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Abstract

In this paper, we focus upon a family of matrix valued stochastic processes and study
the problem of determining the smallest time such that their Laplace transforms become infi-
nite. In particular, we concentrate upon the class of Wishart processes, which have proved to
be very useful in different applications by their ability in describing non-trivial dependence.
Thanks to this remarkable property we are able to explain the behavior of the explosion times
for the Laplace transforms of the Wishart process and its time integral in terms of the relative
importance of the involved factors and their correlations.
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1 Introduction

In this paper, we study the explosion times of different Laplace transforms of a class of Wishart
processes: these are matrix valued stochastic processes which are very useful in various appli-
cations by their ability in describing non-trivial dependence. The Wishart process has been in-
troduced by Bru [5] and can be viewed as the matrix analogue of the squared Bessel processes
(see e.g. Jeanblanc et al. [25]). The Wishart process belongs to the class of affine processes on
positive semidefinite matrices characterized by Cuchiero et al. [10], namely time homogeneous
and stochastically continuous Markov processes for which the Laplace transform has exponential-
affine dependence on the initial state. In the following, we will always consider Wishart processes
without jumps. They can be seen as matrix extensions of the Cox–Ingersoll–Ross (CIR) process
(Cox et al. [9]) or the Heston [24] volatility process. The Wishart process has been introduced
into the domain of finance by Gouriéroux and Sufana [20, 21] and Gouriéroux et al. [22]. It has
found applications in various fields like multivariate option pricing (see e.g. Da Fonseca et al.
[12]), yield curve modelling (see e.g. Buraschi et al. [6], Gnoatto [18], Chiarella et al. [7]), credit
risk (Gouriéroux and Sufana [20]) and commodity derivative pricing (Chiu et al. [8]).

The great advantage of the Wishart specification in comparison with classical affine processes
with state space Rm+ × Rn lies in the flexibility to catch non-trivial correlation among positive
factors (i.e. the diagonal elements of the Wishart process). For example, it is well-known that
multi-dimensional CIR processes should be driven by independent Brownian motions in order to
remain in the class of affine processes (see e.g. Grasselli and Tebaldi [23]). In other words, the
only dependence between multivariate CIR processes can be obtained by introducing dependence
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in the drift terms, which is well-known to be a rather weak form of dependence, see e.g. Dai and
Singleton [14].

Actually, in the literature there are already explicit expressions for a few Laplace transforms
of particular Wishart specifications. Indeed, Bru [5] derives under some assumptions the joint
Laplace transform of the Wishart process and its integral. Afterwards, e.g. Ahdida and Alfonsi [1]
consider the general (continuous) version of the Wishart case and they derive the explicit Laplace
transform of the process alone. Gauthier and Possamaı̈ [16] study special dynamics of the Wishart
specification and provide a closed-form expression for the Laplace transform of the integrated
process. Gnoatto and Grasselli [19] extend the result of Bru [5] on the joint Laplace transform
under weaker assumptions on the Wishart family, which is finally extended by Alfonsi et al. [2].
As far as we know, no explicit characterization for the corresponding explosion times is available.
One remarkable exception is the paper of Da Fonseca [11], who adopted standard techniques from
stochastic control (see e.g. Wonham [35]) in order to provide a sufficient condition for the non-
explosion of such joint Laplace transforms of the Wishart process and its integral. Da Fonseca
[11] employed the same commutativity assumption on the parameters that has been introduced by
Gnoatto and Grasselli [19] in order to obtain a closed-form solution for the joint transform. Un-
fortunately, such assumption is not satisfied ex-post in any of the calibration experiments on real
data (see Subsections 4.1 and 4.2 in Da Fonseca [11]), thus meaning that one should go beyond
the standard techniques for Riccati equations and investigate in more detail the subject in order
to be able to say something more precise on the explosion of the corresponding Riccati ODEs.
This is a highly non-trivial problem since it involves all the parameters of the process together
with the frequencies of the Laplace transform. In this paper we fix a first step in this new direc-
tion. We will concentrate on some parameter restrictions which already go beyond the correlation
modelling by the classical affine family (see e.g. Da Fonseca et al. [13]). In this perspective, our
paper already represents a relevant contribution to the literature on Wishart processes and gives
some intuitions on the role of correlations in the explosion of the transform typically encountered
in the previous models. In the numerical illustrations, we focus on the special case where there is
no mean-reversion: we notice that these processes received a lot of interest in many fields despite
the fact that they have a rather simple structure. For example in insurance, stochastic mortality
processes are very well calibrated by non mean-reverting processes, see e.g. Luciano and Vigna
[32], or Jevtić et al. [27]. Also in mathematical physics, Katori and Tanemura [28] consider non
mean-reverting Wishart processes for studying noncolliding diffusion particle systems.

