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Abstract

Albrecher et al. (2008) have proposed model-independent lower
bounds for arithmetic Asian options. In this paper we provide an al-
ternative and more elementary derivation of their results. We use the
bounds as control variates to develop a simple Monte Carlo method
for pricing contracts with Asian style features. The conditioning idea
that is inherent in our approach also inspires us to propose a new semi-
analytic pricing approach. We compare both approaches and conclude
that they both have their merits and are useful in practice. In particu-
lar, we point out that our newly proposed Monte Carlo method allows
to deal with Asian style products that appear in insurance (e.g. unit
linked contracts) in a very efficient way, and outperforms other known
Monte Carlo methods that are based on control variates.
Keywords: Asian style options, conditional expectation, control vari-
ates, stochastic clock.

1 Introduction

An Asian option is a derivative whose pay-off is based on the average of
the trajectory of an underlying primitive asset. Such smoothing is often re-
garded as a desired protection against unexpected and brutal changes in
the value of the underlying1. The same averaging feature also appears nat-
urally when compounding or discounting cash flows, and hence Asian-style
payoffs crop up in finance and actuarial science naturally. Among others we
mention unit linked products (see e.g. Schrager and Pelsser (2004)), ratchet
equity indexed annuities (with Asian-end design) (see e.g. Ballotta (2010)
or Lin and Tan (2003)) and variable annuities with flexible premiums (see
e.g. Milevsky and Posner (2003)). Technically speaking Asian options also

1In contrast with standard calls they are less sensitive to speculators who could drive up
the gains from the option by manipulating the price of the underlying asset near maturity
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appear in other disciplines such as physics (see e.g. Romeo et al. (2003)) and
engineering (see e.g. Fenton (1960)). Unfortunately the averaging and thus
the path-dependence involved makes options with Asian-style features much
harder to value than their plain vanilla counterparts, and this even under
the standard Black-Scholes model for the financial market. Hence there has
always been a great interest of the academic community in Asian options;
see e.g. Boyle and Potapchik (2008) for an overview. They also exist in dif-
ferent flavors but in this paper we focus on the discretely monitored fixed
strike Asian option with arithmetic averaging.

We make several contributions in this paper. Our first contribution is
that we derive model-independent lower bounds for Asian options valid in
a rather general market setting. Model-independent bounds are important
because they are solely implied by information available in the market and
hence are not prone to model error nor incompleteness of financial markets.
The bounds we obtain are closely tied to the ones appearing in Albrecher
et al. (2008), but are here obtained in a more straight-forward way. Our
approach does not make use of ad-hoc probabilistic arguments but relies
on rather simple conditioning techniques combined with well established
actuarial theory on stop-loss bounds. This result is also appealing as similar
conditioning arguments can be useful to derive bounds for other options. In
this paper, we show that the idea of conditioning is also crucial in proposing
a new semi-analytic approach.

Our second contribution is that, in the context of a subordinated Brow-
nian motion for modelling the stock returns, we present a semi-analytic
pricing method using a two-step approach. The idea of this method is that
in a first step we condition on the stochastic clock which makes the nature
of the problem multi-variate normal and allows us to make use of very accu-
rate closed form approximations that we apply conditionally. Next, we use
Monte-Carlo simulation to account for the stochasticity of the clock itself.
This method is astonishing fast and provides tight lower bound approxima-
tions. The budget for carrying out simulations is important when economic
(real-world) scenarios interplay with (risk neutral) pricing, a situation which
appears when assessing the risk of a portfolio of financial instruments over
a given horizon (e.g. one year). In these instances this method appears to
provide an attractive trade-off between accuracy and efficiency.

Monte-Carlo simulation is a classical approach to value derivatives. It
combines flexibility with accuracy, i.e. asymptotically the simulated value
converges to the true value. The drawback is that the variance on the es-
timate decreases slowly which creates room for potentially attractive im-
provements. Our third contribution is that we show how the bounds that we
derive can also be used as so-called control variates to increase the efficiency
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of traditional Monte-Carlo schemes. We compare this method with other
promising control variate approaches that were recently proposed by Dingec
and Hormann (2012) and by Fusai and Meucci (2008). Several numerical
experiments allow us to conclude that our approach is outperforming when
pricing insurance contracts with Asian style features such as unit linked con-
tracts or variable annuities with flexible premiums. In contrast, the method
of Fusai and Meucci (2008) is better adapted when pricing contracts with a
shorter maturity.

The structure of the paper is as follows. In Section 2 we derive model-
independent lower bounds that were introduced in Albrecher et al. (2008) in
a more straightforward way. In Section 3 we discuss the use of these bounds
as control variates in Monte-Carlo simulations. In Section 4 we introduce
the market setting that we focus on, namely a subordinated Brownian mo-
tion framework with as particular examples the Variance Gamma and the
Normal Inverse Gaussian models. Section 5 is devoted to the derivation of
analytical expressions for the lower bounds that we use as control variates in
the setting of the Variance Gamma and the Normal Inverse Gaussian mod-
els. Section 6 presents a second approach for deriving precise and efficient
estimations for the price of an Asian option. Several sets of numerical results
are discussed in Section 7. Section 8 provides some extensions, in particular
ratchet equity-indexed annuities and unit-linked insurances are discussed.
Section 9 concludes the paper.

2 Model-Independent Bounds for Asian Options

The bounds we propose to price Asian options efficiently are rooted in ac-
tuarial theory on stop-loss order. We first define this ordering concept and
provide a modest accompanying result that we further need in the paper.
Next we derive three model-independent lower bounds for Asian options.
These can also be found in Albrecher et al. (2008) but are here derived in a
more straightforward way.

