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Abstract

This paper studies the valuation of credit risk for firms that own several subsidiaries or

business lines. We provide simple analytical approximating expressions for probabilities of

default, and for equity-debt market values, both in the case when the information is available

in continuous time as well as in the case that it is not instantaneously available. The total

firm’s asset value being modeled as a sum of lognormal random variables, we use convex upper

and lower approximations to infer these analytical approximating expressions. We extend the

model to firms financed by multiple stochastic liabilities and conclude by numerical illustra-

tions.

Keywords. default risk, structural model, incomplete information, convex ordering, comono-

tonicity.

1 Introduction.

The treatment of default is a crucial issue in determining the value of corporate securities and
the firm’s financing decisions. This task is particularly complex when the corporation is itself
a group of subsidiaries that have dependent activities. Structural models such as developed by
Merton (1974) and Black and Cox (1976) represent an elegant framework for the valuation of
risky debts, when assets are modeled by a single Brownian motion. Since, many alternatives have
been developed to replace the Brownian motion by more complex dynamics. Recently Fiorani
(2010), Ballotta and Fusai (2013) and Hainaut and Colwell (2013) used Lévy, multivariate Lévy
and switching Lévy processes. But, unto our knowledge, there are only very few extensions to
multi-industry firms.

Moreover, most of the existing models assume that the dynamics of firm’s assets are continu-
ously observed while in practice, the information needed to assess efficiently the financial health
is for most of the companies only released at discrete times. As emphasized by Duffie and Lando
(2001), ignoring this aspect leads to an underestimation of short-term credit spreads.

The purpose of this work is hence twofold. Firstly, this paper proposes simple approximating
formulas to appraise default probabilities, risky debts and equity for multi-industry firms. The to-
tal firm’s asset is a sum of lognormal processes, each one corresponding to a firm’s subsidiary. The
statistical distribution of firm’s total asset value exhibits then more leptokurticity and asymmetry
than a single lognormal variable. Secondly, it studies the impact of a lack of information on these
quantities. The framework of our model is partly inspired from papers of Leland (1994, 1998)
and of Leland and Toft (1996). We assume that the default or simply the restructuring events
are triggered when the total market value of all subsidiaries falls below a certain threshold. Two
cases are considered. In the first one, this threshold is constant. It can eventually be regulatory
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imposed, or chosen by the firm’s management. In the second case, the threshold is random and
the sum of several liabilities. This approach is particularly well adapted for insurance companies
that finance their investments by e.g. life or non life provisions.

The solution that we propose is based on the concept of convex orders and comonotonicity, which
were introduced by Hoefdding (1940) and Frechet (1951) who studied lower and upper bounds
for multivariate cumulative distributions. This theory became popular amongst researchers in
actuarial sciences over the last two decades and has been applied successfully to various fields
of research. Dhaene et al. (2002 (a), (b)) proposed in their review comonotone upper and lower
approximations in the convex order sense for the sum of a finite number of random variables. The
work of Vanduffel et al. (2003) reveals that the lower convex bound approximation is extremely
accurate for an appropriate choice of parameters. We refer the interested reader to Denuit et al.
(2005) for characterizations of convex orders. We further notice that convex orders and stop loss
premiums are closely related (see e.g. Dhaene and Goovaerts (1996)). Comonotone bounds have
been applied from derivatives pricing (Vanmaele et al. (2006)) to insurance (Ahcan et al. (2006)),
including risk management, as in Van Weert et al. (2012). For a recent survey of applications
in finance and insurance, we refer e.g. to Deelstra et al. (2011). But we did not encounter any
applications of this theory to the valuation of credit risk. Our work tries to fill this gap.

The outline of this paper is as follows. The first section introduces the framework that we adopt
to model a multi activity firm. In section 3, we build the convex bounds of the total firm’s asset
and infer in section 4 approximating formulae for the probabilities of default. In section 5 and 6,
we respectively appraise the value of debts with complete and incomplete information. In section
7, the model is adapted to stochastic liabilities. Section 8 contains several numerical applications
and we conclude our work in section 9.

2 The model.

We consider a holding company, composed of N subsidiaries or various business lines. Each
subsidiary generates a stream of dividends or cash-flows distributed in its entirety to the parent
company. The investment in the subsidiary is assumed irreversible, at least till an eventual re-
structuring of the holding. Dividends are defined on a filtered probability space (Ω,F ,P), where
F is the filtration generated by M independent Brownian motions, denoted by W̃ j for j = 1...M .
The dividend provided by the ith subsidiary is assumed to be a stochastic process denoted by F i

t

and has the following dynamics under the real measure P:

dF i
t

F i
t

= µidt+

M
∑

j=1

σi,jdW̃
j
t ∀i = 1, . . . , N. (2.1)

We denote Σ the N ×M matrix of (σi,j)i=1...N, j=1...M which are such that rank(Σ) = M . The

covariance matrix containing the covariances between the flows of dividends is then equal to ΣΣ⊤.
We also assume that there exists a risk free asset, such as a bank account, that provides a constant
rate of return r. The total flow of dividends paid to the holding company is denoted by

Ft =

N
∑

i=1

F i
t .

Obviously, cash-flow processes are not tradeable assets. However, as the subsidiary is a separate
entity, the entire value of this subsidiary can be seen as a traded asset. In this case, the value of
the ith subsidiary is equal to the expected sum of cash-flows discounted at the cost of the equity
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rE with rE > µi:

Si
t = E

(
ˆ ∞

t

e−rE(s−t)F i
sds | Ft

)

=

ˆ ∞

t

e−rE(s−t)E

(

F i
t e

(

µi−
∑M

j=1

σ2
i,j
2

)

(s−t)+
∑M

j=1
σi,j(W

j
s−W

j
t )
ds | Ft

)

=
F i
t

rE − µi

. (2.2)

This last formula is similar to the Gordon-Shapiro formula as first exposed by Gordon and Myron
(1959). The rate µi can be seen as the growth rate of dividends distributed by the ith business
line. Note that the expectation in equation (2.2) is calculated under the real measure P, and this
is the reason why the discount rate is given by the cost of equity and not by the risk free rate.
The dynamics of Si

t can be rewritten as

dSi
t =

dF i
t

rE − µi

= µiS
i
tdt+ Si

t

M
∑

j=1

σi,jdW̃
j
t . (2.3)

Let us denote by µ, the vector of µi and by κ, the vector of market risk premiums κj for W̃ i
t . If

1N is a N vector of ones, κ is a solution (not necessary unique) of µ = 1Nr + Σκ. Then the risk
neutral Q is defined by the following Radon Nikodym derivative

(

dQ

dP

)

t

= exp

(

−1

2

ˆ t

0

κ′κds−
ˆ t

0

κ′dW̃s

)

. (2.4)

Under this risk neutral measure Q chosen by market participants, the drifts of the dynamics (2.3),
are equal to the risk free rate, r, to ensure the absence of arbitrage. More precisely, we have that

dSi
t = rSi

tdt+ Si
t

M
∑

j=1

σi,jdW
j
t (2.5)

where dW
j
t = dW̃

j
t + κjdt are here M independent Brownian motions defined on (Ω,F ,Q). As

mentioned in e.g. Musiela and Rutkowski (1998) or Dhaene et al. (2013), the risk neutral mea-
sure Q is unique if M = N = rank(Σ). Note that all following developments are done under the

measure Q. The market value of the holding at time t is denoted by St =
∑N

i=1 S
i
t and its initial

value is equal to the sum of Si
0 for i = 1, . . . , N . In our framework, the total market value St of

all subsidiaries is a sum of lognormal random variables and is therefore no more distributed as a
lognormal. The investor partly finances his investment by its capital and issues debts to profit
from the tax shield offered for interest expenses. The tax rate θ ∈ (0, 1) is assumed constant over
time. In the first part of this work, the debt is modeled as a consol bond. This approach is well
suited to fit the liabilities structure of most non financial corporations, that systematically renew
their loans for tax purposes. The investor pays continuously and perpetually a constant coupon C.
The tax benefit is then θC. The debt is issued at time 0 for some amount D. In section 7, we will
assume that the holding is financed by stochastic liabilities. This may be used to model financial
conglomerates such as insurance companies or banks that have several different uncertain liabilities.