Let us now introduce the notation in order to state formally the problem we are investigating.
Given a filtered probability space and a d × d matrix Brownian motion W (i.e. a matrix whose
entries are independent Brownian motions under P), the Wishart process Xt is defined as the
solution of the d× d-dimensional stochastic differential equation of the form

dXt = δΣ2dt+MXtdt+XMTdt+
√
XtdWtΣ + ΣdW T

t

√
Xt, t ≥ 0, (1)

X0 = x ∈ S+
d , (2)

where Σ ∈ Sd ∩ GLd (the set of symmetric and invertible d × d matrices), M ∈ Md (the set of
d × d matrices) and δ ≥ d − 1. In the case where δ ≥ d + 1, the process takes values in S++

d ,
i.e. the interior of the cone of positive semidefinite symmetric d×d matrices denoted by S+

d . This
family of processes is denoted by WIS(δ,M,Σ, d, x). In the case where the matrix M is negative
semidefinite the mean-reversion ensures that the process is stationary.
In this paper, we start by proving an explicit expression of the joint Laplace transform Ψu,µ for
X ∈WIS(δ,M,Σ, d, x) which is defined as follows

Ψu,µ(t) = Ex
[
e−Tr(uXt)−Tr(

∫ t
0 µXsds)

]
u, µ ∈ Sd, t ≥ 0, (3)
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where Tr denotes the trace operator. The time of explosion for the Laplace transform is defined as

Texp = inf{t ∈ R+ such that Ψu,µ(t) = +∞} (4)

and Texp = +∞ if the previous set is empty. These times are in a natural way related with
applications in finance. The explosion time of the Laplace transforms of the log-price is indeed
deeply related with the moment explosion time for the corresponding asset price. For example,
Andersen and Piterbarg [3] demonstrate that the Heston model has the undesirable property that
moments of order higher than one can become infinite in finite time. As arbitrage-free price
computation for a number of important fixed income products involves calculating expectations
of functions with super-linear growth, such lack of moment stability is of significant practical
importance. Other references dealing with moment explosions are Lee [31], Friz and Keller-Ressel
[15], Glasserman and Kim [17], Jena et al. [26], Keller-Ressel and Mayerhofer [30]. We notice
that in the multivariate case, we are not aware of analytical expressions for the corresponding
explosion times.
The rest of this paper is organized as follows. In Section 2, we state our main result of the paper,
namely an explicit expression of the time of explosion of the joint Laplace transform. Next,
we concentrate upon the explosion time of the Laplace transform of the integrated process. For
completeness, we focus also upon the Laplace transform of the integrated process belonging to
WIS(δ,Σ, d, x), corresponding to Wishart processes without drift, i.e. M = 0. We derive in this
case bounds in terms of eigenvalues of the diffusion matrix Σ2 and the frequency matrix µ by
using a result due to Ostrowski [33]. In Section 3, a numerical example gives some insights into
the importance of the Wishart dependence structure in explaining the explosion time. We end this
paper with some conclusions in Section 4.

