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Abstract

In this paper, we elaborate a formula for determining thénugut strike price for a bond put
option, used to hedge a position in a bond. This strike psceptimal in the sense that it
minimizes, for a given budget, either Value-at-Risk or Gtiadal Value-at-Risk. Formulas are
derived for both zero coupon and coupon bonds, which canbasmderstood as a portfolio
of bonds. These formulas are valid for any short rate model avgiven distribution of future

bond prices.

1. INTRODUCTION

The importance of a sound risk management system can haedinterestimated. The advent
of new capital requirements for both the banking (Basel i ansurance (Solvency II) industry,

are two recent examples of the growing concern of reguldtsrthe financial health of firms in

the economy. This paper adds to this goal. In particular, evisicler the problem of determining
the optimal strike price for a bond put option, which is usechédge the interest rate risk of
an investment in a bond, zero coupon or coupon-bearing. dardo measure risk, we focus on
both Value-at-Risk and Conditional Value-at-Risk. Ournyation is constrained by a maximum
hedging budget. Alternatively, our approach can also bd tseetermine the minimal budget a
firm needs to spend in order to achieve a predetermined d@bsdl level. This paper can be seen
as an extension of Ahn et al. (1999), who consider the sant#@grofor an investment in a share.
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2. LOSS FUNCTION AND RISK MEASURES

Consider a portfolio with valuél’; at timet. 1/ is then the value or price at which we buy the
portfolio at time zeroWWr is the value of the portfolio at tim&. The lossl. we make by buying at
time zero and selling at timg is then given byl. = W, — Wr. The Value-at-Risk of this portfolio
is defined as thél — a)-quantile of the loss distribution depending on a time waéwith length
T. A formal definition for theVaR,,  is

Pr[L > VaR, 7| = a. (1)

In other wordsVaR,, 7 is the loss of the worst case scenario on the investmentlat-ax) confi-
dence level at timé&". It is also possible to define théR,, 1 in @ more general way

VaR,r(L) =inf{Y | Pr(L>Y) < a}. 2

Although frequently used, VaR has attracted some critisisFirst of all, a drawback of the
traditional Value-at-Risk measure is that it does not cdreuathe tail behaviour of the losses.
In other words, by focusing on the VaR at, let's say a 5% lewel,ignore the potential severity
of the losses below that 5% threshold. This means that we haviaformation on how bad
things can become in a real stress situation. Thereforeinthertant question of ‘how bad is
bad’ is left unanswered. Secondly, it is not a coherent rigasare, as suggested by Artzner
et al. (1999). More specifically, it fails to fulfil the subatidty requirement which states that
a risk measure should always reflect the advantages of dwags that is, a portfolio will risk
an amount no more than, and in some cases less than, the suma ofks of the constituent
positions. Itis possible to provide examples that showVWa&t is sometimes in contradiction with
this subadditivity requirement.

Artzner et al. (1999) suggested the use of Conditional Va¥aR) as risk measure, which they
describe as a coherent risk measure. CVaR is also known &R, Ovalail Value-at-Risk and is
defined as follows:

1 o
CVaRa,T = a/ VaR[g,T dﬁ (3)
0

This formula boils down to taking the arithmetic averageha tjuantiles of our loss, from O to
on, where we recall thafaR s r stands for the quantile at the leviel- 3, see (1). This formula
already makes clear th@aR,, (L) will always be larger thaVaR,, r(L).

If the cumulative distribution function of the loss is cantbus, CVaR is also equal to the Condi-
tional Tail Expectation (CTE) which for the logsis calculated as:

CTEor(L) = E[L | L > VaRar(L)].

