-type
jump di�usions. In this section, we illustrate how this method can be applied to the pricing of perpetual
binary options.

Recall that Xt is the log-return of St as de�ned in equation (22) and assume that the Markov chain
(δt)t≥0 is observable. Perpetual high or low binary options have an in�nite time horizon and respectively
deliver a payo� equal to δ>τ h̄ where h̄ = (h̄0, ..., h̄n) ∈ Rn+1 where the stopping time τ for a low and high
binary option is respectively de�ned by τ = inf{t : Xt ≤ k} or τ = inf{t : Xt ≥ k} for a certain level
k ∈ R+. The value of these binary options is equal to the expected discounted cash-�ow under the risk
neutral measure (to lighten notations, the expectation under the risk neutral measure is denoted by E(.)
in the following):

Bhigh(Xt, δt) = E
(
e−
∫ τ
t δ
>
s r̄ds(δ>τ h̄)|Ft

)
, τ = inf{t : Xt ≥ k}

Blow(Xt, δt) = E
(
e−
∫ τ
t δ
>
s r̄ds(δ>τ h̄)|Ft

)
, τ = inf{t : Xt ≤ k}

where r̄ = (r0, ..., rn) ∈ Rn+1 is the risk free rate in each phase. From Bu�ngton and Elliott (2002), we
know that

E
(
e−
∫ T
t δ>s r̄dsδT |Ft

)
= δ>t e

(Q0−diag(r̄))(T−t) .

Conditionally to the �ltration of the hitting time τ , we then have that

E
(
e−
∫ τ
t δ
>
s r̄ds

(
δ>τ h̄

)
|Ft
)

= E
(
E
(
e−
∫ τ
t δ
>
s r̄dsδ>τ |Ft ∨ τ

)
h̄|Ft

)
= E

(
δ>t e

(Q0−diag(r̄))(τ−t)h̄|Ft
)
.

Next, let us de�ne the stopping time ζ which is the �rst jumping time of a process N r
t with intensity

λrt =
∫ t

0 δ
>
s r̄ds. If we denote Qr = Q0 − diag (r̄), the above expectation may then be rewritten as

E
(
δ>t e

Qr(τ−t)h̄|Ft
)

= E
(

1τ≤ζ(δ
>
τ h̄)|Ft

)
,

and therefore, the following equality holds:

E
(
e−
∫ τ
t δ
>
s r̄ds(δ>τ h̄)|Ft

)
= E

(
1τ≤ζ(δ

>
τ h̄)|Ft

)
.

We denote by (γt)t>0 an irreducible continuous time Markov chain, de�ned on a �nite state space E ∪ ∂
where ∂ is an absorbing state (γt enters this state at time ζ, when N r

t jumps). γt is a vector that takes
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values in the set of unit vectors of dimension 3(n + 1) + 1. The �rst 3(n + 1) elements correspond to E
and the last one to ∂. And we de�ne a new stochastic process At which is the �uid embedding process of
Xt, as follows:

At = A0 +

∫ t

0
γ>s m̄ds+

∫ t

0
γ>s s̄dWs

where m̄ and s̄ are vectors of dimension 3(n + 1) + 1, that will be de�ned later. The generator of γt,
restricted to E, is the next 3(n+ 1)× 3(n+ 1) matrix:

Qγ =

 −D− D− O
B− C B+

O D+ −D+


where D−, D+ , B−, B+ are (n+ 1)× (n+ 1) matrix de�ned by

D− = diag(−ρ−1n+1) , D+ = diag(ρ+1n+1)