2 The joint Laplace transform of the process

In this section we focus upon the joint Laplace transform of the Wishart process in WIS(δ,M,Σ, d, x)
in (1) and its integral and we study the corresponding explosion time. Expressions for the joint
Laplace transform for special cases of Wishart processes are given for instance in Bru [5], Gnoatto
and Grasselli [19] and Alfonsi et al. [2].

2.1 Explicit expression for the joint Laplace transform

In the following proposition we recall the explicit expression of the joint Laplace transform Ψu,µ

of X ∈WIS(δ,M,Σ, d, x) from Alfonsi et al. [2].

Proposition 1. Let Ψu,µ be the joint Laplace transform of X ∈ WIS(δ,M,Σ, d, x) in (3), where

dXt = δΣ2dt+MXtdt+XMTdt+
√
XtdWtΣ + ΣdW T

t

√
Xt, t ≥ 0, (5)

X0 = x ∈ S+
d , (6)

and where we assume that {
Σ ∈ Sd ∩GLd
MΣ2 = Σ2MT .

(7)

Then, for t ≥ 0, we have:

Ψu,µ(t) = Ex
[
e−Tr(uXt)−Tr(

∫ t
0 µXsds)

]
(8)

=
exp

(
− δ

2Tr(M)t
)

(det(Fu,µ(t))
δ
2

exp

(
−1

2
Tr
(
F
′
u,µ(t)Fu,µ(t) + Σ−1mΣ

)
Σ−1xΣ−1

)
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with

Fu,µ(t) =

( ∞∑
n=0

µ̃n

(2n+ 1)!
t2n+1

)
ũ+

∞∑
n=0

µ̃n

(2n)!
t2n (9)

and µ̃ = 2ΣµΣ + Σ−1M2Σ and ũ = 2ΣuΣ− Σ−1MΣ.

Remark 1. 1. If µ̃ is positive semidefinite:

Fu,µ(t) = cosh(t
√
µ̃) +

√
µ̃
−1

sinh(t
√
µ̃)ũ, (10)

F
′
u,µ(t) = cosh(t

√
µ̃)ũ+ sinh(t

√
µ̃)
√
µ̃. (11)

2. If µ̃ is negative semidefinite:

Fu,µ(t) = cos(t
√
−µ̃) +

√
−µ̃−1 sin(t

√
−µ̃)ũ, (12)

F
′
u,µ(t) = cos(t

√
−µ̃)ũ− sin(t

√
−µ̃)

√
−µ̃. (13)

2.2 Explicit explosion time for the joint Laplace transform

In the following theorem we derive an explicit expression for the explosion time of the joint
Laplace transform of the Wishart process X ∈WIS(δ,M,Σ, d, x) and its integral.

Theorem 1. Let Ψu,µ be the joint Laplace transform of X ∈ WIS(δ,M,Σ, d, x) in (3), where we
make the same assumption (7) as in Proposition 1. Then, under the constraints that

uΣ2µ = µΣ2u
M2Σ2u = Σ2uM2

MTµ = µM,
(14)

the explosion time Texp of Ψu,µ is given by

Texp = inf
i∈I

{
1{λi≥0, βi≥0}(+∞) + 1{λi≤0}

[
1√
−λi

arctan

(
−
√
−λi
βi

)
+ 1{βi≥0}

π√
−λi

]
+ 1{λi≥0, βi<0}

[
1{
√
λi≥|βi|}(+∞) + 1{

√
λi<|βi|}

1√
λi

artanh

(
−
√
λi

βi

)]}
, (15)

where I = {1, 2, .., d} and λi (resp. βi) denote the eigenvalues of µ̃ = 2ΣµΣ + Σ−1M2Σ (resp.
ũ = 2ΣuΣ− Σ−1MΣ).