We assume that the equity owner liquidates or restructures the holding when the total value
of assets falls below a predetermined value denoted α, usually less than the accounting value of
debts or a floor imposed by the regulator. As we will discuss later, α can also be chosen by the
management so as to maximize the market value of the equity. In this case, α is a parameter
of control. The default time is an Ft stopping time, denoted by τ . The liquidation value of the
holding is Sτ =

∑N
i=1 S

i
τ and is assigned to the debt holders. In this framework, the market value

3



of the equity, denoted by Eα
0 , is equal to the sum of the expected discounted cash-flows under the

risk neutral measure, decreased by the cost of debts:

Eα
0 = EQ

(
ˆ τ

0

e−rt (Ft − (1− θ)C) dt

)

. (2.6)

We assume that in case of bankruptcy, holding shareholders do not receive any income from the
sale of the assets. The difference between the total cash-flow and the coupon paid may be seen as a
dividend, that can be positive or negative if the cash-flows are insufficient to pay debts. According
to the relation (2.2) and given that Sτ = α, the first term in this last expression is equivalent to

EQ

(
ˆ τ

0

e−rtFtdt

)

=
N
∑

i=1

EQ

(
ˆ τ

0

e−rtF i
t dt

)

=

N
∑

i=1

(

EQ

(
ˆ ∞

0

e−rtF i
t dt

)

− EQ

(

e−rτ

ˆ ∞

τ

e−r(t−τ)F i
t dt

))

= S0 − EQ
(

e−rτα
)

. (2.7)

The market value of the equity can be rewritten as

Eα
0 = EQ

(
ˆ τ

0

e−rtFtdt

)

− EQ

(
ˆ τ

0

e−rt(1− θ)Cdt

)

(2.8)

= S0 − EQ

(

e−rτα+

ˆ τ

0

e−rt(1− θ)Cdt

)

,

while the market value of the debt at time 0 is equal to the following expectation:

Dα
0 = EQ

(
ˆ τ

0

e−rt(1− θ)C dt+ e−rτSτ

)

= EQ

(
ˆ τ

0

e−rt(1− θ)C dt+ e−rτα

)

. (2.9)

To our knowledge, these expressions of equity and debt market values do not admit any analytical
solution in this framework, except if there is only one subsidiary. In the following sections, we
develop lower and upper convex approximations for the sum

∑N
i=1 S

i
t , and infer lower and upper

estimates of default probabilities of the holding company.

In reality, the financial information needed to assess the financial health of the holding is not
necessarily available in continuous time. In particular, if the holding is not listed, the financial
statements that are issued quarterly form the only available information. This remark motivates
the second part of this work, in which we explore the impact of this lack of information on the
estimates of default probabilities.

3 Convex bounds of St.

In this section, we briefly review results related to comonotone convex upper and lower bounds
for a sum of lognormal variables. For details and proofs, we refer to Dhaene et al. (2002 a,b). As
mentioned earlier, the sum St of market values of subsidiaries at time t is the sum of N lognormal
variables:

St
d
=

N
∑

i=1

Si
0e

Zi
t . (3.1)
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Under the risk neutral measure, Zt =
(

Z1
t , . . . , Z

N
t

)

is a Gaussian random vector with distribution
N(µZt , ΣΣ⊤ t) where the mean vector is given by

µZ =







r − 1
2e

⊤
1 ΣΣ

⊤e1
...

r − 1
2e

⊤
NΣΣ⊤eN






(3.2)

where ei is the ith unit root vector of RN . To simplify further calculations, the variance of Zi
t is

defined as

V ar(Zi
t) =

(

σZ
i

)2
t = e⊤i ΣΣ

⊤ei t. (3.3)

The theory of comonotonicity is closely related to the concept of convex order. A r.v. X is said
to precede a r.v. Y in the convex order sense if and only if for all convex functions u(.), we have
E(u(X)) ≤ E(u(Y )), provided the expectations exist. This relation is denoted by X ≤cx Y . It has
been proven that X ≤cx Y if and only if the stop loss premiums satisfy the relation E (X − d)+ ≤
E (Y − d)+, for all levels of retention d, and if E[X] = E[Y ]. The following proposition allows us
to build convex bounds for the total market value of subsidiaries.

Proposition 3.1. Consider the conditioning process Λt defined as the weighted sum of processes
Zi
t

Λt =

N
∑

i=1

γiZ
i
t (3.4)

where γi for i = 1, ..., N are constant. Also consider processes defined by

S
i,l
t = Si

0 exp

((

µZ
i +

1

2
(1− r2i )

(

σZ
i

)2
)

t+ ri σ
Z
i W l

t

)

(3.5)

S
i,c
t = Si

0 exp
(

µZ
i t+ σZ

i W c
t

)

(3.6)

and their sums

Sl
t =

N
∑

i=1

S
i,l
t Sc

t =
N
∑

i=1

S
i,c
t

where W l
t and W c

t are independent Brownian motions such that W l
0 = W c

0 = 0. The coefficients
ri are constant and defined as follows

ri =
cov(Zi

t ,Λt)
√

V ar(Zi
t)
√

V ar(Λt)

=
e⊤i ΣΣ

⊤γ
√

e⊤i ΣΣ
⊤ei
√

γ⊤ΣΣ⊤γ
. (3.7)

Then, we have the following convex order relations:

Sl
t ≤cx St ≤cx Sc

t (3.8)

In most applications, as mentioned in the work of Vanduffel et al. (2003), the lower bound
approximation Sl

t is extremely accurate and can be used as a good proxy for St. Note that if

X ≤cx Y then V ar(X) < V ar(Y ) must hold unless X
d
= Y . The variances of St, S

i
t and Sc

t are
given by the following expressions:

V ar(St) =
N
∑

i=1

N
∑

j=1

Si
0S

j
0e

(

µZ
i +µZ

j + 1

2

(

(σZ
i )

2
+(σZ

j )
2
))

t
(

ecov(Z
i
t ,Z

j
t ) − 1

)

, (3.9)
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V ar(Sl
t) =

N
∑

i=1

N
∑

j=1

Si
0S

j
0e

(

µZ
i +µZ

j + 1

2

(

(σZ
i )

2
+(σZ

j )
2
))

t
(

erirjσ
Z
i σZ

j t − 1
)

, (3.10)

V ar(Sc
t ) =

N
∑

i=1

N
∑

j=1

Si
0S

j
0e

(

µZ
i +µZ

j + 1

2

(

(σZ
i )

2
+(σZ

j )
2
))

t
(

eσ
Z
i σZ

j t − 1
)

. (3.11)

Vanduffel et al. (2008) recommend weights γi = Si
0E

(

eZ
i
t

)

that maximize the variance V ar(Sl
t)

over t years. But a finite time horizon and time-dependent γi’s being not adapted to later devel-
opments, we look for γi such that Sl

t approximates well St at any time, and according a stop-loss
distance. More precisely, as Sl

t ≤cx St, we know from Kaas et al. (1994, p. 68) that

ˆ +∞

−∞
E
[

(St − k)+
]

− E

[

(

Sl
t − k

)

+

]

dk =
1

2

(

V ar(St)− V ar(Sl
t)
)

.

Then 1
2

(

V ar(St)− V ar(Sl
t)
)

can be interpreted as a measure for the total error made when
approximating the stop-loss premiums of St by those of the convex smaller Sl

t. If we adopt this
measure, the best γi should then minimize the gap between variances

γi = argmin
(

V ar(St)− V ar(Sl
t)
)

∀t > 0.

But given that St and Sc
t are independent from γi, it is equivalent to

γi = argmin
(

V ar(St) + V ar(Sc
t )− V ar(Sc

t )− V ar(Sl
t)
)

= argmin
(

V ar(Sc
t )− V ar(Sl

t)
)

∀t > 0.

By definition (3.10) and (3.11) of V ar(Sc
t ) and V ar(Sl

t)

γi = argmin

N
∑

i=1

N
∑

j=1

Si
0S

j
0e

(

µZ
i +µZ

j + 1

2

(

(σZ
i )

2
+(σZ

j )
2
))

t
(

eσ
Z
i σZ

j t − erirjσ
Z
i σZ

j t
)

∀t > 0,

and a first order Taylor approximation of exponential functions leads to

γi ≈ argmin

N
∑

i=1

N
∑

j=1

Si
0S

j
0e

(

µZ
i +µZ

j + 1

2

(

(σZ
i )

2
+(σZ

j )
2
))

t
(1− rirj)σ

Z
i σ

Z
j t ∀t > 0.

As γi are time-independent, they ideally should cancel all spreads (1− rirj). For this reason, we
use in later developments the γi that minimizes the quadratic gap between rirj and 1:

γi = argmin

N
∑

i=1

N
∑

j=1



1−
e⊤i ΣΣ

⊤γ e⊤j ΣΣ
⊤γ

√

e⊤i ΣΣ
⊤ei

√

e⊤j ΣΣ
⊤ej γ⊤ΣΣ⊤γ





2

. (3.12)

The accuracy of the convex approximations is tested in a numerical applications section concluding
this work, see section 8.

4 Approximation of default probabilities.

Before assessing the market value of debt and equity, we build estimates of probabilities of
bankruptcy. When the number of subsidiaries is small, the probability that the total asset breaches
the floor α can always be computed by Monte-Carlo simulations. But once that this number is
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important, Monte-Carlo simulations require heavy calculations and furthermore, they have not
the advantage of analytical tractability of closed or semi-closed formulas. In the following, we will
always work (even without further mentioning) under the chosen risk-neutral probability Q and
we will denote the expectations by EQ[.]. However in order to avoid confusion with the notation
for quantile functions Qp[.], we still will refer to the probability of an event A by P(A) although
the probability used is the risk-neutral one.