3. THE BOND HEDGING PROBLEM

Analogously to Ahn et al. (1999), we assume that we havepa #iero, one bond with maturity
S and we will sell this bond at tim&’, which is prior toS. In case of an increase in interest rates,
not hedging can lead to severe losses. Therefore, the conuleaides to spend an amoutiton
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hedging. This amount will be used to buy one or part of a bortcbption, so that, in case of a
substantial decrease in the bond price, the put option caxéeised in order to prevent large
losses. The remaining question now is how to choose theegbrike. We will find the optimal
strike prices which minimize VaR and CVaR respectively fgiaen hedging cost. An alternative
interpretation of our setup is that it can be used to caleuta minimal hedging budget the firm
has to spend in order to achieve a specified VaR or CVaR leved. |dtter setup was followed in
the paper by Miyazaki (2001).

3.1. Zero-coupon bond

Let us assume that the institution has an exposure to a b0dyS), with principal K = 1, which
matures at time&, and that the company has decided to hedge the bond valuergyaipercent-
ageh (0 < h < 1) of one put optionP(0, 7', S, X') with strike priceX and exercise daté (with
T < S).
Further, we assume that the distributionYof7’, S) is known and is continuous and strictly in-
creasing. We will denote its cumulative distribution fupat(cdf) under the measure in which we
measure the VaR or the CVaR By r,5)(-). For example when the short-rate model is one of the
following commonly used interest rate models such as Vasioee- and two-factor Hull-White,
two-factor additive Gaussian model G2++, two-factor Heddlrow-Morton with deterministic
volatilities, see e.g. Brigo and Mercurio (2001), thé(l’, S) has a lognormal distribution.
Analogously to Ahn et al. (1999), we can look at the futureueadf the hedged portfolio that
is composed of the bond and the put optio(0, 7', S, X) at timeT" as a function of the form

Hr =max(hX + (1 - h)Y(T,9),Y(T,S)).

In a worst case scenario — a case which is of interest to us -puheption finishes in-the-money.
Then the future value of the portfolio equals

Hr = (1—h)Y(T,S) + hX.

Taking into account the cost of setting up our hedged paotf@thich is given by the sum of the
bond priceY (0, S) and the cost’ of the position in the put option, we get for the value of thesto

L=Y(0,9)+C —((1-h)Y(T,S) + hX), 4)

and this under the assumption that the put option finishéisarmoney.
Note that this loss function can be seen as a strictly deioigésnction f in Y(T, S):

FY(T,8)) :=Y(0,8) + C — (1 — W)Y(T,S) + hX). (5)

VaR minimization
We first look at the case of determining the optimal sttlkkevhen minimizing the VaR under a
constraint on the hedging cost.

Recalling (1) and (4), the Value-at-Risk at anpercent level of a positioil = {Y,h, P}
consisting of a bond” andh put optionsP (which are assumed to be in-the-money at expiration)
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with a strike priceX and an expiry daté’ is equal td
VaRa (L) = Y(0,5) + C — (1 = h)Fy . g (@) + hX), (6)

whereFy ;. (@) is the percentile of the cdfy(z.s), i.e. Pr[Y (T, S) < Fy 7 g (a)] = o

Similar to the Ahn et al. problem, we would like to minimizesthsk of the future value of
the hedged bond/+, given a maximum hedging expenditure More precisely, we consider the
minimization problem

min Y(0,8) +C = ((1 = W) Fyip g (a) + hX)

subject to the restrictionsS = hP(0,7, .5, X) andh € (0, 1).
This is a constrained optimization problem with Lagrangecfion

L(X,h,\) = VaRar(L) — A(C — hP(0,T, S, X)),

containing one multiplicatok. Note that the multiplicators to include the inequalities: 4 and
h < 1 are zero since these constraints are not binding. Takiogaictount that the optimal strike
X* will differ from zero, we find from the Kuhn-Tucker conditien

(0L oP

oL -
e —(X = Fyipg)() +AP(0,T,5,X) =0
oL
DN =C—-hP(0,7,5,X)=0
L 0<h<1 and A>0

that this optimal strikeX* should satisfy the following equation
P
By a change of numeraire, it is well known that the put optiolcgequals the discounted
expectation under the-forward measure of the the pay-off:
P(0,T,8,X)=Y(0,T)E'[(X —Y(T,S)),].