B− = ((1− p) qi,j1j>i)i,j=1,...,n , B+ = (pqi,j1j>i)i,j=1,...,n

C = (qi,j1j≤i)i,j=1,...,n − diag(r̄) ,

with O being a (n+1)×(n+1) null matrix. Notice that the generator Qγ of γt is totally di�erent from the
generator of Jiang and Pistorius (2008) because jumps occur in our model exclusively when δt changes of
regime and not between times of regime shifts. The state space E can be fractioned as E = E+∩E0∩E−.
States in E+ and E− respectively correspond to positive and negative jumps, whereas states of E0 are
inherited from δt. The vectors m̄ and s̄ are de�ned by:

m̄ = (mi)i=0:3n+3 =


−1 i ∈ {0, ..., n}
µ̃i−n−1 i ∈ {n+ 1, ..., 2n+ 1}
+1 i ∈ {2n+ 2, ..., 3n+ 2}
0 i = 3n+ 3

s̄ = (si)i=0:3n+3 =


0 i ∈ {0, ..., n}
σi−n−1 i ∈ {n+ 1, ..., 2n+ 1}
0 i ∈ {2n+ 2, ..., 3n+ 2}
0 i = 3n+ 3

where µ̃i−n−1 is the drift of Xt when δt = ei−n−1, such as de�ned by equation (21). Within this approach,
any sample path of Xt that represents discontinuities at jump times may be converted into a continuous
path of At. Let us denote

T0(t) :=

∫ t

0
1{γt∈E0}ds ,

T−1
0 (u) := inf{t ≥ 0 : T0(t) > u} ,

where T0(t) is the total time spent in E0 by the Markov chain γt up to time t. By construction(
A ◦ T−1

0 , γ ◦ T−1
0

)
has the same distribution as (Xt, δt). Then

E
(
e−
∫ τ
t δ
>
s r̄ds(δ>τ h)|Ft

)
= E

(
1τ≤ζ(δ

>
τ h̄)|Ft

)
= E

(
1τ̃≤ζ(γ

>
τ̃ h̃)|Ft

)

24



where τ̃ is respectively for a binary low and high options given by

τ̃ = inf {t ≥ 0 ; γt ∈ E0 and At ≤ k}
τ̃ = inf {t ≥ 0 ; γt ∈ E0 and At ≥ k}

and

h̃ =
(
h̃i

)
i=0:3n+3

=

{
h̄i−n−1 i ∈ {n+ 1, ..., 2n+ 1}
0 otherwise

We now de�ne up-crossing and down-crossing ladders, γ+
t and γ−t as follows

γ+
t = γτ+t

γ+
t = γτ−t

,

where

τ+
t = inf{s ≥ 0 : As > t} ,
τ−t = inf{s ≥ 0 : As < t} .

By construction, γ+
t and γ−t are Markov chains with respective state spaces E+ ∪E0 and E− ∪E0. Their

generators are 2(n + 1) × 2(n + 1) matrix denoted by Q+ and Q−. And the initial distributions are
(n+ 1)× 2(n+ 1) matrix, η+ and η− such that

η+(i, j) = P ( γ+
0 = ej , τ

+
0 ≤ ζ | γ0 = ei) ei ∈ E− , ej ∈ E0 ∪ E+ ,

η−(i, j) = P ( γ−0 = ej , τ
−
0 ≤ ζ | γ0 = ei) ei ∈ E+ , ej ∈ E− ∪ E0 ,

Let Σ = diag
(
(s̄i)i=0:3n+2

)
and V = diag

(
(m̄i)i=0:3n+2

)
be 3(n+ 1)× 3(n+ 1) matrices.

Proposition 7.1. (η+, Q+, η−, Q−) are solutions of the following matrix equations

1

2
Σ2W+

(
Q+
)2 − VW+Q+ +QγW

+ = O , (40)

1

2
Σ2W−

(
Q−
)2

+ VW−Q− +QγW
− = O , (41)

where O is a 3(n+ 1)× 2(n+ 1) null matrix and

W+ =

 η+

I(n+1) O(n+1)

O(n+1) I(n+1)

 W− =

 I(n+1) O(n+1)

O(n+1) I(n+1)

η−

 .