Proof. It is easy to check that the conditions (14) imply that the commutative assumption µ̃ũ = ũµ̃
holds. Indeed,

µ̃ũ = 4ΣµΣ2uΣ + 2Σ−1M2Σ2uΣ− 2ΣµMΣ− Σ−1M3Σ,

ũµ̃ = 4ΣuΣ2µΣ + 2ΣuM2Σ− 2Σ−1MΣ2µΣ− Σ−1M3Σ.

The fact that the first (resp. second) terms are equal follows immediately from the use of the first
(resp. second) condition in (14), whereas the equality of the third terms follows from using the
inverse of Σ, next the third condition in (14), and finally the assumption (7):

−2ΣµMΣ = −2Σ−1Σ2µMΣ = −2Σ−1Σ2MTµΣ = −2Σ−1MΣ2µΣ.

Since the commutative assumption µ̃ũ = ũµ̃ is satisfied, the matrices µ̃ and ũ are simultane-
ously diagonalizable, in particular with real eigenvalues.
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We denote the eigenvalues of µ̃ by λj , the ones of ũ by βj , for j = 1, . . . , d and by Λ1 = diag(λj)
and Λ2 = diag(βj) the diagonal matrices in eigenbasis.
From equation (8) we notice that the explosion time is given by the first time t that det (Fu,µ(t)) =
0. Using the simultaneous diagonalization, the determinant of Fu,µ(t) can be expressed as the fol-
lowing product:

det (Fu,µ(t)) = det

( ∞∑
n=0

Λn1
(2n)!

t2n + Λ2

∞∑
n=0

Λn1
(2n+ 1)!

t2n+1

)

=

d∏
j=1

( ∞∑
k=0

(
λkj

(2k)!
t2k + βj

λkj
(2k + 1)!

t2k+1

))
.

Therefore there is an explosion time if at least one of the factors in this product becomes zero.
Without loss of generality we focus upon the ith factor of this product and we assume that all other
factors in the product are different from zero. We denote the ith factor of this product by si(t):

si(t) :=

∞∑
k=0

λki
(2k)!

t2k + βi
λki

(2k + 1)!
t2k+1. (16)

We then consider several cases in order to determine a general expression for the explosion time.

• If λi ≥ 0 then si(t) can be expressed as:

si(t) = cosh(
√
λit)

(
1 + βi

√
λi
−1

tanh(
√
λit)

)
, (17)

therefore if λi ≥ 0 and βi ≥ 0 it follows that si(t) is strictly positive and as a consequence
there exists no explosion time in this case (which is also evident by looking at (16)). If
λi ≥ 0 and βi < 0 then the function si(t) can be equal to zero since artanh(x) is defined
for x ∈] − 1, 1[. Indeed we are looking at the smallest time instant t, so that the explosion
time is given by

Texp =
1√
λi

artanh

(
−
√
λi

βi

)
,

provided that |βi| >
√
λi. If λi = 0 and βi < 0, we notice that by taking the limit for

λi → 0 we get Texp = −1/βi which also agrees with (16). Finally, in the case where
λi ≥ 0, βi < 0 and |βi| ≤

√
λi of course there exists no explosion time.

• If λi < 0 then si(t) can be expressed as:

si(t) = cos(
√
−λit) + βi

√
−λi

−1
sin(

√
−λit).

Noticing that arctan(x) ∈] − π
2 ,

π
2 [ for all x ∈ R and that the explosion time should be a

positive value, we will solve the equation
√
−λi
−βi

= tan
(√
−λit− kπ

)
, k ∈ Z.

If βi < 0, then k = 0 will already lead to a positive explosion time

Texp =
1√
−λi

arctan

(
−
√
−λi
βi

)
.

5



If βi ≥ 0, then k = 1 will lead to the smallest positive time of explosion

Texp =
1√
−λi

arctan

(
−
√
−λi
βi

)
+

π√
−λi

1{βi≥0}.

Finally, the result follows by taking the infimum over the times that annulate one of the factors.

In order to give a link with the existing literature, we notice that in the one-dimensional Heston
volatility setting, the analogue of formula (15) has already been derived by Andersen and Piterbarg
[3], see also Keller-Ressel [29].