2.1 Stop-loss Bounds

Stop-loss order is a well established concept in the actuarial literature. It
can be formally defined as follows.

Definition 1 (stop-loss order) Let X and Y be two random variables.
We say that the random variable2 X is smaller than Y in stop-loss order,
denoted as X ≤sl Y, if for all d ∈ R it holds that E[Max(X − d, 0)] ≤
E[Max(Y − d, 0)].

2In the remainder of the paper all expectations are tacitly assumed to exist.
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It is well known that X ≤sl Y ⇔ E[v(X))] ≤ E[v(Y )] for all increasing
convex functions v, which explains why stop-loss order also appears in the
literature under the name increasing convex order.3A well-known stop-loss
lower bound for X is obtained by conditioning, i.e. for any random variable
Z it holds that,

E[X | Z] ≤sl X, (1)

where Z can be any random variable. This result is also known as Jensen’s
inequality and is instrumental in this paper. A sufficient condition for X ≤sl

Y is that E[X] ≤ E[Y ] and their respective distribution functions cross
only once (i.e. there exist a real c so that FX(x) ≤ FY (x) for x ≤ c and
FX(x) ≥ FY (x) for x ≥ c). See also Müller and Stoyan (2002) for example.
It is then also clear that when g and h are non-decreasing,

g(X) + E[h(X)] ≤sl g(X) + h(X). (2)

This last inequality will also be often used throughout the paper.

2.2 Asian options

In this paper we use the set-up and the notation from Albrecher et al. (2008).
Hence we consider an arbitrage-free financial market containing a risky asset
with price process {St, t ≥ 0} and a risk-free asset yielding the continuously
compounded risk-free rate r. Let P denote the physical probability measure.
We consider the arithmetic Asian option with payoff at maturity T > 0
given by

Max (HT −K, 0) .

Here

HT =
1

n

n∑
i=1

Sti ,

K is the strike and the ti (i = 1, 2, ..., n) are the nmonitoring times. Without
loss of generality we assume that tn = T. The absence of arbitrage oppor-
tunities implies there is an equivalent martingale (also called risk neutral)
measure Q such that

E[Ss | St] = Ste
r(s−t) s ≥ t ≥ 0, (3)

holds, where the expectation is taken with respect to Q. Unless otherwise
mentioned all expectations appearing in this paper are Q−expectations. The
arbitrage-free value of the Asian option at t = 0 is denoted by AC(K,n)
and is determined by

AC(K,n) = e−rTE[Max (HT −K, 0)]. (4)

3For more details on properties of stop-loss order and its applications in actuarial
science we refer to Shaked and Shanthikumar (1994) or Kaas et al. (2008), amongst others.
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It is well known that absence of arbitrage is not sufficient to determine the
risk neutral measure Q uniquely, hence the pricing of an Asian option (and
other derivatives) might not be unambiguous. Moreover for any possible
choice for the pricing measure Q the evaluation of (4) is by no means trivial
and analytical solutions appear to be out of reach in general. Several methods
have then been proposed in the literature including (pseudo) Monte-Carlo
simulations, moment-matching techniques and Fast Fourier Transforms. Un-
fortunately, the successful application of these methods require a further
specification of the price process {St, t ≥ 0} .

The uncertainty inherent with arbitrage-free pricing then gives an incen-
tive to develop model-independent lower bounds, i.e. bounds for AC(K,n)
which are (as much as possible) based on available market information only
and do not require modelling assumptions. Hence, in the next section we
aim at finding lower bounds for AC(K,n) that are “as close as possible” to
AC(K,n) while also “as model free as possible” in the sense that they intend
to hold irrespective of the choices one makes for the risk neutral measure
and the price process of the risky asset. Indeed, the bounds we propose only
require knowledge of prices of plain vanilla call prices essentially. Let us now
introduce random variables H l,t

T defined as

H l,t
T = E[HT | St] 0 ≤ t ≤ T.

Using the notation
j(t) = Min {i | ti ≥ t} ,

we find using condition (3) that H l,t
T can also be expressed as

H l,t
T = AT +

1

n

n∑
i=j(t)

Ste
r(ti−t)

where AT is given as

AT =

j(t)−1∑
i=1

1

n
E[Sti | St], (5)

and where it is tacitly assumed that
∑j(t)−1

i=1 = 0 when j(t) = 1. Note that
Jensen’s inequality (1) implies that

H l,t
T ≤sl HT ,

which shows, as per definition of stop-loss order, that the H l,t
T might be

useful to determine lower bounds for the Asian call price AC(K,n) and this
is the topic of the next section.

5



2.3 Albrecher’s et al. model-independent lower bounds

2.3.1 First lower bound

Let us consider the case 0 ≤ t ≤ t1. In this instance H l,t
T clearly writes as,

H l,t
T =

1

n

n∑
i=1

Ste
r(ti−t).

Let us observe that
H l,t

T = E[H l,t1
T | St].

In particular this implies that for all t ∈ [0, t1], H
l,t
T ≤sl H

l,t1
T so that the

best lower bound for the Asian call price AC(K,n), based on H l,t
T , is reached

when t = t1. For its value, denoted by LB1, we find that

LB1 = e−rTE[Max(H l,t1
T −K, 0)]

=
e−rT

n
E[Max(St1 −

nK∑n
i=1 e

r(ti−t1)
, 0)]

n∑
i=1

er(ti−t1)

=
1

n
C(

nK∑n
i=1 e

r(ti−t1)
, t1)

n∑
i=1

e−r(T−ti), (6)

where in the last step we have tacitly introduced the notation C(K, t) to
denote the value of a standard European Call with strike K and maturity
t > 0. In summary we have that

LB1 ≤ AC(K,n).

and only the non-arbitrage assumption was needed to derive the expression
for LB1. Hence the value for LB1 can be observed in the market as soon as
the European calls are quoted.