In the remainder of this section, lower and upper bounds of St are respectively rewritten as
functions gl(., .) and gc(., .) of time and of Brownian motions W l

t and W c
t :

Sl
t =

N
∑

i=1

Si
0 exp

((

µZ
i +

1

2
(1− r2i )

(

σZ
i

)2
)

t+ ri σ
Z
i W l

t

)

= gl(t,W l
t ) (4.1)

Sc
t =

N
∑

i=1

Si
0 exp

(

µZ
i t+ σZ

i W c
t

)

= gc(t,W c
t ). (4.2)

Functions gl(t, w) and gc(t, w) are differentiable with respect to w and then continuous. Further-
more as σZ

i > 0 for i = 1...n, the first order derivative of gc(t, w) with respect to w,

∂gc(t, w)

∂w
=

N
∑

i=1

Si
0σ

Z
i exp

(

µZ
i t+ σZ

i w
)

is positive and gc(t, w) is strictly increasing in w. Under the condition that all ri ≥ 0, the first
order derivative of gl(t, w)

∂gl(t, w)

∂w
=

N
∑

i=1

Si
0riσ

Z
i exp

((

µZ
i +

1

2
(1− r2i )(σ

Z
i )

2

)

t+ riσ
Z
i w

)

is also positive and gl(t, w) is strictly increasing. If some ri are negative, a positivity constraint
(ri ≥ 0 for i = 1...n) should be added in the optimisation criterion (3.12). If this constraint is

satisfied,
(

∂gc,l

∂w
(t, w1)− ∂gc,l

∂w
(t, w2)

)

(w1 − w2) ≥ 0, ∀w1, w2 ∈ R, gl(t, w) and gc(t, w) are also

convex in w. And their inverse functions are well defined. Furthermore, the p quantiles of Sl
t and

Sc
t , respectively denoted by Qp[S

l
t] and Qp[S

c
t ], are given by the following expressions (for a proof

see Theorem 1 of Dhaene et al. (2002a)):

Qp[S
l
t] = gl(t, Qp[W

l
t ])

Qp[S
c
t ] = gc(t, Qp[W

c
t ]).

If we use the notation Φ for the distribution function of a standard normal random variable, we
can retrieve the distributions of the convex bounds as follows:

FSl
t
(x) = Φ

(

(

gl
)−1

(t, x)√
t

)

FSc
t
(x) = Φ

(

(gc)
−1

(t, x)√
t

)

.

Note that the inverses of the functions gk=l,c do not have a simple analytical expression. The
holding company will go to bankruptcy when St hits the level α. The distribution of this hitting
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time is unknown. We would like to estimate the hitting times by using convex lower and upper
bounds Sl

t and Sc
t :

τ l,g
l

= inf
{

t ≥ 0 |Sl
t ≤ α, Sl

s ≥ α ∀s ≤ t
}

= inf
{

t ≥ 0 |W l
t ≤

(

gl
)−1

(t, α), W l
s ≥

(

gl
)−1

(s, α) ∀s ≤ t
}

(4.3)

τ c,g
c

= inf {t ≥ 0 |Sc
t ≤ α, Sc

s ≥ α ∀s ≤ t}
= inf

{

t ≥ 0 |W c
t ≤ (gc)

−1
(t, α), W c

s ≥ (gc)
−1

(s, α) ∀s ≤ t
}

(4.4)

As shown by Vanduffel (2005) in his PhD thesis, the lower comonotonic bound Sl
t is an excellent

proxy for the original process St and we expect that default probabilities computed with Sl
t are

also close to real ones. Numerical tests presented in section 8 (right graph of figure 8.1) tend to
confirm this.

However, even if convex bounds allow us to reduce the dimension, we still face the problem
that the hitting time of a non linear function of time by a Brownian motion does not admit any
analytical expression, except in very few exceptions. A solution to preserve analytical tractability
consists in approximating the function by a linear approximation with respect to time, of functions
(

gl
)−1

(t, α) and (gc)
−1

(t, α), as done by Schmidt and Nokinov (2008). We opt for this approach
and use a first order Taylor development with respect to time as approximation method. Our

choice is motivated by the fact that if N = 1,
(

gl
)−1

(t, α) and (gc)
−1

(t, α) are precisely linear
function of time e.g. :

(gc)
−1

(t, α) =
1

σZ
1

ln

(

α

S1
0

)

− µZ
1

σZ
1

t N = 1

On another hand, numerical tests presented in section 8 (left graph of figure 8.1) confirm that a
linear function of time is close to the original one. To lighten further calculations we denote:

f l(t) =
(

gl
)−1

(t, α).

Given that gl
(

t, f l(t)
)

= α, it is easy to calculate that

∂

∂t
gl
(

t, f l(t)
)

=

N
∑

i=1

Si
0

(

µZ
i +

1

2
(1− r2i )

(

σZ
i

)2
)

exp

((

µZ
i +

1

2
(1− r2i )

(

σZ
i

)2
)

t+ ri σ
Z
i f l(t)

)

+
N
∑

i=1

Si
0 ri σ

Z
i exp

((

µZ
i +

1

2
(1− r2i )

(

σZ
i

)2
)

t+ ri σ
Z
i f l(t)

)

∂

∂t
f l(t)

= 0

and therefore we infer that the derivative of f l(t) with respect to time is equal to

∂

∂t
f l(t) = −

∑N
i=1 S

i
0

(

µZ
i + 1

2 (1− r2i )
(

σZ
i

)2
)

exp
((

µZ
i + 1

2 (1− r2i )
(

σZ
i

)2
)

t+ ri σ
Z
i f l(t)

)

∑N
i=1 S

i
0 ri σ

Z
i exp

((

µZ
i + 1

2 (1− r2i )
(

σZ
i

)2
)

t+ ri σ
Z
i f l(t)

) .

We choose a time t0, calculate numerically the value f l(t0) and develop f(t) linearly around t0:

f l(t) = f l(t0) + (t− t0)
∂

∂t
f l(t)|t=t0 +O(t2).

The accuracy of this approximation is tested in the numerical applications section. We infer from
this relation that

(

gl
)−1

(t, α) ≈ βl
1 − βl

2t, (4.5)

8



where βl
1 and βl

2 are defined by:

βl
2 =

∑N
i=1 S

i
0

(

µZ
i + 1

2 (1− r2i )
(

σZ
i

)2
)

exp
((

µZ
i + 1

2 (1− r2i )
(

σZ
i

)2
)

t0 + ri σ
Z
i

(

gl
)−1

(t0, α)
)

∑N
i=1 S

i
0ri σ

Z
i exp

((

µZ
i + 1

2 (1− r2i )
(

σZ
i

)2
)

t0 + ri σ
Z
i (gl)

−1
(t0, α)

) ,

(4.6)

βl
1 =

(

gl
)−1

(t0, α) + βl
2 t0. (4.7)

In the same way, we get that

(gc)
−1

(t, α) ≈ βc
1 − βc

2t, (4.8)

where βc
1 and βc

2 are defined by:

βc
2 =

∑N
i=1 S

i
0µ

Z
i exp

(

µZ
i t0 + σZ

i (gc)
−1

(t0, α)
)

∑N
i=1 S

i
0 σ

Z
i exp

(

µZ
i t0 + σZ

i (gc)
−1

(t0, α)
) , (4.9)

βc
1 = (gc)

−1
(t0, α) + βc

2 t0. (4.10)

Note that βl
1 and βc

1 are negative by construction. Indeed, if this was not the case, the company

would necessarily default at time 0. In most of the cases βc,l
2 are positive but their signs depend on

the signs of µZ
i . We will see at the end of this section, that the sign of βc,l

2 has a serious impact on
the asymptotic probability of ruin. But first, we define approximate default times of the convex
bounds as follows:

τ l = inf
{

t ≥ 0 | − βl
1 + βl

2t+W l
t ≤ 0 , −βl

1 + βl
2s+W l

s > 0∀s ≤ t
}

(4.11)

τ c = inf {t ≥ 0 | − βc
1 + βc

2t+W c
t ≤ 0 , −βc

1 + βc
2s+W c

s > 0∀s ≤ t} . (4.12)

Given that we replace the frontiers
(

gl
)−1

and (gc)
−1

by their linear approximations, we get the
following relations between approximate and exact hitting times of convex estimates:

P(τ l,g
l ≤ t) ≤ P(τ l ≤ t) (4.13)

P(τ c,g
c ≤ t) ≤ P(τ c ≤ t).

As mentioned earlier and in the work of Vanduffel et al. (2003), the lower bound approximation
Sl
t is an accurate proxy for St. We could then expect that P(τ l ≤ t) is a good proxy for the real

probability of default P(τ ≤ t). Numerical applications concluding this work tend to confirm this.