Further, the results of Theorem 1 are useful in the context of Section 4.1.1 of Gnoatto and Grasselli
[19]. Indeed, following the lines of this paper, the moment explosion problem related to the cal-
culation of moments for the stochastic volatility model proposed in Da Fonseca et al. [13] reduces
to the computation of the explosion time of a Laplace transform of a Wishart process as in equa-
tion (1). As a consequence, the corresponding explosion time can be determined using Theorem 1.

2.3 The Laplace transform of the integrated process

In this subsection, we first study the explosion time of the Laplace transform of the integrated
process X ∈ WIS(δ,M,Σ, d, x), denoted by Ψµ. We limit ourselves to M ∈ S−d , the cone of
negative semidefinite symmetric d×dmatrices, which is the most interesting case in finance since
then the process is mean-reverting and stationary. Note that Ψµ = Ψ0,µ, so that in this case the
first two assumptions of (14) are always satisfied.

Corollary 2. Let Ψµ be the Laplace transform of the integrated process ofX ∈ WIS(δ,M,Σ, d, x)

Ψµ(t) = Ex
[
e−Tr(

∫ t
0 µXsds)

]
µ ∈ Sd, t ≥ 0,

where we make the same assumption (7) as in Proposition 1. Then, under the constraints that
M ∈ S−d and that

MTµ = µM, (18)

the explosion time Texp of Ψµ is given by

Texp = inf
i∈I

{
1{λi≥0}(+∞) + 1{λi≤0}

[
1√
−λi

arctan

(
−
√
−λi
βi

)
+

π√
−λi

]}
, (19)

where I = {1, 2, .., d} and λi (resp. βi) denote the eigenvalues of µ̃ = 2ΣµΣ + Σ−1M2Σ (resp.
ũ = −Σ−1MΣ).

Proof. Since u = 0, we have that ũ = −Σ−1MΣ. Moreover, the matrices Σ−1MΣ and M
are similar and thus share the same eigenvalues. Since M is negative semidefinite in this mean-
reverting case, ũ has positive eigenvalues βi and thus (15) reduces to (19).

Remark 2. Let us now concentrate upon the integrated process (thus u = 0) in the case without
drift, thus M = 0. If ΣµΣ is positive semidefinite (or equivalently µΣ2 ∈ S+

d ) then there is no
explosion for Ψµ. Otherwise, by taking the (right handside) limit for βi tending to 0 in (19), the
explosion time Texp of Ψµ is easily shown to be finite and it is given by

Texp =
π

2
√
−λmin

, (20)
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where λmin denotes the minimum (negative) eigenvalue of 2µΣ2. We further remark that in the
one-dimensional case where Σ = 1 and µ is a scalar, the explosion time is coherent with the one
of a squared Bessel process with dimension δ starting from x (BESQ(δ)(x)), namely

Texp =
π

2
√
−2µ

.

This follows immediately from the expression of the Laplace transform of the integrated one-
dimensional squared Bessel process with dimension δ, which can be found e.g. in Proposition
6.2.5.5 in Jeanblanc et al. [25].

Note that even in the case of zero drift, M = 0, Corollary 2 gives the explosion time in terms
of the properties of the matrix ΣµΣ. In Theorem 3 below, we give some bounds for the explosion
time of the integrated processX ∈WIS(δ,Σ, d, x) in terms of the properties of the matrices µ and
Σ2. These bounds will be derived by using a result due to Ostrowski [33], which we first recall.

Proposition 2 (Ostrowski). Let A and B be two Hermitian matrices that are congruent to each
other through A = SBS> (with S invertible), with eigenvalues resp. µ1 ≤ µ2 ≤ ... ≤ µd and
γ1 ≤ γ2 ≤ ... ≤ γd. For all γk 6= 0, it then follows that

σmax ≥
µk
γk
≥ σmin,

where σmax (resp. σmin) is the maximum (resp. the minimum) eigenvalue of the (positive definite)
matrix SS>.