We remark that expression (6) was already derived in Albrecher et al
(p. 127 eq. (4), 2008). They resorted to comonotonicity theory in order to
do so but this is unnecessary. In the next section we sharpen the bounds
further. However this goes at the cost of imposing some more structure on
the market.

2.3.2 Second lower bound

The first lower bound might not be sharp because the variableH l,t1
T , obtained

by taking the conditional expectation of HT with respect to St1 , may not
always depict the best possible approximation for HT (which incorporates
the randomness of St over the entire horizon [0, T ] and not only [0, t1] ).
Hence to improve the bounds we aim at considering choices for all 0 ≤ t ≤ T.
In order to do so successfully we need to impose the following condition on
the market.
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Condition 1 For all 0 ≤ t ≤ T and all i = 1, . . . , j(t) − 1 the random
variables E[Sti | St] are non-decreasing in St.

Assume that the stock price St at time t > 0 is known. Then the con-
dition states that the expected stock prices at any intermediate time is
increasing in St, which appears a natural and desirable property for the
risky asset price process {St, t ≥ 0}. From Condition 1 it follows that AT

as defined in (5) is increasing in St (0 ≤ t ≤ T ) so that inequality (2) can
be applied to find the stop-loss bound

E[AT ] +
1

n

n∑
i=j(t)

Ste
r(ti−t) ≤sl HT . (7)

where E[AT ] is explicitly given as

E[AT ] =
1

n

j(t)−1∑
i=1

S0e
rti .

From (7) it follows that

e−rTE[Max(E[AT ] +
1

n

n∑
i=j(t)

Ste
r(ti−t) −K, 0)]

= e−rT

∑n
i=j(t) e

r(ti−t)

n
E[Max(St −

n(K − E[AT ])∑n
i=j(t) e

r(ti−t)
, 0)]

=
1

n

n∑
i=j(t)

e−r(T−ti)C(c
(1)
t , t)

≤ AC(K,n)

where c
(1)
t is given as

c
(1)
t =

(nK −
∑j(t)−1

i=1 S0e
rti)∑n

i=j(t) e
r(ti−t)

.

Since this holds for all 0 ≤ t ≤ T we find that

LB
(1)
t ≤ AC(K,n),

with LB
(1)
t given as

LB
(1)
t =

e−rT

n
Max
0≤t≤T

C(c
(1)
t , t)

n∑
i=j(t)

erti

 . (8)
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Note that the expression (8) can also be found in Albrecher et al (p.129
eq. (10), 2008), where more involved probabilistic arguments have been used

to obtain it. Hence the value for the LB
(1)
t can be observed in the market

as soon as the European calls are quoted. Furthermore, in order to derive

the LB
(1)
t we do not really need Condition 1. It is sufficient that (the less

intuitive) condition (7) is fulfilled (see also Albrecher et al. (2008)). Finally,

let us remark that LB1 ≤ LB
(1)
t .

2.3.3 Third lower bound

The following condition usually allows to further improve the bounds.

Condition 2 For all i = 1, . . . , j(t) − 1 we assume that E[Sti | St] ≥

S
1− ti

t
0 S

ti
t
t (almost surely).

Assume that the stock price St at time t > 0 is known. Then the ex-
pected stock price at intermediate times 0 ≤ ti ≤ t is bounded by below by
the geometric average of the stock prices St and S0 with weights equal to
normalized distance between ti and 0 respectively. It is not difficult to show
that this assumption holds when log-returns are identically and indepen-
dently distributed, a condition that holds true for exponential Lévy models
(see also Proposition 2.1 in Albrecher et al. (2008)).

Condition 2 implies that

Lt :=
1

n

j(t)−1∑
i=1

S0(
St

S0
)
ti
t +

1

n

n∑
i=j(t)

Ste
r(ti−t) ≤sl

1

n

n∑
i=1

Sti (9)

Taking into account that the left-hand side of the inequality is increasing in
St we find that

e−rTE[Max(Lt −K, 0)]

=
e−rTS0

n

j(t)−1∑
i=1

E

Max

(St

S0

) ti
t

−

(
c
(2)
t

S0

) ti
t

, 0


+

e−rT

n

n∑
i=j(t)

er(ti−t)E[Max(St − c
(2)
t , 0)]

=
e−rTS0

n

j(t)−1∑
i=1

E

Max

(St

S0

) ti
t

−

(
c
(2)
t

S0

) ti
t

, 0


+

e−rT

n

n∑
i=j(t)

ertiC(c
(2)
t , t)
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where c
(2)
t is now the solution of

nK −
j(t)−1∑
i=1

S0

(
c
(2)
t

S0

) ti
t

− c
(2)
t

n∑
i=j(t)

Ste
r(ti−t) = 0.

Hence we find that
LB

(2)
t ≤ AC(K,n)

where LB
(2)
t is given by

LB
(2)
t =

e−rT

n
Max
0≤t≤T

S0

j(t)−1∑
i=1

E

Max

(St

S0

) ti
t

−

(
c
(2)
t

S0

) ti
t

, 0

+

n∑
i=j(t)

ertiC(c
(2)
t , t)

 .

(10)

Note that in order to derive LB
(2)
t we do not really need Condition 2. It is

sufficient that (the less intuitive) condition (9) will hold. Also this expression
can be found in Albrecher et al. (2008) (p.132 eq. (15), 2008), but our

approach is based on simpler considerations. Also note that LB
(2)
t is the

maximum over different time instances of prices of a path-independent power
call option. Carr and Chou (1997) explain that if an investor can trade in all
European calls maturing at T the path-independent option can be uniquely
decomposed into a bond and a continuum of calls. Hence when all call prices

are available in the market the value for LB
(2)
t can be determined using their

decomposition formula.