It is well known that the hitting time of a Brownian motion with drift has an Inverse Gaus-
sian (IG) distribution. From Bielecki and Rutkowski (2004 page 66), the probability that the
holding goes to bankruptcy before time t is then approximated by the following expressions:

P(τk ≤ t) = Φ
(

hk
1(t)

)

+ e2β
k
2
βk
1Φ
(

hk
2(t)

)

for k = l or c (4.14)

hk
1(t) =

βk
1 − βk

2 t√
t

hk
2(t) =

βk
1 + βk

2 t√
t

and the density of the default times can consequently by derived as follows for k = l or c

dP(τk ≤ t) = ϕ
(

hk
1(t)

)

(

−1

2
βk
1 t

− 3

2 − 1

2
βk
2 t

− 1

2

)

+e2β
k
2
βk
1ϕ
(

hk
2(t)

)

(

−1

2
βk
1 t

− 3

2 +
1

2
βk
2 t

− 1

2

)

,

9



where ϕ(.) denotes the density function of a standard normal distribution. Given that ϕ
(

hk
1(t)

)

=

e2β
k
2
βk
1ϕ
(

hk
2(t)

)

, the density of the default times is rewritten as

dP(τk ≤ t) = −βk
1 t

− 3

2ϕ
(

hk
1(t)

)

=
−βk

1√
2πt3

exp

(

−1

2

(

βk
1 − βk

2 t
)2

t

)

. (4.15)

As mentioned earlier, the sign of βl,c
2 influences the long term ruin probability. Indeed, according

to equation (4.14), if βl,c
2 is positive (e.g. when all µZ

i are positive), the approximate probability
of default over an infinite horizon is given by

lim
t→∞

P(τk ≤ t) = e2β
k
2
βk
1 for k = l or c.

This asymptotic probability can be used as a measure of risk, instead of the Value at Risk (VaR)

or Tail Value at Risk (TVaR), as done in actuarial sciences for insurance companies. If βk=l,c
2 is

negative, the asymptotic probability of ruin is equal to one and the holding will go to bankruptcy
with certainty but the timing is unknown.

5 Valuation of debt and equity.

Approximate market values of debts are provided by the next proposition. These are obtained as
the difference between a default free perpetuity and a payoff paid in case of default, weighted by
a factor combining discount rate and default probabilities.

Proposition 5.1. Under the assumption that default times are defined as in (4.11) and (4.12),
the convex estimates of the market value of the debt are provided by the following expression:

D
α,k
0 = EQ

(

ˆ τk

0

e−rs(1− θ)C ds+ e−rτk

α

)

= (1− θ)C
1

r
+

(

α− (1− θ)C
1

r

)

e
βk
1

(

βk
2
+
√

2r+(βk
2 )

2

)

for k = l or c

Proof. We prove this result for k = l. The market value of the debt is given by the following sum:

D
α,l
0 = EQ

(

ˆ τ l

0

e−rs(1− θ)Cds

)

+ EQ
(

e−rτ l

α
)

. (5.1)

Using Fubini’s theorem, the first expectation can be rewritten as follows:

EQ

(

ˆ τ l

0

e−rs(1− θ)Cds

)

=

ˆ +∞

0

ˆ t

0

e−rs(1− θ)C ds dP(τ l ≤ t)

= (1− θ)C

ˆ +∞

0

1

r

(

1− e−rt
)

dP(τ l ≤ t)

= (1− θ)C
1

r

(

1−
ˆ +∞

0

e−rt dP(τ l ≤ t)

)

(5.2)

and the second expectation in (5.1) can be developped as

EQ
(

e−rτ l

α
)

= α

ˆ +∞

0

e−rt dP(τ l ≤ t) (5.3)
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Equations (5.2) and (5.3) both depend on the integral
´ +∞
0

e−rt dP(τ l ≤ t), which is the moment

generating function of τ l:

ˆ +∞

0

e−rt dP(τ l ≤ t) =

ˆ +∞

0

−βl
1√

2πt3
exp

(

−1

2

2rt2 +
(

βl
1 − βl

2t
)2

t

)

dt

which can be reformulated as

ˆ +∞

0

e−rt dP(τ l ≤ t) = e
−βl

1

(

√

2r+(βl
2)

2−βl
2

)

ˆ +∞

0

−βl
1√

2πt3
exp











−1

2

(

βl
1 −

√

2r +
(

βl
2

)2
t

)2

t











dt.

But in view of (4.15), the integrand is the density of a hitting time, that we denote by τm,l, such

that P(τm,l ≤ ∞) = e
2βl

1

√

2r+(βl
2)

2

and P(τm,l ≤ 0) = 0. Consequently, we immediately infer that:

ˆ +∞

0

e−rt dP(τ l ≤ t) = e
−βl

1

(

√

2r+(βl
2)

2−βl
2

)

e
2βl

1

√

2r+(βl
2)

2

.

= e
βl
1

(

βl
2
+
√

2r+(βl
2)

2

)

.

Remark that if the holding company is incorporated at time t = 0, the market value of debts
must in theory be equal to its accounting value D0, that is the principal lent to the firm. If this
is not the case, the transaction is not free of arbitrage. In this case, the (approximate) fair value
of α that ensures the equality between market and accounting values of the debt is given by:

αk
fair = (1− θ)C

1

r
+

(

D0 − (1− θ)C
1

r

)

e
−βk

1

(

βk
2
+
√

2r+(βk
2 )

2

)

for k = l or c.

This is the sum of a perpetual annuity and of a kind of option price related to the loss in case of
default. In numerical applications ending this work, we illustrate the influence of the floor α on
the debt market value.

Corollary 5.2. Under the assumption that default times are defined as (4.11) and (4.12), the
convex estimates of the market value of the equity are approximated by the difference between
market values of assets and debts:

E
α,k
0 = S0 − EQ

(

e−rτα+

ˆ τ

0

e−rt(1− θ)Cdt

)

= S0 − (1− θ)C
1

r
−
(

α− (1− θ)C
1

r

)

e
βk
1

(

βk
2
+
√

2r+(βl
2)

2

)

k = l or c.

Remark that our results can be used to infer approximations for credit default swap (CDS)
premiums. A credit default swap is an insurance protecting the owner of a corporate bond issued
by the holding, in case of default. CDS’s are used for hedging and speculation purposes. In
exchange of regular payments (named the premium leg), the buyer of the CDS receives the part
of the bond principal which is not repaid in case of bankruptcy of the bond issuer. The payment
done in case of default, is called the default leg. The premium paid for this insurance is usually
expressed as a percentage of a unit bond principal. This percentage is called the CDS spread and
we denote it by p. Premiums are paid at regular intervals of time, ∆t, ranging from t1 to tn. The
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premium leg is equal to

Premium leg = p∆t

tn
∑

ti=t1

e−r tiEQ (Iti<τ | Ft0)

= p∆t

tn
∑

ti=t1

e−r tiP(ti < τ) (5.4)

If the bond issuer goes to bankrupcty, the CDS pays the difference between the principal and a
constant recovery rate percentage, denoted by R. The default leg is then

Default leg = (1−R)

tn
∑

ti=t1

e−r tiEQ
(

Iti−1<τ<ti | Ft0

)

= (1−R)

tn
∑

ti=t1

e−r tiP(ti−1 < τ ≤ ti). (5.5)

By equating equations (5.4) and (5.5) and replacing the probabilities of default by their approxi-
mations, we get approximate estimates for the CDS spread:

pk =
(1−R)

∆t

∑tn
ti=t1

e−r ti
(

P(τk ≤ ti)− P(τk ≤ ti−1)
)

∑tn
ti=t1

e−r ti (1− P(τk ≤ ti))
k = l or c, (5.6)

where P(τk ≤ ti) is provided by equation (4.14). The weakness of our model is the same as the
one of Merton’s structural model. Given that trajectories of assets are continuous and default is
the first hitting time of a barrier, the default is a predictable stopping time. This leads to an
underestimation of short term probabilities of default. This major flaw of the structural model
has given rise to other approaches in credit risk modelling. One possibility consists in introducing
jumps in the assets dynamics. Another approach is to introduce incompleteness about the available
information. We have explored this alternative in the following section and inferred modified
expressions for the probabilities of default, debts and equity.

6 Valuation of the debt with incomplete information.

If the holding is not listed or if the volume of stocks traded are too low to be considered as reliable,
the information about the holding is only available at discrete times. Mainly when the financial
statements are published or when the holding goes to bankruptcy. Even when the company is
listed, the information is reported to the market with a certain delay. In this section, we assess
the impact of the lack of information on default probabilities and on market values of debt and
equity. We assume in the remainder of this section that the only information available at time t

has been communicated at time 0 and that the holding is still active. The information carried by
the filtration (Ft)t is not accessible in continuous time. Let us denote by τ the time of default and
by Ht the indicator variable 1t<τ , equal to one if the issuer is still solvent. The information avail-
able to the market is represented by the filtration Gt = σ

{

Si
0, i = 1, ..., N ; Hu, u ≤ t

}

. As before,
we will denote the approximate default times defined in (4.11) and (4.12) by τk with k = l or c,
and then let denote Hk

t the indicator variable 1t<τk for k = l or c. We define the corresponding
filtrations by Gk

t = σ
{

Si
0, i = 1, ..., N ; Hk

u , u ≤ t
}

.