Furthermore for Xt = x and k > x, we have that

Bhigh(Xt, δt) = E
(

1τ+k ≤ζ
(
γ+
k h̄

+
)
|Ft
)

(42)

= γ
>
t W

+ exp
(
Q+(k −Xt)

)
h+ ,

and for Xt = x and k < x, we have that

Blow(Xt, δt) = E
(

1τ−k ≤ζ
(
γ−k h̄

−) |Ft) (43)

= γ
>
t W

− exp
(
Q−(Xt − k)

)
h− ,
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where

h̄+ =
(
h̄+
i

)
i=0:2n+2

=

{
h̄i−n−1 i ∈ {n+ 1, ..., 2n+ 1}
0 otherwise

.

and

h̄− =
(
h̄−i
)
i=0:2n+2

=

{
h̄−i i ∈ {0, ..., n}
0 otherwise

.

Proof of Proposition 7.1. We just sketch the proof of relations (40) and (42) and refer to Jiang
and Pistorius (2008) for details. By construction,

E
(

1τ̃≤ζ(γ
>
τ̃ h̃)|Ft

)
= E

(
1τ+k ≤ζ

(
γ+
k h̄

+
)
|Ft
)
.

On the other hand, given that γ+
t is a Markov chain with generator Q+, with an initial distribution W+,

we immediately infer that

E
(

1τ+k ≤ζ
(
γ+
k h̄

+
)
|Ft
)

= γ
>
t W

+ exp
(
Q+(k −Xt)

)
h+

(we substitute the initial time scale by the random clock τ+
t = inf{s ≥ 0 : As > t}). On the other hand,

V +
t = E

(
1τ+k ≤ζ

(
γ+
k h̄

+
)
|Ft
)
clearly is a martingale, by its de�nition as conditional expectation. Let us

denote
f(ei, x) := e

>
i W

+ exp
(
Q+(k − x)

)
h+ ,

An application of Itô's lemma leads to the following relation for x ≤ k:
1

2
s2
i

∂2

∂x2
f(ei, x) +mi

∂

∂x
f(ei, x) +

∑
j

q+
ij (f(ei, x)− f(ej , x)) = 0.

Given that h+ is arbitrary, this last equation corresponds well to the system of equations (40).
�

Solving equations (40) and (41) is challenging. When the number of regimes is limited to 3 or 4, a
method based on eigenvalues and eigenvectors of Q+ and Q−, as proposed in Le Courtois and Su (2017)
is numerically e�cient. Unfortunately, for Markov chain with a high number of states, this approach
becomes unstable because it requires to calculate the determinant of a badly conditioned matrix of big
dimensions. However, it is possible to reduce the dimension of this problem if we recall that Σ et V are
diagonal matrices:

Proposition 7.2. The matrix Q+ may be rewritten as

Q+ =

(
G1 G2

D+ −D+

)
(44)

where G1, G2 are (n+ 1)× (n+ 1) matrices that satisfy the following system of matrix equations:

O(n+1) = η+
E0G1 + η+

E+D
+ −D−η+

E0 +D− (45)

O(n+1) = η+
E0G2 − η+

E+D
+ −D−η+

E+

O(n+1) =
1

2
diag(σ̄2)

(
G2

1 +G2D
+
)
− diag(µ̄)G1 +B−η+

E0 + C

O(n+1) =
1

2
diag(σ̄2)

(
G1G2 −G2D

+
)
− diag(µ̄)G2 +B−η+

E+ +B+

with η+ = {η+
E0 , η

+
E+} . η+

E0 and η+
E+ are here (n+ 1)× (n+ 1) matrix.
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Proof of Proposition 7.2. By de�nition of W+, we have that

QγW
+ =

 −D−η+
E0 +D− −D−η+

E+

B−η+
E0 + C B−η+

E+ +B+

D+ −D+


and

VW+ =

 −η+
E0 −η+

E+

diag(µ̄) O
O I(n+1)

 , Σ2W+ =

 O(n+1) O(n+1)

diag(σ̄2) O(n+1)

O(n+1) O(n+1)

 .