In Albrecher et al. (2008) the different lower bounds for Asian option
prices have been numerically evaluated with varying success. Intuitively this
is because the bounds used are essentially based on “approximating” the
sum 1

n

∑n
i=1 Sti by a conditioned sum involving a single component Stj (j =

1, 2, ..., n) only. While this procedure allows to obtain (almost) model-free
lower bounds for Asian option prices, the reduction of dimensionality comes
at some cost.

In this paper we aim at improving the accuracy. More precisely, we show
the bounds can be used as control variates to improve efficiency of Monte-
Carlo approaches when estimating the price of Asian options. In doing so
we focus on the third stop-loss bound. While there is no formal guarantee
that it outperforms the second lower bound (and thus also the first lower
bound), Albrecher et al. (2008) provides theoretical and empirical evidence
that this is often the case. Recall also that this third lower bound exists in a
Lévy setting and thus has practical4 appeal (see also Albrecher et al. (2008),
proposition 2.1).

4It is wel-known that Lévy processes are suitable candidates to model log-returns of
risky assets; see e.g. Schoutens (2003).
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In the next Sections 3, 4 and 5 we explain in detail the control variate
approach we propose. Numerical results can be found in Section 7.

3 Bounds as control variates for improved simula-
tion

In this section we show that the stop-loss bounds derived in Section 2 appear
as a useful device to improve Monte-Carlo simulation significantly, namely
when using them as control variates.

3.1 Control Variates

Clearly, the pricing of an Asian option amounts to determining the expected
value of a random variable. A traditional technique to cope with such prob-
lem is Monte-Carlo simulation which builds upon the law of large numbers
and thereby upon large samples of random numbers. Hence, let Y1, Y2, ..., Yk
be a series of k independently and identically distributed (i.i.d.) replica-
tions of the payoff e−rT ( 1n

∑n
i=1 Sti − K)+. Then, a classical estimator for

E[Y ] := e−rTE[( 1n
∑n

i=1 Sti −K)+] is its sample mean Y given as

Y =
1

k

k∑
i=1

Yi. (11)

The law of large numbers assures that a sample of independent, identi-
cally distributed (i.i.d.) random variables converges to the sample mean as
the sample size k increases. More specifically the statistic Y is an unbiased
and (strongly) consistent estimator for E[Y ] and,

√
k(Y − E[Y ])√

Var[Y ]
⇒ N(0, 1),

where “⇒” denotes convergence in distribution andN(0, 1) denotes the stan-
dard normal distribution. To summarize: Monte-Carlo simulation consists in
generating random draws Y1, . . . , Yk and next applying (11). We remark that

the O(k−
1
2 ) convergence rate is independent of the number of dimensions n

involved in the payoff sum, namely
∑n

i=1 Sti , making simulation for highly
multi-dimensional problems often the preferred approach above other nu-
merical techniques.

On the other hand, one of the main weaknesses with the Monte-Carlo
method is efficiency since standard simulation provides convergence rates
of (only) k−1/2. Using simulation, excessive run lengths or replications may
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thus be necessary to yield estimators with acceptable precision. In prac-
tice, simulation time can be of great importance and consequently tech-
niques have been developed to improve the performance of the Monte-Carlo
method, most of which are aimed at reducing the variance of the estimator.
Variance reduction techniques thus allow to obtain greater precision for the
same amount of simulation time, or to achieve a desired precision with less
simulation time. One of the most effective variance-reduction techniques is
the method of control variates. The main idea is to use a highly correlated
random variable with known mean to reduce the variance of the estimator.
In our context, the geometric counterpart of the arithmetic Asian option has
already been proposed in literature as a control variate by e.g. Kemna and
Vorst (1990) and Fu et al. (1999). Recently, this idea was further exploited
and deepened by Dingec and Hormann (2012) and Fusai and Meucci (2008).

In this paper, we show how the stop-loss bounds Lt that we discussed
in Section 2 can appear as suitable control variates. More precisely, when
Condition 2 is fulfilled the random variables Lt (see (9)) provide stop-loss
bounds for HT = 1

n

∑n
i=1 Sti . We remark that the Lt are essentially obtained

through conditioning and thus may preserve a significant amount of the in-
formation contained in HT . In other words one may intuitively expect the
Lt to have good correlation with HT making them possible candidates to
improve convergence considerably.

First, let us consider only one time instance tj and therefore only one
random variable Ltj . Suppose that for each replication Yi for the payoff
e−rT ( 1n

∑n
i=k Stk − K)+, we calculate another output Xi corresponding to

the replication of X := e−rT (Ltj − K)+ (The Xi will be later in the text

denoted by X
(tj)
i but as long as there is no confusion just by Xi). Let assume

that E[X] is known analytically (an analytical expression is given in Section
5 in the setting of a Variance Gamma and Normal Inverse Gaussian model).
We then consider the replicationsXi (i = 1, 2, ..., k) such that the subsequent
pairs (Xi, Yi) are i.i.d. The unbiased estimator of E[X] is therefore given by

X =
1

k

k∑
i=1

Xi.

Then, the control variate estimator Y c of E[Y ], given by

Y c = Y − b(X − E[X])

=
1

k

k∑
i=1

(Yi − b(Xi − E[X]))
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is also unbiased and asymptotically normally distributed (see Glasserman
(2003)).

The optimal coefficient b∗ which minimizes the variance of the new con-
trol variate estimator, namely5

Var[Y c] = Var[Y ](1− ρ2XY ) (12)

with ρXY the correlation between X and Y , is given by (see Glasserman
(2003))

b∗ =
Cov[X,Y ]

Var[X]
,

The quantity Cov[X,Y ] and Var[X] are usually not known and in that
case, one has to use an estimate of b∗. Here we have chosen to use the
estimate b̂ given by

b̂ =

∑k
i=1(Xi −X)(Yi − Y )∑k

i=1(Xi −X)2
.