Its first order derivative with respect to the striké gives the cumulative distribution function

Fg(m) of Y/(T', S) under thisI'-forward measure, see Breeden and Litzenberger (1978):
opr T
0—X(O’T’ S, X) =Y (0,T)Fyp,6(X). )

Hence, (7) is equivalent to

P(0,T,8,X) = (X = Fyp.6(a)Y (0, T) F 1,5 (X) = 0.

1In case of an unhedged portfolio, take= h = 0in (4) and in (6) to obtain the loss functidnwith corresponding
VaRq,r(L).
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Important remarks

1. We note that the optimal strike price is independent ofrtbéging costC. This indepen-
dence implies that for the optimal striké*, VaR in (6) is a linear function of (or C):

VaRa,r(L) = Y (0,8) = Fyipg (@) + A(P(0,T, 8, X*) + Fy i 6 (@) — X7).

So, there is a linear trade-off between the hedging expamrdénd the VaR level. It is a
decreasing function since in view of (%’%(O,T, S, X*) < 1 and thus according to (7)

X* = Fyirg(a) > P(0,T, S, X*).

Although the setup of the paper is determining the strikegowhich minimizes a certain

risk criterion, given a predetermined hedging budget, tfaide-off shows that the analysis
and the resulting optimal strike price can evidently alsaubed in the case where a firm
is fixing a nominal value for the risk criterion and seeks thaimal hedging expenditure

needed to achieve this risk level. It is clear that, once fitenal strike price is known, we

can determine, in both approaches, the remaining unknoviabla (either VaR, eithet).

2. We also note that the optimal strike price is higher tharibnd VaR IeveF;(lT,S) (a). This
has to be the case siné¥0, 7', S, X) is always positive and the change in the price of a put
option due to an increase in the strike is also positive. fdsslt is also quite intuitive since
there is no point in taking a strike price which is situatetbivthe bond price you expectin
a worst case scenatrio.

When moreover the optimal strike is smaller than the forwarce of the bond, i.e.

Y(0,5)

Y(0,7)

then the price of put option to buy will be small.

*

3. The assumption of continuity and strictly monotonicitytee distribution ofY' (7', S) can be
weakened. In that case we should work with the general defin(2) of VaR.

CVaR minimization
In this section, we demonstrate the ease of extending olysas#o the alternative risk measure
CVaR (3) by integration of (6):

CVaRar(L) = Y(0,5) + C — hX — ~(1— h) / ’ Fy s (B)dB. )
(6] 0 ’

We again seek to minimize this risk measure, in order to mierpotential losses. The procedure
for minimizing this CVaR is analogue to the VaR minimizatigmocedure. The resulting optimal
strike priceX* can thus be determined from the implicit equation below:

1 [ oP
P(OvTv SvX) - (X - E/O F;(IT,S)(ﬁ)dﬁ)a—X(OvTv SvX) =0, (10)

or, equivalently by (8), from

1 (0%
P(0,T,8,X) — (X — —/0 Fy1,5)(B)dB)Y (0, T) Fy 7.6 (X) = 0.

«
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As for the VaR-case the optimal striké* is independent of the hedging ca@stand CVaR can be
plotted as a linear function @' (or ) representing a trade-off between the cost and the level of
protection.

For the same reason as in the VaR-case, the optimal strikeas to be higher than the bond CVaR

level 2 [0 Fy ir.s)(B)dp.

4. COUPON-BEARING BOND

We consider now the case of a coupon-bearing bond payindfleashC = [y, .. ., ¢,] at maturi-
tiesS = [Sy,...,S5,]. LetT < S;. The price of this coupon-bearing bondihis expressed as a
linear combination (or a portfolio) of zero-coupon bonds:

1=1

As in the previous section, the company wants to hedge itsigo$n this bond by buying a
percentage of a put option on this bond with strikeand maturityZ". In order to determine the
strike X, the VaR or the CVaR of the hedged portfolio at tifids minimized under a budget
constraint. Comparing the results in the previous secto V&R and CVaR minimization for a
hedged position in zero-coupon bond we note that both casemdact be treated together.