We are interested in the probability (still under the risk neutral measure) at time t > 0 that
the holding company is still in activity at time T , which is given by

P
(

τ > T |Si
0, i = 1, ..., N, t < τ

)

= P
(

τk > T | Gt

)

.

12



The convex estimates of these survival probabilities are respectively provided by the following
expressions:

P
(

τk > T | Gk
t

)

=
1− Φ

(

hk
1(T )

)

− e2β
k
2
βk
1Φ
(

hk
2(T )

)

1− Φ
(

hk
1(t)

)

− e2β
k
2
βk
1Φ
(

hk
2(t)

) for k = l or c (6.1)

where

hk
1(s) =

βk
1 − βk

2 s√
s

hk
2(s) =

βk
1 + βk

2 s√
s

for k = l or c. (6.2)

The density function of the survival time is then obtained by differentiating with respect to T :

dP
(

τk ≤ T | Gk
t

)

=
∂
∂T

Φ
(

hk
1(T )

)

+ e2β
k
2
βk
1

∂
∂T

Φ
(

hk
2(T )

)

1− Φ
(

hk
1(t)

)

− e2β
k
2
βk
1Φ
(

hk
2(t)

)

=

−βk
1√

2πT 3
exp

(

− 1
2

(−βk
1
+βk

2
T)

2

T

)

1− Φ
(

hk
1(t)

)

− e2β
k
2
βk
1Φ
(

hk
2(t)

) for k = l or c. (6.3)

As we will see in numerical applications, the delay in the information disclosure allows us to model
non negligible probabilities of default over a short term period of time. Note that if βk

1 and βk
2

for k = l, c are respectively negative and positive (e.g. if all µZ
i are positive), the approximate

probabilities of default over an infinite horizon are given by

lim
T→∞

P(τk ≤ T | Gk
t ) =

e2β
k
2
βk
1 − Φ

(

hk
1(t)

)

− e2β
k
2
βk
1Φ
(

hk
2(t)

)

1− Φ
(

hk
1(t)

)

− e2β
k
2
βk
1Φ
(

hk
2(t)

) for k = l or c.

As mentioned earlier, this asymptotic measure of default can be used as substitute to other risk
measures such as e.g. VaR or TVaR.

The approximate market values of debts are provided by the next proposition and may still be
seen as the difference between a default free perpetuity and a modified cash-flow paid in case of
bankruptcy.

Proposition 6.1. The approximate values of the debt are equal to the following expressions, for
k = l or c :

D
α,k
t = (1− θ)C

1

r
−
(

(1− θ)C
1

r
− α

)

×

e
βk
1

(

√

2r+(βk
2 )

2
+βk

2

) ert
(

1− Φ
(

h
D,k
1 (t)

)

− e
2βk

1

√

2r+(βk
2 )

2

Φ
(

h
D,k
2 (t)

)

)

1− Φ
(

hk
1(t)

)

− e2β
k
2
βk
1Φ
(

hk
2(t)

) (6.4)

where hk
1(t) and hk

2(t) are defined by equations (6.2), while h
D,k
1 (.) and h

D,k
2 (.) are given by

h
D,k
1 (s) =

βk
1 −

√

2r +
(

βk
2

)2
s

√
s

(6.5)

h
D,k
2 (s) =

βk
1 +

√

2r +
(

βk
2

)2
s

√
s

. (6.6)

Proof. Let us consider the case that k = l.
If the holding is still active at time t, the value of the debt is equal to the following expectation:
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D
α,l
t = EQ

(

e−r(τ l−t)α | Gl
t

)

+ EQ

(

ˆ τ l

t

e−r(s−t)(1− θ)Cds | Gl
t

)

= α

ˆ +∞

t

e−r(s−t) dP(τ l ≤ s|Gl
t) + (1− θ)C

1

r

(

1−
ˆ +∞

t

e−r(s−t) dP(τ l ≤ s|Gl
t)

)

= (1− θ)C
1

r
−
(

(1− θ)C
1

r
− α

)
ˆ +∞

t

e−r(s−t) dP(τ l ≤ s|Gl
t) (6.7)

If we introduce the notation

v(t) =
ert

1− Φ
(

hl
1(t)

)

− e2β
l
2
βl
1Φ
(

hl
2(t)

) ,

the integral in (6.7) can be rewritten as follows:

ˆ +∞

t

e−r(s−t) dP(τ l ≤ s | Gl
t)

= v(t)
−βl

1√
2πs3

ˆ +∞

t

exp

(

−
(

−βl
1 + βl

2s
)2

+ 2rs2

2s

)

ds

= v(t)e
−βl

1

(

√

2r+(βl
2)

2−βl
2

)

ˆ +∞

t

−βl
1√

2πs3
exp











−

(

βl
1 −

√

2r +
(

βl
2

)2
s

)2

2s











ds.

We notice that the integrand is the density of a hitting time, that we denote τD,l, and which is
such that

P(τD,l ≤ s) = Φ
(

h
D,l
1 (s)

)

+ e2β
l
1

√
2r+βl 2

2 Φ
(

h
D,l
2 (s)

)

h
D,l
1 (s) =

βl
1 −

√

2r + βl 2
2 s√

s
h
D,l
2 (s) =

βl
1 +

√

2r +
(

βl
2

)2
s

√
s

.

As P(τD,l ≤ ∞) = e
2βl

1

√

2r+(βl
2)

2

and P(τD,l ≤ 0) = 0, we immediately infer that:

ˆ +∞

t

e−r(s−t) dP(τ l ≤ s | Gl
t) = e

−βl
1

(

√

2r+(βl
2)

2−βl
2

)

e
2βl

1

√

2r+(βl
2)

2

×
ert
(

1− Φ
(

h
D,l
1 (t)

)

− e
2βl

1

√

2r+(βl
2)

2

Φ
(

h
D,l
2 (t)

)

)

1− Φ
(

hl
1(t)

)

− e2β
l
2
βl
1Φ
(

hl
2(t)

) .

As stated by the following proposition, the market value of equity is the difference between the
conditional expectation of the total value of the assets, conditionally upon the available informa-
tion, and the value of debts:

Proposition 6.2. The approximate values of the equity are equal to the following differences, for
k = l or c :

E
α,k
t = EQ

(

Sk
t |Gk

t

)

−D
α,k
t (6.8)
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where Dα,k is provided by proposition 6.1. The conditional expectations of Sl
t and Sc

t are given by
the following expressions:

EQ
(

Sl
t|Gl

t

)

=
N
∑

i=1

Si
0e

r t
1− Φ

(

h
S,l
1 (i, t)

)

− e2β
l
1(β

l
2
+riσ

Z
i )Φ

(

h
S,l
2 (i, t)

)

1− Φ
(

hl
1(t)

)

− e2β
l
2
βl
1Φ
(

hl
2(t)

) (6.9)

EQ (Sc
t |Gc

t ) =

N
∑

i=1

Si
0e

r t
1− Φ

(

h
S,c
1 (i, t)

)

− e2β
c
1(β

c
2
+σZ

i )Φ
(

h
S,c
2 (i, t)

)

1− Φ(hc
1(t))− e2β

c
2
βc
1Φ(hc

2(t))
(6.10)

where

h
S,l
1 (i, t) =

βl
1 − βl

2t− ri σ
Z
i t√

t
h
S,l
2 (i, t) =

βl
1 + βl

2t+ ri σ
Z
i t√

t
(6.11)

h
S,c
2 (i, t) =

βc
1 + βc

2t+ σZ
i t√

t
h
S,c
2 (i, t) =

βc
1 + βc

2t+ σZ
i t√

t
(6.12)

and where hk
1(t) and hk

2(t) for k = l or c are defined by equations (6.2).

Proof. First, we calculate the expected total value of the assets namely EQ
(

Sl
t|Gl

t

)

= EQ
(

gl(W l
t )|Gl

t

)

.
This expectation can be expressed as

EQ
(

Sl
t|Gl

t

)

=

ˆ +∞

βl
1
−βl

2
t

gl(t, w)dP(W l
t ≤ w | inf

0≤s≤t
βl
2s+W l

s ≥ βl
1).