In our setting we can choose any tj to create a single control variate. It
appears natural to use the different Ltj (j = 1, 2, ..., n) together to create
n control variates. Suppose that each replication of a simulation produces

outputs Yi and Xi = (X
(t1)
i , ..., X

(tn)
i )′ (the exponent ′ denotes that the vec-

tor is transposed) corresponding to a vector of payoff replications, namely
X = e−rT ((Lt1 −K)+, ..., (Ltn −K)+)′ and suppose that the vector of corre-
sponding expectations E[X] is known. Then one can derive that the control
variate estimator Y c based on the vector of sample means of the control

variates X := (X
(t1), X

(t2), . . . , X
(tn)

)′ is given by

Y c = Y − (B)′(X− E[X]),

where B∗ = Σ−1
X ΣXY is optimal with minimized variance of Y c. ΣX is a

n x n covariance matrix and ΣXY is a n x 1 covariance vector (see Glasser-
man (2003)). Since B∗ is not known explicitly, it needs to be estimated. In
order to avoid introducing bias we first generate pairs to estimate B∗ and
in particular estimates Σ̂X and Σ̂XY for respectively ΣX and ΣXY . Next we
use the remaining pairs to determine Y c(B∗) independently, and then the
minimized variance is

Var[Y c] = Var[Y ](1−R2), (13)

where one estimates R2 by Σ̂′
XY Σ̂

−1
X Σ̂XY /Var[Y ].

5We denote by (X,Y ) a generic pair of random variables with the same distribution as
each (Xi, Yi).
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Whereas the random variables Ltj are based on arithmetic averaging, we
will propose in Subsection 3.3 control variates based on geometric averaging.
These will be applied in the same way as above.

While the technique of using control variates is rather straightforward,
its successful application depends on a series of conditions that need to be
met. Firstly, using a control variate X for estimating E[Y ] more efficiently
implies that E[X] needs to be known. Secondly, as expressed by (12) and
(13) the gain in efficiency depends on the strength of correlation. Finally, on
a more practical note, it is important to observe that the computational cost
to generate the replications (Xi, Yi) should roughly be the same as generating
the Yi alone. We now discuss these conditions in some more detail for the
specific context at hand.

3.2 Arithmetic Lower Bounds

We now show that the stop-loss bounds Ltj given in (9) are usually useful
as control variates in simulation schemes for pricing Asian options.

First, the intrinsic properties of the sum Ltj make it often possible to
compute the E[(Ltj − K)+] (j = 1, ..., n) explicitly. Indeed, as shown in
Section 2 and in Albrecher et al. (2008), every E[(Lt−K)+] can be expressed
as

E[(Lt−K)+] =

j(t)−1∑
i=1

S
1− ti

t
0

n
E[(S

ti
t

t −k
ti
t )+]+

n∑
i=j(t)

er(ti−t)

n
E[(St−k)+], (14)

where k is the solution of the equation:

1

n

j(t)−1∑
i=1

S0(
k

S0
)
ti
t +

1

n

n∑
i=j(t)

ker(ti−t) = K.

As can be easily noticed from (14), evaluating E[(Ltj − K)+] essentially
amounts to pricing a series of European power call payoffs of the type

(Sr
t −K)+,

with r a suitable real number and K a strike. We will see in Section 4 and
5 that this is often in reach explicitly.

Second, the replications for HT and L := (Lt1 , Lt2 , . . . , Ltn) are both
fully determined by replications for the Sti (i = 1, 2, ..., n) so that “almost
no extra cost” is implied when generating the replications (H i

T ,L
i). Third,

the random variable HT is expected to be strongly related with the different
Ltj (j = 1, 2, ..., n) so that significant efficiency gains are made.

13



We remark that (9) is in fact the arithmetic average of the vector(
S0(

St

S0
)
t1
t , . . . , S0(

St

S0
)
tj(t)−1

t , Ste
r(tj(t)−t), . . . , Ste

r(tn−t)

)
.

When using the Ltj (j = 1, 2, ..., n) as control variates to speed up the
Crude Monte-Carlo (CMC) we label this in the following as the Arithmetic
Lower Bound approach, and we use the shorthand notation ALBt to reflect
e−rTE[(Lt −K)+].

3.3 Geometric Lower Bounds

Using the lower bounds (10) at different spot times t1, . . . , tn to construct a
multi-dimensional vector of control variates, requires the evaluation of (14)
for all these spot times. This needs some computational efforts which may
slow down the pricing procedures. In order to derive in a more efficient way
some control variates that are both highly correlated and fast to compute,
we also propose to consider the geometric average of(

S0(
St

S0
)
t1
t , . . . , S0(

St

S0
)
tj(t)−1

t , Ste
r(tj(t)−t), . . . , Ste

r(tn−t)

)
,

denoted by L̃t, i.e.

L̃t := (

j(t)−1∏
i=1

S0(
St

S0
)
ti
t

n∏
i=j(t)

Ste
r(ti−t))1/n

= αt(St)
βt (15)

with

αt = (

j(t)−1∏
i=1

(S0)
1− ti

t

n∏
i=j(t)

er(ti−t))1/n (16)

βt =
1

n
(

j(t)−1∑
i=1

ti
t
+ n− j (t) + 1).

When using the different L̃tj (j = 1, 2, ..., n) to enhance simulation we re-

fer to the the Geometric Lower Bound and we denote GLBt := e−rTE[(L̃t−
K)+]. Note that

GLBt := e−rTE[(αt(St)
βt −K)+].