We first have a look at the value of a put option on a couponibgdrond as well as at the
structure of the loss function.

Since the zero-coupon bontg7’, S;) all depend on the same short ratd athe vector(Y (7, S;),
....Y/(T,S,)) is comonotonic, see Kaas et al. (2000). By the propertie®wifanotonic vectors,
the coupon-bearing bond CB, S,C) (11) is a comonotonic sum with cumulative distribution
function FZ;(+) under theT-forward measure. This implies that a European option onupao-
bearing bond decomposes into a portfolio of options on the&zidual zero-coupon bonds in the
portfolio, which gives in case of a put with maturityand strikeX:

n

CBP(0,7,8,C,X) =Y &P(0,T,5,X;), with > ¢X;=X. (12)

i=1 i=1

This result, now well-known as the Jamshidian decompasitieas found in Jamshidian (1989)
in case of a Vasicek interest rate model. Kaas et al. (200@jredd this result in a more general
framework of stop-loss premiums and gave an explicit exgoasor theX;:

Xi = (Fyr,59) " (F&s(X)). (13)

Repeating the reasoning of Section 3.1 we may concludentatiorst case scenario the loss of
the hedged portfolio at timé& composed of the coupon-bearing bond (11) and the put opt®n (
equals a strictly decreasing functigrof the random variable CB’, S, C):

L =CB(0,5,C) + C — ((1 - h)CB(T,S,C) + hX) := f(CB(T,S,C)). (14)
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VaR and CVaR minimization
The VaR of this loss that we want to minimize under the comgsad) < h < 1 and(C =
hCBP(0,T,S,C, X), is given by

VaRor(L) = f(Faa (@) = CB(0,8,0) + C — (1 - h)Fgg(a) + hX),  (15)

whereF; stands for the inverse cdf of the coupon-bearing bond umdemeasure in which VaR
(and CVaR) is measured.

By integrating this relation (15), after replacingoy 3, with respect tg3 between the integration
bounds 0 andy, we find for the CVaR of the loss:

CVaR, (L) = CB(0,8,C) + C — hX — é(1 — h) / ’ F&(B)dB. (16)
0

Also here we note the similarity in the expressions for tis& measures (RM) VaR and CVaR
which could be collected in one expression:

RM,, 7 (L) = CB(0,8,C) + C — hX — (1 — h)g(Fcg () (17)
Fag(a) if RM = VaR
with  g(Fgg(a)) = 4 4 (18)

E/ F(B)dB if RM = CVaR.
0

Although the marginal distribution8y- (7 5,y are known, the distributiofcg of the sum can in
general not be obtained. However, in the case of a comormdam we have, see again Kaas et al.
(2000),

Fea(p) =Y _ciFyirg,(p)  forallpe(0,1], (19)
=1

and similarly for the inverse cdfs under tiheforward measure.
We now want to solve the constrained optimization problem

H)}i}rll RM, r(L) subjectedto C'=hCBP(0,7,S,C,X), 0<h<1.

From the Kuhn-Tucker conditions we find that the optimakstprice X* satisfies the following
equation

0CBP
() 5 (0.1.5.6.X) = (20)
Rewriting this equation in terms of the put options on thevttlial zero-coupon bonds cfr. (12),
invoking (19) and using the linearity of the functigr{18), leads to the following equivalent set of
equations:

CBP(0,7,8,C, X) — (X — g(Fs

n n n

oP X,
> aGP(0,T, 8, X:) = (X =Y cig(Fyipg, (@ )))Zciax (0,7, SZ,X)aX 0 (21)
=1 =1 =1
i=1

Gy (23)
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whereX; is defined by (13).
We can further simplify relation (21) by applying relatid) ¢o the strikeX; given by (13), i.e.