Let us define w′ = w + βl
2t

EQ
(

Sl
t|Gl

t

)

=

ˆ +∞

βl
1

gl(t, w′ − βl
2t)dP(β

l
2t+W l

t ≤ w′ | inf
0≤s≤t

βl
2s+W l

s ≥ βl
1). (6.13)

Then, by denoting Xt = βl
2t+W l

t and ml
t = inf0≤s≤t Xs , we get that

P(βl
2t+W l

t ≤ w′ | inf
0≤s≤t

βl
2s+W l

s ≥ βl
1) = P(Xt ≤ w′ |ml

t ≥ βl
1)

=
P(Xt ≤ w′ , ml

t ≥ βl
1)

P(ml
t ≥ βl

1)
.

The denominator is equal to the approximate probability that the company does not go to
bankruptcy before time t:

P(ml
t ≥ βl

1) = P
(

τ l ≥ t
)

= 1− Φ
(

hl
1(t)

)

− e2β
l
2
βl
1Φ
(

hl
2(t)

)

(6.14)

where hk
1(t) and hk

2(t) are defined by equations (6.2). Furthermore:

P(Xt ≤ w′ , ml
t ≥ βl

1) = 1− P(ml
t ≤ βl

1)− P(Xt ≥ w′ , ml
t ≥ βl

1)

= P(τ l ≥ t)− P(Xt ≥ w′ , ml
t ≥ βl

1)

where P(τ l ≥ t) is given by (6.14). From Bielecki and Rutkowski (2004 page 68), we have that

P(Xt ≥ w′ , ml
t ≥ βl

1) = Φ

(−w′ + βl
2t√

t

)

− e2β
l
2
βl
1Φ

(

2βl
1 − w′ + βl

2t√
t

)

such that

dP(Xt ≥ w′ , ml
t ≥ βl

1) = −ϕ

(−w′ + βl
2t√

t

)

1√
t
+ e2β

l
2
βl
1ϕ

(

2βl
1 − w′ + βl

2t√
t

)

1√
t

(6.15)
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Hence, the density of Xt conditionally to the survival of the holding equals

dP(Xt ≤ w′ |ml
t ≥ βl

1) = − 1

1− Φ
(

hl
1(t)

)

− e2β
l
2
βl
1Φ
(

hl
2(t)

)dP(Xt ≥ w′ , ml
t ≥ βl

1) (6.16)

Introducing the notation

vl(t) =
1

1− Φ
(

hl
1(t)

)

− e2β
l
2
βl
1Φ
(

hl
2(t)

)

and combining equations (6.13), (6.15) and (6.16), leads to the following expressions of the condi-
tional expectation of the total value of the assets at t:

EQ
(

Sl
t|Gl

t

)

= −vl(t)

ˆ +∞

βl
1

gl(t, w′ − βl
2t)dP(Xt ≥ w′ , ml

t ≥ βl
1)

= vl(t)
1√
t

[

ˆ +∞

βl
1

gl(t, w′ − βl
2t)ϕ

(−w′ + βl
2t√

t

)

dw′

−e2β
l
2
βl
1

ˆ +∞

βl
1

gl(t, w′ − βl
2t)ϕ

(

2βl
1 − w′ + βl

2t√
t

)

dw′
]

.

By a change of variable w = w′ − βl
2t, we get that

EQ
(

Sl
t|Gl

t

)

= vl(t)
1√
t

[

ˆ +∞

βl
1
−βl

2
t

gl(t, w)ϕ

(

w√
t

)

dw − e2β
l
2
βl
1

ˆ +∞

βl
1
−βl

2
t

gl(t, w)ϕ

(

w − 2βl
1√

t

)

dw

]

.

Given the definition of gl(w), we rewrite the last expression as follows:

EQ
(

Sl
t|Gl

t

)

= vl(t)
1√
t

[

N
∑

i=1

Si
0e

(

µZ
i + 1

2
(1−r2i )(σ

Z
i )

2
)

t
ˆ +∞

βl
1
−βl

2
t

eri σ
Z
i w ϕ

(

w√
t

)

dw

−
N
∑

i=1

Si
0e

(

µZ
i + 1

2
(1−r2i )(σ

Z
i )

2
)

t
e2β

l
2
βl
1

ˆ +∞

βl
1
−βl

2
t

eri σ
Z
i wϕ

(

w − 2βl
1√

t

)

dw

]

. (6.17)

As it is well-known that

eri σ
Z
i w ϕ

(

w√
t

)

= e
1

2 (ri σ
Z
i )

2
tϕ

(

w − ri σ
Z
i t√

t

)

and that

eri σ
Z
i wϕ

(

w − 2βl
1√

t

)

= e
− 1

t

(

2(βl
1)

2− 1

2 (2β
l
1
+ ri σ

Z
i t)

2
)

ϕ

(

w − (2βl
1 + ri σ

Z
i t)√

t

)

,

the expectation (6.17) becomes:

EQ
(

Sl
t|Gl

t

)

= vl(t)

[

N
∑

i=1

Si
0e

(

µZ
i + 1

2 (σ
Z
i )

2
)

t

(

1− Φ

(

βl
1 − βl

2t− ri σ
Z
i t√

t

))

−
N
∑

i=1

Si
0e

(

µZ
i + 1

2 (σ
Z
i )

2
)

t+2βl
1(β

l
2
+riσ

Z
i )
(

1− Φ

(−βl
1 − βl

2t− ri σ
Z
i t√

t

))

]

and we infer the result from this last relation.
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To end this paragraph, we say a word about the pricing of CDS in this incomplete framework.
If premiums are paid at regular intervals of time, ∆t, ranging from t1 to tn, the CDS spread at
time t, given that the last information disclosure has been done at time zero, is provided for k = c

or k = l by:

pk(t) =
(1−R)

∆t

∑tn
ti=t1

e−r ti
(

P
(

τk > ti−1 | Gk
t

)

− P
(

τk > ti | GtGk
t

))

∑tn
ti=t1

e−r tiP
(

τk > ti | Gk
t

) , (6.18)

where P(τk > ti) is provided by equation (6.1).

7 Stochastic liabilities.

The model developped in the previous sections is well suited for non financial corporations that
mainly finance their activities by debts and equity. This model does not fit so well financial
holdings such as banks or insurance companies, which have most of the times random liabilities.
To remedy to this problem, we assume in this section that the holding company is financed by NL

stochastic liabilities Li
t having the following risk neutral dynamics:

dLi
t = Li

trdt+ Li
t

M
∑

j=1

σL
i,jdW

j
t i = 1, . . . , NL. (7.1)

The total value of the liabilities is given by Lt =
∑M

i=1 L
i
t . We denote by ΣL the NL ×M matrix

of σL
i,j . The holding invests in NS activities or subsidiaries whose market values are solution of

the following stochastic differential equations:

dSi
t = rSi

tdt+ Si
t

M
∑

j=1

σS
i,jdW

j
t i = 1, ..., NS . (7.2)

The total value of the investments is still denoted by St =
∑NS

i=1 S
i
t . We denote by ΣS the NS×M

matrix of σS
i,j . The market capitalization is the difference between the total values of investments

and liabilities

Et = St − Lt
d
=

NS
∑

i=1

Si
0e

Zi
t −

NS+NL
∑

i=NS+1

Li
0e

Zi
t , (7.3)

where the vector of Zt counts NS +NL components Zi
t and is distributed as a multivariate normal

N(µZt , ΣΣ⊤ t) where Σ is the (NS +NL)×M matrix of assets and liabilities covariances:

Σ =

(

ΣS

ΣL

)

(7.4)

and the (NS +NL) mean vector is given by

µZ =

(

µZS

µZL

)

(7.5)

with

µZS =







r − 1
2e

⊤
1 Σ

SΣS⊤e1
...

r − 1
2e

⊤
NS

ΣSΣS⊤eNS






and µZL =







r − 1
2e

⊤
1 Σ

LΣL⊤e1
...

r − 1
2e

⊤
NL

ΣLΣL⊤eNL






(7.6)
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where µZS and µZL are respectively drifts of the assets and the liabilities and where ei denotes in
this section the ith unit root vector of RNS+NL . To simplify further calculations, the variance of
Zi
t is defined as

V ar(Zi
t) =

(

σZS
i

)2
t = e⊤i ΣΣ

⊤ei t i = 1, . . . , NS (7.7)

V ar(Zi
t) =

(

σZL
i

)2
t = e⊤i ΣΣ

⊤ei t i = NS + 1, . . . , NL. (7.8)

As previously, we introduce a process Λt =
∑NS+NL

i=1 γiZ
i
t that is a weighted sum of processes

Zi
t where the constant γi are chosen to minimize the quadratic spread between covariances of

upper and lower convex approximations of assets/liabilities:

γi = argmin

NS+NL
∑

i=1

NS+NL
∑

j=1



1−
e⊤i ΣΣ

⊤γ e⊤j ΣΣ
⊤γ

√

e⊤i ΣΣ
⊤ei

√

e⊤j ΣΣ
⊤ej γ⊤ΣΣ⊤γ





2

. (7.9)

We denote the correlations by ri for i = 1, ..., NS as follows:

ri =
cov(Zi

t ,Λt)
√

V ar(Zi
t)
√

V ar(Λt)

=
e⊤i ΣΣ

⊤γ
√

e⊤i ΣΣ
⊤ei
√

γ⊤ΣΣ⊤γ
. (7.10)

We split the vector of correlations in two sub vectors, one related to assets and one to liabilities:

rSi = ri i = 1, ..., Ns,

rLi = rNS+i i = 1, ..., NL.