Compared with the arithmetic lower bounds in (14), we now only need to
price one European power call option for each spot time in (15). This saves a
lot of computational efforts but using the geometric average is at the cost of
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the precision. Indeed, it is well known that the geometric averages are always
smaller than the arithmetic ones in (almost surely) order, and therefore one
also has

e−rTE[(L̃t −K)+] ≤ e−rTE[(Lt −K)+].

We now proceed by specifying an important class of market models for
which our pricing method based on control variates appears useful.

4 Market setting: subordinated Brownian motion

In this section we discuss subordinated Brownian motion as a suitable way
to model asset returns. This provides a convenient framework for using the
control variate approach. We will also use this setting in Section 6 where we
develop our second method to price Asian options.

4.1 Subordination

It is convenient to express the risky asset price in terms of its logreturns,
i.e. we write St = S0e

Xt where Xt is to be interpreted as the cumulative
logreturn. The workhorse for modelling returns consists in assuming {Xt,
t ≥ 0} is a Brownian motion with drift. This essentially amounts to assum-
ing that the distribution of the increments Xt+s −Xs over the time interval
[s, s+ t], s, t ≥ 0, is normally distributed. This set-up can be traced back to
Bachelier (1900) and is known in the literature as the famous Black-Scholes
market. Numerous empirical studies have revealed the fact that asset price
volatility tends to be time-varying and exhibits clustering effects. This in
turn also implies that the assumption of normally distributed returns is not
suitable to capture the long-tailed features of financial time series, especially
when the problem at hand involves short-term returns; see e.g. Mandelbrot
(1963), Eberlein et al. (1998) or Carr et al. (2002).

An idea to accommodate for this is to generalize the Brownian motion
by making time itself stochastic, i.e. by considering time-changed Brown-
ian motions. To this end suppose that ϕ(u) is the characteristic function
related to some distribution function (d.f.) and let Zt = θGt + σBGt where
θ ∈ R, σ ∈ R+

0 , Bt is the standard Brownian motion and where {Gt, t ≥ 0}
is another positive stochastic process. The latter process is referred to as
time-change, stochastic clock, chronometer or business time. We assume it
starts at zero, has independent and stationary increments and is such that
the distribution of an increment over [s, s + t], s, t ≥ 0, i.e. Gt+s − Gs, has
(ϕ(u))t as its characteristic function. If {Gt, t ≥ 0} is a positive and strictly
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increasing Lévy process it is called a subordinator. It can be shown that a
Lévy process that is time-changed by a subordinator remains a Lévy process
(see Sato (1999)).

The process {Zt, t ≥ 0} constructed in the way above from a Brownian
motion is called a subordinated Brownian motion. Such processes provide
more flexibility and potential accuracy when modelling stochastic returns.
For a full theoretical background we refer to Cont and Tankov (2004). The
focus on subordinated Brownian motions for modelling asset returns is no
real restriction because Monroe (1978) essentially showed that arbitrage-
free models for assets can be represented as time-changed Brownian mo-
tions. Note that many popular models in finance are based on time-changed
Brownian motion where the time-change is chosen to be a subordinator. E.g.
the Variance Gamma process or the Generalized Hyperbolic Model (includ-
ing the Normal Inverse Gaussian process) can be represented as Brownian
motion time-changed by resp. a Gamma process (Madan et al. (1998)) or a
Generalized Inverse Gaussian process (Eberlein and Keller (1995)). The Nor-
mal Tempered Stable process (also including the Normal Inverse Gaussian
process) can be written as Brownian motion time-changed by a tempered
stable subordinator. We now formally present the first two models men-
tioned.

4.2 The Variance Gamma model

This process was originally introduced by Madan and Senata (1990) and
further studied in Madan et al. (1998). It is a pure jump process that is
obtained by changing the clock of a standard Brownian motion by a Gamma
process. More precisely, let {Bt, t ≥ 0} denote a standard Brownian motion,
σ > 0 and θ ∈ R; then the Variance Gamma process ZV G = {ZV G

t , t ≥ 0},
with parameters σ, ν and θ is defined as

ZV G
t = θGt + σBGt ,

where Gt is a Gamma process with mean t and variance νt. The density of
Gt can be written as

fGt(x;
t

ν
, ν) = x

t
ν
−1 e−

x
ν

Γ( tν )ν
t
ν

, ν > 0, (17)

where Γ(·) stands for the Gamma function.

The density and the characteristic function of a Brownian motion time-
changed by a subordinator, Gt, can be derived exploiting the fact that Zt

conditional onGt = g has a Gaussian distribution with mean θg and variance
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σ2g. For completeness we report the characteristic and the density function
in case of univariate Variance Gamma:

φV G(u;σ, ν, θ) =

(
1− iuνθ +

1

2
νu2σ2

)− t
ν

, (18)

fV G(x;σ, ν, θ) =
2e

θx
σ2

ν
t
ν

√
2πσΓ( tν )

(
x2

2σ2

ν + θ2

) t
2ν

− 1
4

K t
ν
− 1

2

(
1

σ2

√
x2(

2σ2

ν
+ θ2)

)
,

where Kk(·) denotes the modified Bessel function of the second kind of order
k, see e.g. Madan et al. (1998).

In a Lévy market, there are many different equivalent martingale mea-
sures to choose. There exist two popular approaches to find an equivalent
martingale measure, namely by using the so-called Esscher transform (see
Gerber and Shiu (1994) and the next paragraph) or by mean-correcting
the exponential of a Lévy process (see Schoutens (2003)). This last method
consists in changing the “drift” parameter in the Lévy process such that
the discounted stock-price process becomes a martingale. For the Variance
Gamma model, we follow this last approach as in the paper of Albrecher
et al. (2008) since we aim to use their parameter estimates in our numerical
section.