) or
0X;
Hence, this derivative is independentiafhich implies in view of (23) that

0,T,8:, X:) =Y (0, T) Fy (1,5 (Fy(r,5) " (Fee(X))) = Y (0, T) Feg(X).

0X; T - . 0Xi
X Y (0,T) Feg(X) Gox

i=1

> c,-g—;(o, T,S;, X;) =Y (0,T)F&(X).  (24)
i=1 i

We introduce the short hand notation
AX = FgB(X)
Substitution of (13), (22) and (24) in (21) leads to the falilog equation that we have to solve

for Ax:

n n

D eP(0,T, 8, (Fr5) " (Ax)) = Y (0, T)Ax Y eil(Frs) " (Ax) = 9(Fyin g, (@)] = 0.
i=1 i=1
Once, we knowA x we immediately have the optimal strike* from (22):

n

X' =Y il Flirs)) " (Ax). (26)

i=1
Remarks
1. We note that also in the case of a coupon-bearing bond tireastrike price is independent

of the hedging cost and that one can look at the trade-off detvwhe hedging expenditure
and the RM level, cfr. Section 3.1.

2. Also here we may weaken the assumption of continuity andtlgtmonotonicity of the
distribution functionsfy (7 s,). In that case we have to invoke Kaas et al. (2000) with a so-
calledn-inverse distribution of a random varialdfewhich is defined as the following convex
combination:

F ' (p) = nFy () + (1= ) Fy ™ (p), pe (0,1), nelo,1],
Fyl(p) =inf{y eR| Fy(y) >p}, pelo,1],
Fy'(p) =sup{y e R | Fy(y) <p}, pel0,1].
Thus relation (12) holds with
Xi= (F):C(T,SZ—))_l(n)(FgB(X))a

wheren € [0, 1] is determined from

n

Z Ci(Fg(T,Si))_l(n)(FgB(X)) =X

1=1
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5. APPLICATION: HULL-WHITE MODEL

As an application, we focus on the Hull-White one-factor mlptirst discussed by Hull and White
in 1990 (see Hull and White (1990)). We choose this modelliee# is still an often used model
in financial institutions for risk management purposess 8e8go and Mercurio (2001)).

Hull and White (1990) assume under the risk-neutral meaguhat the instantaneous interest
rate follows a mean reverting process also known as an GmAdtdenbeck process:

dr(t) = (6(t) —~y(t)r(t))dt + o(t)dZ(t) (27)

with Z(t) a standard Brownian motion und€, and with time dependent parameté(s), v(¢),
ando(t). The parametef(¢) is the time dependent long-term average level of the spetést
rate around whichr(¢) moves,y(t) controls the mean-reversion speed aitd) is the volatility
function. By making the mean reversion lewetime dependent, a perfect fit with a given term
structure can be achieved, and in this way arbitrage candidexy. In our analysis, we will keep
~v ando constant, and thus time-independent. According to Brigh lercurio (2001), this is
desirable when an exact calibration to an initial term dtmecis wanted. This perfect fit then
occurs wherd(t) satisfies the following condition:

2
0(t) = FM(0,0) + yFM(0,6) + (1 ™),

Y
where, '™ (0, ) denotes the instantaneous forward rate observed in thestmamkime zero with
maturity¢.