The processes defined hereafter are used as lower and upper approximations of asset and liability
processes:

S
i,l
t = Si

0 exp

((

µZS
i +

1

2
(1−

(

rSi
)2
)
(

σZS
i

)2
)

t+ rSi σZS
i W l

t

)

(7.11)

L
i,l
t = Li

0 exp

((

µZL
i +

1

2
(1−

(

rLi
)2
)
(

σZL
i

)2
)

t+ rLi σZL
i W l

t

)

(7.12)

S
i,c
t = Si

0 exp
(

µZS
i t+ σZS

i W c
t

)

(7.13)

L
i,c
t = Li

0 exp
(

µZL
i t− σZL

i W c
t

)

(7.14)

where W l
t and W c

t are independent Brownian motions such that W l
0 = W c

0 = 0. Note that in the
definition of Li,c

t , the sign of σZL
i W c

t is negative because liabilities are substracted from assets (for
details, we refer to Dhaene et al. 2002, paragraph 4). Estimates of the market value of equity are
provided by the following differences:

El
t =

NS
∑

i=1

S
i,l
t −

NL
∑

i=1

L
i,l
t Ec

t =

NS
∑

i=1

S
i,c
t −

NL
∑

i=1

L
i,c
t .
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By construction, the following convex order relations are satisfied1

El
t ≤cx Ec

t . (7.15)

The default is triggered when the equity falls below a certain level denoted by α, but the distri-
bution of the hitting time is unknown. Convex estimates of Et can be respectively rewritten as
function gl(.) and gc(.) of time and of Brownian motions W l

t and W c
t :

El
t =

NS
∑

i=1

Si
0 exp

((

µZS
i +

1

2
(1−

(

rSi
)2
))
(

σZS
i

)2
)

t+ rSi σZS
i W l

t

)

−
NL
∑

i=1

Li
0 exp

((

µZL
i +

1

2
(1−

(

rLi
)2
))
(

σZL
i

)2
)

t+ rLi σZL
i W l

t

)

= gl(t,W l
t ) (7.16)

Ec
t =

NS
∑

i=1

Si
0 exp

(

µZS
i t+ σZS

i W c
t

)

−
NL
∑

i=1

Li
0 exp

(

µZL
i t− σZL

i W l
t

)

= gc(t,W c
t ). (7.17)

These functions gl(t, w) and gc(t, w) do not admit any simple analytical inverse functions. As

in previous sections, we use linear approximations of functions
(

gl
)−1

and (gc)
−1

to keep closed
form expressions for approximate default probabilities. We choose a time t0, calculate numerically
(

gl
)−1

(t0, α) and develop
(

gl
)−1

linearly around t0:

(

gl
)−1

(t, α) ≈ βl
1 − βl

2t, (7.18)

where βl
1 and βl

2 are defined by:

βl
2 =

∑NS

i=1 S
i
0

(

µZS
i + 1

2 (1− rS 2
i )

(

σZS
i

)2
)

e

(

µZS
i + 1

2
(1−rS 2

i )(σZS
i )

2
)

t+rSi σZS
i (gl)

−1
(t0,α)

−∑NL

i=1 L
i
0

(

µZL
i + 1

2 (1− rL 2
i )

(

σZL
i

)2
)

e

(

µZL
i + 1

2
(1−rL 2

i )(σZL
i )

2
)

t+rLi σZL
i (gl)

−1
(t0,α)

∑NS

i=1 r
S
i σZS

i Si
0e

(

µZS
i + 1

2
(1−rS 2

i )(σZS
i )

2
)

t+rSi σZS
i (gl)

−1
(t0,α)

−
∑NL

i=1 r
L
i σZL

i Si
0e

(

µZL
i + 1

2
(1−rL 2

i )(σZL
i )

2
)

t+rLi σZL
i (gl)

−1
(t0,α)

.

(7.19)

βl
1 =

(

gl
)−1

(t0, α) + βl
2 t0 (7.20)

In the same way, we get that,

(gc)
−1

(t, α) ≈ βc
1 − βc

2t, (7.21)

where βc
1 and βc

2 are defined as follows:

βc
2 =

∑NS

i=1 S
i
0µ

ZS
i eµ

ZS
i t+σZS

i (gc)−1(t0,α) −∑NL

i=1 L
i
0µ

ZL
i eµ

ZL
i t+σZL

i (gc)−1(t0,α)

∑NS

i=1 σ
ZS
i Si

0e
µZS
i

t+σZS
i

(gc)−1(t0,α) −∑NL

i=1 σ
ZL
i Si

0e
µZL
i

t+σZL
i

(gc)−1(t0,α)
. (7.22)

1Despite what notations suggest, we don’t necessary have S
i,l
t ≤cx S

i,c
t and L

i,l
t ≤cx L

i,c
t . In general it is neither

true that El
t is a comonotonic sum.
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βc
1 = (gc)

−1
(t0, α) + βc

2 t0. (7.23)

Linear functions (7.18) and (7.21) delimit the continuation and bankruptcy regions, in function
of W l

t and W c
t . But given that gl(t, w) and gc(t, w) are either increasing or decreasing functions

of w, continuation regions can be above or below the linear approximations of (gc)
−1

(t0, α) and
(

gl
)−1

(t, α). The (approximate) defaults can then occur when W l
t and W c

t hit an upper or a lower
boundary. The easiest way to detect if boundaries (7.18) and (7.21) are upper of lower frontiers, is
to check the sign of βl

1 and βc
1. If βl

1 ≤ 0 or βc
1 ≤ 0, the continuation region is above them. Indeed,

if it is not the case, the holding is in bankruptcy at time 0 given that W l
t = 0. The approximate

default times of convex bounds are then defined as hitting times of

τ l = inf
{

t ≥ 0 | − βl
1 + βl

2t+W l
t ≤ 0 , −βl

1 + βl
2s+W l

s > 0∀s < t
}

(7.24)

τ c = inf {t ≥ 0 | − βc
1 + βc

2t+W c
t ≤ 0 , −βc

1 + βc
2s+W c

s > 0∀s < t} . (7.25)

If βl
1 > 0 or βc

1 > 0, the continuation region is below the linear boundaries for the same reason.
The approximate default times are defined then as follows:

τ l = inf
{

t ≥ 0 |βl
1 − βl

2t+W l
t ≤ 0 , βl

1 − βl
2s+W l

s > 0 ∀s < t
}

(7.26)

τ c = inf {t ≥ 0 |βc
1 − βc

2t+W c
t ≤ 0 , βc

1 − βc
2s+W c

s > 0 ∀s < t} . (7.27)

As these are all hitting times of a Brownian motion with drift, the approximate probabilities of
default are then provided by similar expressions to those obtained in section 4, except that the
sign of βl,c

1 plays now an important role:

P(τk ≤ t) = Φ
(

hk
1(t)

)

+ e2β
k
2
βk
1Φ
(

hk
2(t)

)

for k = l or c (7.28)

hk
1(t) = −sign(βk

1 )

(

βk
1 − βk

2 t√
t

)

hk
2(t) = −sign(βk

1 )
βk
1 + βk

2 t√
t

.

The asymptotic probabilities of ruin when βk
1β

k
2 > 0 or βk

1β
k
2 < 0 are respectively 1 and e2β

k
2
βk
1 .

The CDS premium in this setting can be easily computed by formula (5.6) in which we substitute
the probabilities of default by these obtained for random liabilities. We now consider that the
information about the holding is not continuously but as in section 6. We assume that the only
information available at time t has been disclosed at time 0 and that the holding is still active.
The information carried by the filtration (Ft)t is not accessible in continuous time. As previously
the information available to the market is represented by the filtration Gt, and we will work
with the filtrations Gk

t for k = l or c for the approximations. Given the similarities between the
approximate default times for models without and with stochastic liabilities, we can easily infer
that the approximate default probabilities are still provided by the formula (6.1):

P
(

τk > T | Gk
t

)

=
1− Φ

(

hk
1(T )

)

− e2β
k
2
βk
1Φ
(

hk
2(T )

)

1− Φ
(

hk
1(t)

)

− e2β
k
2
βk
1Φ
(

hk
2(t)

) for k = l or c. (7.29)

Furthermore, the estimates of the equity, provided in the next corollary, are obtained in the same
way as in proposition 6.2, except that a particular care must be granted to the sign of β

l,c
1 .