More precisely, the risk neutral process for the stock price dynamics in
this section is given by the following VG process which is obtained by re-
placing the role of the Brownian motion in the original Black-Scholes model
by the VG process and by taking into account the right drift such that the
discounted stock-price process is a martingale:

St = S0 exp((r + ω)t+ ZV G
t )

= S0 exp(Z̃
V G
t ) (19)

where Z̃V G
t = (r + ω)t + ZV G

t with ω = 1
ν ln(1 − θν − σ2ν

2 ). Indeed, in this
case one easily observes that the mean rate of return on the stock equals the
risk-free interest rate r.

4.3 The Normal Inverse Gaussian model

The Normal Inverse Gaussian (NIG) process ZNIG = {ZNIG
t , t ≥ 0} has

stationary and independent NIG distributed increments with ZNIG
0 = 0.

More precisely, ZNIG
t has a NIG law with parameters α, η, δ and µ given by

17



fNIG(x;α, η, δ, µ) =
αδ

π
eδ
√

α2−η2+η(x−µ)
K1(α

√
δ2 + (x− µ)2)√

δ2 + (x− µ)2
(20)

with 0 ≤ |η| ≤ α, δ ≥ 0, µ ∈ R, where K1(·) denotes the modified Bessel
function of the second kind of order 1. For a survey on stochastic processes
of normal inverse Gaussian type, we refer to Barndorff-Nielsen (1998).

It is further well known (see e.g. Schoutens (2003)) that a NIG process
ZNIG
t with parameters α, η, δ and µ with density (20) can be rewritten as a

drift term plus an Inverse Gaussian time-changed Brownian motion, namely
as

ZNIG
t = µt+ ηδ2It + δBIt

where {It, t ≥ 0} is an Inverse Gaussian process for which the density func-
tion is explicitly known, namely

fIG(x; a, b) =
a√
2π

eabx−3/2e−
1
2
(a2x−1+b2x), x > 0

with parameters a = 1 and b = δ
√
α2 − η2.

To apply the Normal Inverse Gaussian model (NIG) for market price
modelling, we recall from Albrecher and Predota (2004) that log-returns of
asset prices will be modeled by a NIG process ZNIG

t , and therefore prices by
St = S0 exp(Z

NIG
t ). Since the market model is incomplete, there are many

candidates of equivalent martingale measures for risk neutral valuation and
we use as in the paper of Albrecher and Predota (2004) the method of Ess-
cher transforms in order to be able to use their parameter estimates later on.
We refer to Albrecher and Predota (2004) for details and further references.

In particular Albrecher and Predota (2004) shows that for a Lévy process
{ZNIG

t , t ≥ 0} it is possible to define a locally equivalent probability measure
P θ, called the Esscher equivalent measure, through

dP θ = exp(θZNIG
t − t logMNIG(θ))dP,

with MNIG(θ) the moment generating function of (20)6. This probability
measure P θ is a risk neutral probability measure if θ is the solution of

r = µ+ δ(
√

α2 − (η + θ)2 −
√

α2 − (η + θ + 1)2).

6As mentioned in footnote 2, we assume tacitly the existence of all expectations, and
moreover of all moment generating functions.
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The stock prices under this probability measure P θ also follow a NIG process
with new parameter η′ = η + θ. Therefore, under this risk neutral measure,
we consider St = S0 exp(Z̃

NIG
t ) where Z̃NIG

t is a NIG(α, η+ θ, δ, µ) process.

Note that the NIG distribution is a special case λ = −1
2 of the generalized

hyperbolic distribution given by the density

fGH(x;α, η, δ, λ, µ) = a(α, η, δ, λ)
Kλ− 1

2
(α
√

δ2 + (x− µ)2)

(δ2 + (x− µ)2)
1
4
−λ

2

eη(x−µ),

a(α, η, δ, λ) =
(α2 − η2)

λ
2

√
2παλ− 1

2 δλKλ(δ
√

α2 − η2)
, (21)

where Kν(x) denotes as above the modified Bessel function of the second
kind of order ν. Derivation of the characteristic function of the GH distri-
bution (as well as its Lévy measure) can be found in Prause (1999), namely

φGH(u;α, η, δ, λ, µ) = eiuµ
(

α2 − η2

α2 − (η + iu)2

)λ
2 Kλ(δ

√
α2 − (η + iu)2)

Kλ(δ
√

α2 − η2)
.

(22)

The generalized hyperbolic process is a pure jump process that has been
introduced in finance by the work of Eberlein and Keller (1995). Its con-
struction is similar to the one of the Variance Gamma process and the NIG
process. However, this time the stochastic clock follows a generalized inverse
Gaussian distribution.

The Variance Gamma process can also be seen as a special case of the
generalized hyperbolic process. The density and characteristic function (18)
can be obtained from the GH density and characteristic function namely

(21) and (22) by taking α =
√

(2/ν) + (θ2/ν4), η = θ/σ2, λ = σ2/ν, µ = 0

and δ → 0, see e.g. Schoutens (2003).

5 ALB and GLB as an expression of power calls

We remark that both the ALB and GLB are based on the evaluation of
power call options with price

e−rTE[(αt(St)
βt −K)+]. (23)
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Indeed, the value of GLBt is then immediately obtained by substituting
the expressions of αt and βt stated in (16). The value of ALBt follows from
rewriting (14) as follows

e−rTE[(Lt −K)+] = e−rT

j(t)−1∑
i=1

S
1− ti

t
0

n
E[(αti(St)

βti − k
ti
t )+]

+e−rT
n∑

i=j(t)

er(ti−t)

n
E[(αti(St)

βti − k)+],

with αti = 1 for all i, βti =
ti
t for all 1 ≤ i ≤ j(t)−1, βti = 1 for all j(t) ≤ i;

and with the appropriate strikes (see Subsections 3.2 and 3.3).