It can be shown (see Hull and White (1990)) that the expextatnd variance of the stochastic
variabler(t) are:
2

Elr(t)] =m(t) =r0)e ™ +a(t) —a(0)e™ ", Var[r(t)] = s*(t) = g—v(l —e ) (28)
with the expression(t) calculated as follows:
H= o+ 2 (LY
=0+ 5 (S

Based on these results, Hull and White developed an analgipression for the price of a
zero-coupon bond with maturity dafe

Y(t,S) = A(t, S)e  BES O

where
1—6_7(3_” YM(O S) B M o2 —2+t\ B2
B t S — At S — ) (t7S)F (Ovt)_ﬂ(l_e )B (t,S)
(15) = ALS) =gy

with Y™ the bond price observed in the market. Sidde, S) andB(t, S) are independent of(t),
the distribution of a bond price at any given time must be togral with parameterd and X'?:

(¢, 8) = In A(t, S) — B(t, S)m(t), Y(t,9)* = B(t, 5)*s*(t),
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with m(t) ands?(t) given by (28). Thus under the risk neutral measure the ievedof Y (7', S)
is given by
Fy g 5)(p) = el TSIEESTE0 0 € [0,1], (29)

and we can compute the (standard) integral
| Bl (815 = ) [ SO0 — MO g0 ) - £(T,5). (30
0 0

By a change of numeraire it can be shown tHéf", S) remains lognormally distributed under the
T-forward measure but now with paramet&rs and(X7)? given by:

7(7,9) = In <§E8§;) - %(ET(T, S)?, XT(T,S) = X(T, S). (31)

Hence, the inverse cdf of (7', .S) under thel-forward measure is known explicitly:
(F;F(T,S))_l(p) = 6HT(T7S)+Z(T7S)¢71(M7 pE [07 1]7 (32)
as well as the put option price and its derivative with respethe strike:

P0, 7,5, X)=-Y(0,9)P(—di (X)) + XY (0,T)P(—ds(X)),

oP
8—X<O’T’ S, X)=Y(0,T)®(—dy(X)),
with, when taking (31) into account,
1 Y(0,95) 1 (T, S) — In(X)
di(X) = S(T.9) [ln (Y(O,T)) — ln(X)] + §E(T, S) = S(T.5) + (T, 5)
(33)
0(X) = d(X) - 5(T, 5) = LTS = In) (34)

(T, S)

For thezero-coupon casgsubstitution of the relations above in (7) and in (10) githesfol-
lowing implicit relation for the optimal strike*:

_ Y(0,9)9(=d (X))

-1
G(@ (o)) = Y(0,T)®(—dy(X))’
with
I(T,S)+2(T,8) 2~ () if VaR
G- _Je o 35
SO ))) {éenmsyriz T9D(da) — X(T,S)) if CVaR. (39)

For thecoupon-bearing bond casgthe above relations for the distribution and the put option
price hold but withS and X replaced bys; and X;. The expressions (33) and (34) fon( X;) and
dy(X;) can further be simplified in view of (13) and (30):

dl(Xz) == E(T, Sz) - (I)_I(Ax), dg(XZ) = —(I)_I(Ax).
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In this way, the set of equations (25)-(26) to find the optistake X * are equivalent with:

Z C; [—Y((); SZ)(I)((I)_l(AX) — 2(177 Sz)) —+ Y’(O7 T)AXenT(T,Si)+Z(T7Si)<I>—1(AX)]

i=1

=Y (0,T)Ax ZCi [enT(T,SZ—)JrZ(T,Si)@ﬂ(AX) _ G (oY)

1=1

n
X* — ZC_enT(T,SZ-)JFZ(T,Si)qu(AX)
(2 9

i=1

whereG;(®~!(a)) is defined by (35) when replacirgjby ;.
For a complete numerical example we refer to Deelstra e2@0%) and Heyman et al. (2006).

6. CONCLUSIONS

We provided a method for minimizing the risk of a position itv@nd (zero coupon or coupon-
bearing) by buying (a percentage of) a bond put option. Takito account a budget constraint,
we determine the optimal strike price, which minimizes aidaat-Risk or Tail-Value-at-Risk cri-
terion. Alternatively, our approach can be used when a nalmisk level is fixed, and the minimal
hedging budget to fulfil this criterion is desired. From thass of short rate models which result
in lognormally distributed future bond prices, we have sigd the Hull-White one-factor model
for an illustration of our optimization.
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