If we assume that

Q+ =

(
G1 G2

G3 G4

)
,
(
Q+
)2

=

(
G2

1 +G2G3 G1G2 +G2G4

G1G3 +G3G4 G2G3 +G2
4

)
then

VW+Q+ =

 −η+
E0G1 − η+

E+G3 −η+
E0G2 − η+

E+G4

diag(µ̄)G1 diag(µ̄)G2

G3 G4


and

Σ2W+
(
Q+
)2

=

 O(n+1) O(n+1)

diag(σ̄2)
(
G2

1 +G2G3

)
diag(σ̄2) (G1G2 +G2G4)

O(n+1) O(n+1)


Injecting these expressions in equation (40) leads to the result.

�

The same result holds for Q−:

Proposition 7.3. The matrix Q− may be rewritten as

Q− =

(
−D− D−

G3 G4

)
(46)

where G3, G4 are (n+ 1)× (n+ 1) matrices that satisfy the following system of matrix equations:

O(n+1) =
1

2
diag(σ̄2)

(
−D−G3 +G3G4

)
+ diag(µ̄)G3 +B− +B+η−

E−

O(n+1) =
1

2
diag(σ̄2)

(
D−G3 +G2

4

)
+ diag(µ̄)G4 + C +B+η−

E0

O(n+1) = −η−
E−D

− + η−
E0G3 −D+η−

E−

O(n+1) = η−
E−D

− + η−
E0G4 +D+ −D+η−

E0

with η− = {η−
E− , η

−
E0} . η−E0 and η−

E− are here (n+ 1)× (n+ 1) matrices.

To conclude this section, we study the sensitivity of perpetual binary options to modi�cations of the
jump dynamics. We hereto use the parameters reported in Table 2. The upper left graph of Figure 4
shows prices of perpetual high binary options, for di�erent log-strikes k. Whatever the regime of δt, the
price is inversely proportional to the strike because a higher strike postpones on average the exercise time
of the binary option. For the same reason, the option value slightly falls when δt is in a regime in which
jumps have a higher probability to occur since in this case the exercise of the option will be delayed as
jumps are on average negative. The right-hand graphs reveal indeed that increasing η or θ drives down
the prices, which can mainly be explained by the fact that the risk of observing several negative jumps
increases and therefore the exercise of the option is delayed. On the contrary, if p increases, jumps are
mostly positive and the period before the option exercise time becomes shorter, which causes a rise in
option prices.
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Figure 4: Comparison of binary option prices for di�erent sets of parameters. The risk free rate is constant
and set to 4%.

8 Conclusions

This article proposes the SESJD model as a new alternative to Hawkes processes, for modelling the jump
clustering in �nancial time series. This approach is based on a switching regime jump di�usion. Whereas
pure switching jump di�usions fail to duplicate the clustering of jumps because memory-less exponential
random variables model the length of staying in a certain regime, the SESJD model does not present this
drawback for two reasons. Firstly, we assume that jumps are synchronized to transitions times of a Markov
chain with ordered states. Secondly, the matrix of transition probabilities is designed such that when the
chain moves to a higher state, the probability of climbing again in the scale of states rises instantaneously.

The SESJD model is a very �exible model with several advantages. Contrary to Hawkes jump di�u-
sions, the SESJD model is easy to calibrate with an enhanced Hamilton �lter. Next, it is well de�ned
under di�erent measure changes, and in particular under a risk-neutral measure. Therefore, the model can
be easily used for option pricing, both of European and exotic type. In particular, the �uid embedding
technique of Rogers (1994) leads to a closed-form expression for the Laplace transform of the hitting time
of a SESJD and therefore leads to explicit pricing formula for e.g. perpetual binary options.