Theorem 3. The explosion time for the Laplace transform Ψµ of the integrated process X ∈
WIS(δ,Σ, d, x) (with µ not positive semidefinite) belongs to the following interval:

π

2
√
−2γminσmax

≤ Texp ≤
π

2
√
−2γminσmin

, (21)

where γmin denotes the minimum (negative) eigenvalue of µ and where σmax (resp. σmin) is the
maximum (resp. minimum) eigenvalue of the (positive definite) matrix Σ2.

Proof. We start by using the fact that ΣµΣ and µ share the same inertia. Indeed, if we denote the
eigenvalues of µΣ2 by αi, i = 1, . . . , d such that

α1 ≤ . . . ≤ αk < αk+1 = 0 = . . . = 0 = αh < αh+1 ≤ ... ≤ αd,

then the eigenvalues γi, i = 1, . . . , d of µ have the same structure, that is

γ1 ≤ . . . ≤ γk < γk+1 = 0 = . . . = 0 = γh < γh+1 ≤ . . . ≤ γd.

From the Proposition of Ostrowski it follows that if the eigenvalue αi 6= 0 (and therefore also
γi 6= 0) then

σmax ≥
αi
γi
≥ σmin,

where σmax ≥ σmin > 0. Hence, for negative eigenvalues γi, i = 1, . . . , k, this inequality can be
rewritten as follows

γiσmax ≤ αi ≤ γiσmin,

and in particular for the minimum eigenvalue γ1 = γmin the following inequalities hold

γminσmax ≤ αmin ≤ γminσmin.
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Hence, by observing that λmin in equation (20) denotes the minimum eigenvalue of 2µΣ2 and
αmin is as defined above the minimum eigenvalue of µΣ2, we easily find the expression of αmin

in function of the explosion time, so that

−γminσmin ≤
π2

8T 2
exp

≤ −γminσmax,

which yields the result.

As a conclusion, this theorem allows to consider seperately the impact of the dependence structure
(given by matrix Σ2) and the impact of the different factors (measured by the frequency matrix
µ) in the determination of an upper bound and a lower bound of the explosion time. Indeed, the
reverse side is that equation (21) no longer gives the explosion time in a closed-form expression,
but as contained in an interval with bounds in function of the matrices Σ2 and µ.

3 Numerical Illustrations

In this section, we study the impact of the off-diagonal parameters of Σ2 on the explosion time
of the joint Laplace transform. In order to understand the role of these factors we focus on the
special case where there is no mean-reverting term (i.e. M = 0). When Σ is a diagonal matrix,
the corresponding Wishart process can be seen as a multidimensional squared Bessel process with
independent components, see e.g. Benabid et al. [4]. As a consequence, in that case the problem of
determining the explosion time reduces to a one dimensional problem since the Laplace transform
splits into a product. Therefore, in this example we investigate the role of the correlation among
the positive factors in the behavior of the explosion time. Although the example is chosen to be as
simple as possible, we are nevertheless able to show some new features in the story which go far
beyond what is possible to describe by using the classical affine framework.

We consider the following matrices for Σ2, µ and u

Σ2 =

(
1 α
α 1

)
, µ =

(
a 0
0 a

)
, u =

(
b 0
0 b

)
,

where α, a, b are real numbers, with α2 < 1 in order to grant the positivity of Σ2. We notice that in
these settings, condition (14) reduces to uΣ2µ = µΣ2u and this is clearly satisfied. Since further
ΣµΣ ∈ S+

d and ΣuΣ ∈ S+
d , assumption (7) is also fulfilled. We take the same frequencies for

X11 andX22 in the Laplace transform since we are especially interested in the impact of the factor
X12. It is indeed this factor that causes correlations and dependence between X11 and X22 which
cannot be reproduced in the classical state space domain. Note that the case α = 0 corresponds to
the independent classical affine case.