Corollary 7.1. The expected value of Sl
t given the information Gl

t, equals

EQ
(

Sl
t|Gl

t

)

=

NS
∑

i=1

Si
0e

(

µZS
i + 1

2 (σ
ZS
i )

2
)

t
1− Φ

(

h
S,l
1 (i, t)

)

− e2β
l
1(β

l
2
+rSi σZS

i )Φ
(

h
S,l
2 (i, t)

)

1− Φ
(

hl
1(t)

)

− e2β
l
2
βl
1Φ
(

hl
2(t)

)

−
NL
∑

i=1

Li
0e

(

µZL
i + 1

2 (σ
ZL
i )

2
)

t
1− Φ

(

h
L,l
1 (i, t)

)

− e2β
l
1(β

l
2
+rLi σZL

i )Φ
(

h
L,l
2 (i, t)

)

1− Φ
(

hl
1(t)

)

− e2β
l
2
βl
1Φ
(

hl
2(t)

) (7.30)
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where

h
S,l
1 (i, t) =

−sign(βl
1)
(

βl
1 − βl

2t
)

− rSi σZS
i t√

t
h
S,l
2 (i, t) =

−sign(βl
1)
(

βl
1 + βl

2t
)

+ rSi σZS
i t√

t

h
L,l
1 (i, t) =

−sign(βl
1)
(

βl
1 + βl

2t
)

− rLi σ
ZL
i t√

t
h
L,l
2 (i, t) =

−sign(βl
1)
(

βl
1 + βl

2t
)

+ rLi σZL
i t√

t

The expected value of Sc
t given the information Gl

t is obtained by replacing βl
1, βl

2, rSi and rLi
respectively by βc

1, β
c
2, 1 and -1.

CDS premiums can also be calculated by substituting the right approximate probabilities of
default in the formula (6.18).

8 Numerical Applications.

In a first example, we compare the exact and approximate default probabilities of a holding
composed of five business lines that deliver correlated dividends. The initial value of investments,
their volatilities and correlations are respectively set to:

S0 = (20, 20, 20, 20, 20)′ (8.1)

(

σZ
i

)

= (10%, 20%, 30%, 40%, 50%)′ (8.2)

ρ =













1.0 −0.3 −0.6 −0.2 −0.1
−0.3 1 0.5 0.3 0.1
−0.6 0.5 1 0.7 0.2
−0.2 0.3 0.7 1 0.3
−0.1 0.1 0.2 0.3 1













. (8.3)

The risk free rate is equal to r = 2% and the floor triggering the default of the company is set
equal to α = 90. In a following series of tests, multiple levels of α are considered. The numerical
minimization of the criterion (3.12) yields the following γi:

(γi)i = (1.6497, 0.5774, 0.3840, 0.2427, 0.2318)
′

.

The coefficients ri that define the lower convex bound of St are

(ri)i = (0.1050, 0.5714, 0.5742, 0.7448, 0.5673)
′

.

As the first business line is negatively correlated with others, the coefficient r1 is the smallest. The

left graph of figure (8.1) presents the exact inverse functions
(

gl
)−1

(t, α), (gc)
−1

(t, α) and their
linear approximations (4.5) and (4.8), calculated with t0 = 0. In this case, linear approximations
offer a good fit. The right graph of the same figure shows the approximate default probabili-
ties obtained with the lower and upper linear bounds (dotted and dot dash curves). The real
probabilities of default have also been computed by Monte Carlo simulations (5000 runs) with
discretization step ∆t = 0.0005 (continuous curve). Using the same method, we also calculate the
lower convex estimate of default probabilities, defined by (4.3) calculated with the exact inverse

boundary
(

gl
)−1

(t, α) (see dashed line). Probabilities of default computed with the lower convex
bound are not far from the real one. The upper convex estimate of default probabilities is rela-
tively less accurate. As the driving risk processes used are continuous Brownian motions, default
probabilities vanish over a short period. This feature is not necessary observed in reality.
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Figure 8.1: Example of function
(

gl,c
)−1

(t, α) and default probabilities.

Figure 8.2 exhibits estimates of the market value of debts, in function of the floor α. The
accounting value of the debt is set to 90 and the tax rate is null. Two scenarios are considered.
On the left side, the coupon rate is 2% while on the right side, the coupon rate is 2.5%. We
remark that the market value of debts and equity can respectively be minimized and maximized
by a judicious choice of α. The lower approximation being the most relevant, the holding’s owner
optimizes the equity market value by closing his activities when the market value of assets reaches
62.50 for a cost of debts of 2% or 70.00 for a cost of debts of 2.5% .
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Figure 8.2: Market Value of debts as a function of α.
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Figure 8.3: Influence of a delay on probabilities of default (lower approximation).

Figure 8.3 illustrates the influence of a delay in the disclosure of information on the proba-
bilities of default for maturities, estimated with the lower comonotone bound. Two scenarios are
considered. In the first one, the floor is set to α = 70 and is then relatively far from the initial
value value of assets (S0 = 100). In this case, the higher is the time lag after the last publication
of information, the higher are the estimated probabilities of default. In the second scenario, the
floor triggering the default is close to the initial value of assets, α = 90. Here, the influence of
the delay is exactly the opposite and decreases estimated probabilities of default. We explain this
as follows: if the holding is still alive after one or two years, the probability that the total assets
value is far above α is high. After one or two years, the simple fact that the company did not go to
bankruptcy, is sufficient to infer that the company is now in a less critical situation than in the past.

The lack of information also influences the appraisal of debts and equity. This point is illus-
trated in figure 8.4. It exhibits on the left side, the market value of debts (coupon 2.5%, debt
accounting value 90) for different levels of the floor α, and for a delay of one or two years. The
right graph presents the expected value of the total of assets. We observe that the higher is the
delay, the lower is the debt market value and the higher is the expected value of assets, whatsoever
the level of the floor. The difference between the expected market value of assets and debts gives
the market value of the equity, which can also be maximized by a judicious choice of α.
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Figure 8.4: Market values of debts and equity, in function of α.

To end this section, we test the model of holdings financed by stochastic liabilities. We have
considered a firm that invests in two business lines and financed by two random liabilities. The
parameters chosen (initial values, volatilities and correlations) are the following:

S0 = (50, 50)′ L0 = (40, 40)′

(

σZS
i

)

= (10%, 10%)′
(

σZL
i

)

= (20%, 20%)′

ρ =









1 0.3 0.6 0.2
0.3 1 0.5 0.3
0.6 0.5 1 0.7
0.2 0.3 0.7 1









The initial market value of the equity is then 20. The risk free rate is set to r = 2% and the floor
triggering the default of the company is α = 16. The numerical minimization of the criterion (7.9)
yields the following γi:

(γi)i = (0.7724, 0.7621, 0.2560, 0.3756)
′

.

The coefficients ri that define the lower convex bound of St are

(ri)i = (0.7004, 0.7084, 0.9040, 0.7169)
′

.

The left figure of exhibit 8.5 presents convex estimates of probabilities of default. Compared to
the results that we get in previous examples, the lower bound convex estimates are relatively far
from the real probabilities of default, obtained by Monte Carlo simulations. Our approximation
seems less reliable. In this case, as done in Vyncke et al. (2004), we can still work with a weighted
average of estimates to price the debt or the equity. The right graph of figure 8.5 reveals the
influence of a delay in the disclosure of information on the expected market value of the equity,
for different levels α. For the chosen parameters, the higher is the time lag, the lower is the price.
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Figure 8.5: Probabilities of default and expected equity.

9 Conclusions.

This paper investigates an approximating method to assess the credit risk related to a multi-
industry firm. If the market values of subsidiaries are lognormal, the distribution of the total
asset’s firm is not know. In this case, equity and debts cannot be appraised analytically. Convex
bounds allow us to circumvent this drawback. It leads to simple analytical expressions for approx-
imate probabilities of default, equity and debts, of a holding company, both when the complete
information about the holding is released in a continuous way and when only incomplete informa-
tion is available. Numerical applications tend to confirm that probabilities of default estimated
from the lower convex bounds are close to these obtained by Monte Carlo simulations.

The main drawback of our approach is that as the driving risk processes used are Brownian
motions, default probabilities vanish over a short period. This feature is not necessarily observed
in reality. It is possible to remedy to this by using jump processes, but in this case, analytical
tractability is lost. Our approach has however other advantages. It duplicates dependent business
lines. And as the total firm’s asset is a sum of lognormally distributed variables, its distribution
presents more asymmetry and leptokurticity than a single lognormal variable. Furthermore the
managerial implications of our model are multiple. Asymptotic ruin probabilities may be used as
a risk indicator. The management can also use it to determine a threshold triggering the holding’s
default, so as to maximize the shareholder’s interests. And an operator on CDS markets can
eventually use our approach for pricing purposes. Finally, the model can be extended to holdings
financed by stochastic liabilities. However, numerical results seem less persuasive in the case of
stochastic liabilities.
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