Appendix A

We illustrate the convergence of the pgf of the point process Ñt towards the pgf of the Hawkes process
Nt with a numerical example. We consider the following parameters for (Nt)t≥0: α = 8, θ = 10, η = 5.

To construct
(
Ñt

)
t≥0

, we choose ∆t = 1
200 , n = 10m and m = {10, 20, 30, 40}. Figure 5 shows the
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pgf's of Ñt and Nt, for t = 1 year and λ0 = θ + η, whereas Table 3 reports the L2-norms of the vector

E
(
uÑt | F0

)
− E

(
uNt | F0

)
, for u ranging from 0.01 to 1.01 by steps of 0.025 and for di�erent values of

λ0. These results tend to con�rm the convergence of the pgf of Ñt to the pgf of Nt when the number of
states of (δt)t≥0 increases.
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Figure 5: Comparison of E
(
uÑt | F0

)
and E

(
uNt | F0

)
for u = 0 to 1. Parameters of Nt: α = 8, θ = 10,

η = 5. Parameters of Ñt: ∆t = 1
200 , t = 1 year, n = 10m and m = 10, 20, 30, 40 and λ0 = θ + η.

λ0 m = 10 m = 20 m = 30 m = 40

θ 0.2478 0.0921 0.0426 0.0199

θ + λ
2 0.2672 0.1051 0.0512 0.0237

θ + λ 0.2694 0.0980 0.0438 0.0201

θ + 3λ
2 0.2565 0.0899 0.0349 0.0169

θ + 2λ 0.2375 0.0808 0.0290 0.0174

Table 3: L2-norms of the vector E
(
uÑt | F0

)
− E

(
uNt | F0

)
, for u ranging from 0.01 to 1.01 by steps of

0.025 for di�erent values of λ0 and levels of discretization m.

Appendix B

Hawkes jump are detected with a �peaks over threshold� (POT) procedure that is an enhanced version of
the procedure of Embrechts et al. (2011). The discrete record of T observations of log-returns, equally
spaced by a time step ∆ of one day of trading is denoted {x1,, x2, ..., xT }. A jump is believed to occur
if the return is above or below some thresholds. These thresholds, denoted g(β1) and g(β2), depend on
the lag between observations and on two con�dence levels, β1 β2. To determine thresholds, we �t by
log-likelihood maximization, a pure Gaussian process : xi ∼ µ∆ + σW∆. If Φ(.) denotes the cumulative
distribution function (cdf) of a standard normal, g(β1), g(β2) are set to the β1 and β2 percentiles of the
Brownian motion: g(βi) = σ

√
∆Φ−1(βi). When a jump is detected, the variation of prices is assumed
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equal to the jump size: {
(xi − µ∆) ∼ Ji (xi − µ∆) > g(β1) or < g(β2) .

Levels of con�dence, β1 and β2 are optimized such that the skewness and the kurtosis of xi for periods
without jump are close to these of a normal distribution. For the S&P 500, we �nd that β1 and β2 are
respectively equal to 94% and 91%. The skewness and kurtosis of returns for days without detected jumps
are equal to 0.008 and 2.95. The volatility of the sample from which we eliminate jumps is 11.88%. Once
that jumps are detected, the sample path of (λt)t for a given set of parameters is approximated by:

∆λi = α(θ − λi−1)∆ + η 1jumpat ti .

When ∆ is small, the probability of observing a jump in the ith interval of time is equal to λi∆. Jumps
and intensities can then be calibrated by maximizing the log-likelihood of jumps distribution and of λt as
follows: {

(ρ−, ρ+, p) = arg max
∑n

i=1 log ν (xi | ρ−, ρ+, p) 1jumpat ti
(α, η, θ, λ0) = arg max

∑n
i=1 ((log (λi∆)) 1jumpat ti + (log (1− λi∆)) 1no jumpat ti)

,

where ν(.) is the pdf of double-exponential jumps. The results of this calibration are reported in table 2.
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