3.1 Explosion time as a function of the dependence between the positive factors

The next figure shows the explosion time as a function of α when the values of the parameters of
the joint Laplace transform of the Wishart process are fixed. We take for the parameters in this
example : α ∈ [0, 1[, a = 2 and b = −3. In this case, the joint Laplace transform becomes for
t ≥ 0:

Ψu,µ(t) = Ex
[
e−Tr(uXt)−Tr(

∫ t
0 µXsds)

]
= Ex

[
e3(X

11
t +X22

t )−2
∫ t
0 (X

11
s +X22

s )ds
]
.

Figure 1 shows that the explosion time decreases when α increases. This can be explained in the
following way. If α is positive, the two diagonal elements of the Wishart process have tendency
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Figure 1: Explosion time for Ψu,µ for a = 2, b = −3

to be positively correlated and then they will contribute in the same way to the explosion. Indeed,
it is well-known that the quadratic covariation between the two diagonal elements of the Wishart
process is given by

d〈X11, X22〉t = 4X12
t (Σ11Σ12 + Σ21Σ22)dt = 4αX12

t dt

and the drift term of X12
t is positive since it equals δα. Hence the covariation has tendency to be

positive.
In this example, the eigenvalues are resp. λ1 = 4(1 + α), λ2 = 4(1 − α), β1 = −6(1 + α) and
β2 = −6(1− α). Since the function x artanh(x) is increasing on [0, 1[, one easily finds that

Texp =
1√

4(1 + α)
artanh

(
2

3
√

4(1 + α)

)
.

Thanks to the closed-form expression of the explosion time, we can now confirm the intuition
that the more the positive factors are positively correlated, the sooner the explosion time will take
place. On the contrary, if the positive factors are (close to be) independent then the explosion time
is larger.

3.2 Explosion time for α fixed

Now we represent the explosion time for different values of a and b when the parameter α is fixed.
We choose two different values for α, namely α equal to 0 or 1

2 .
In the next figures the red surface corresponds to α = 0 while the green one corresponds to α =
1/2. Figure 2 shows clearly the region where the explosion time is infinite (which is represented on
the figure by the level of 50) for the different values of α. Moreover we observe that the maximal
domain for the joint Laplace transform is greater when α decreases. In particular, Figure 3 shows
for a ∈ [0, 5] and b ∈ [−1.6, 0] how the border of the maximal domain moves when α increases.
Figure 4 corresponds to Figure 2 where we reduced the height to 1.5. Figure 5 represents a rotated
view of Figure 4.

From the Figures 4 and 5 we clearly see that the value of the explosion time is smaller when α
increases for a and b fixed, a conclusion which was already made in the setting of Figure 1, namely
when the two positive factors have tendency to be positively correlated as explained by and below
equation (22).
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Figure 2: Explosion time for Ψu,µ for α = 0 and α = 1/2

Figure 3: Border of the maximal domain for Ψu,µ for α = 0, α = 1/2, α = 0.999

4 Conclusion

In this paper, we have investigated the explosion times of the Laplace transform for a class of
Wishart processes. Thanks to the ability of these processes to produce non-trivial dependence
between the positive factors, we are able to explain the behavior of the explosion time in terms
of the relative importance of the involved factors and their dependence structure. These results
extend considerably known properties in the classical affine setting where only one dimensional
formulae are available in closed-form for explosion times. We also provided some numerical
experiments in order to get more insights into the impact of the analytical results. Of course a
complete numerical investigation is beyond the scope of the paper: the interested reader can find
more numerical results in the PhD thesis of Van Weverberg [34].
From the theoretical side, there is still interesting work that could be done in order to allow under
weaker conditions for the general case where the process has a general mean-reversion.
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Figure 4: Explosion time for Ψu,µ for α = 0 and α = 1/2

Figure 5: Explosion time Ψu,µ for α = 0 and α = 1/2
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