We now will derive expressions for (23) in the Variance Gamma model
and in the Normal Inverse Gaussian model.

5.1 Calculation of power call options in the Variance Gamma
model

We recall from Section 4 that under the chosen risk neutral measure the risk
neutral process is given by (19), namely

S(t) = S0 exp(Z̃
V G
t )

where Z̃V G
t = (r+ω)t+ZV G

t , ω = 1
ν ln(1−θν− σ2ν

2 ), and where {ZV G
t , t ≥ 0}

is a Variance Gamma process with parameters σ, ν and θ.

As mentioned in the beginning of this section, we study essentially the
price of a general power call option, namely

e−rTE[(αt(St)
βt −K)+] = e−rTE[(αt(S0)

βteβtZ̃
V G
t −K)+]

= e−rTE[E[(αt(S0)
βteβtZ̃

V G
t −K)+|G(t) = g]]

= e−rTE[

∫ +∞

k∗
(αt(ξt)

βteβtx −K)f(x)dx]

where k∗ = 1
βt

ln( K
αt(ξt)

βt
), ξt = S0 exp(rt+ ωt) is a deterministic factor and

where f(x) is the Gaussian probability density function with mean θg and
variance σ2g.

Hence the inner expectation is given by the following Black-Scholes type
formula, denoted by Φ(g):
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Φ(g) :=

∫ +∞

k∗
(αt(ξt)

βteβtx −K)f(x)dx

= αt(ξt)
βt exp(βtθg +

σ2gβ2
t

2
)(1−N (k∗; θg + σ2g, σ

√
g))

−K(1−N (k∗; θg, σ
√
g))

whereN (x;µ, σ) is the Gaussian cumulative distribution function with mean
µ and variance σ2.

With this notation, the price of a general power call option equals

e−rTE[(αt(St)
βt −K)+] = e−rT

∫ ∞

0
Φ(g)fG(t)(g)dg

Using the density function fG(t)(g) of (17) and by substituting y = g
ν ,

one easily finds the following expression:

e−rTE[(αt(St)
βt −K)+] =

∫ ∞

0
Φ(yν)y

t
ν
−1ν

t
ν
−1 e−y

Γ( tν )ν
t
ν

νdy

=

∫ ∞

0
y

t
ν
−1e−yΦ(yν)

Γ( tν )
dy. (24)

This integral can be computed numerically by using the generalized
Gauss Laguerre integration method. Indeed, the generalized Gauss Laguerre
quadrature (GLQ) is a numerical method to evaluate integrals of the form∫ +∞
0 w(y;α)f(y)dy where w(y;α) = yαe−y with α > −1 (so in our case

f(y) = Φ(yν)

Γ( t
ν
)
and α = t

ν − 1). More precisely, the Gauss Laguerre quadra-

ture proposes the following approximation

∫ +∞

0
yαe−yf(y)dy ≈

n∑
i

wif(yi)

where yi are the zeros of the generalized Laguerre polynomial L
(α)
n (x) (see

Abramowitz and Stegun (1964)). These polynomials can be evaluated by
using the following recurrence relation:

(n+ 1)L
(α)
n+1(y) = (2n+ 1 + s− y)L(α)

n (y)− (n+ s)L
(α)
n−1(y)

with initial conditions L
(α)
0 (y) = 1 and L

(α)
−1 (y) = 0. The weights ωi are given

by the formula
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wi =
−Γ(n+ α)

Γ(n+ 1)L
(α)
n−1(xi)

dL
(α)
n

dx (xi)

where the derivatives can be obtained by using the following relation:

y
d

dx
L(α)
n (y) = nL(α)

n (y)− (n+ s)L
(α)
n−1(y).

For more details about this method, we refer to Press et al. (1992) and
Stroud and Secrest (1966). There are already a few papers that successfully
applied GLQ for pricing various derivatives under the VG model in an ac-
curate and fast way (see for example Madan et al. (2011) and Garcia et al.
(2007)). Browne et al. (2003) used generalized GLQ for liquidity premium
calculation. In our work, as we have explained above, the generalized GLQ is
a good method to compute equation (24) showing up in the ALB and GLB
values. The generalized GLQ leads to accurate and fast approximations.

We remark that another famous and fast method to compute call options
is the Fast Fourrier Transform (FFT), see e.g. Carr and Madan (1998).
Indeed, one could use FFT to compute expressions of the form (23). However,
the FFT is adequate if one wants to price options for multiple strikes because
it returns a vector of option prices simultaneously for different strikes. This
makes it a suitable approach in the context of model calibration for instance.
But in our case we need only the price of one option for a fixed strike for
different αt and βt. Hence, an integration routine which concentrates on
single option prices saves significant computation time. Therefore, we prefer
the generalized Gauss Laguerre quadrature.

5.2 Calculation of power call options in the Normal Inverse
Gaussian model

To apply the Normal Inverse Gaussian model (NIG), we recall from Subsec-
tion 4.3 that we model stock prices by St = S0 exp(Z̃

NIG
t ), where Z̃NIG

t is a
NIG(α, η+ θ, δ, µ) process under a well-chosen risk neutral measure, related
to the Esscher transform.

Along the same lines as before we find that

e−rTE[(αt(St)
βt −K)+]

= e−rT

∫ ∞

1
βt

ln( K

αtS
βt
0

)
(αtS

βt
0 eβtx −K)fNIG(x;α, η + θ, δ, µ)dx.

Note that exp(βtx)fNIG(x;α, η + θ, δ, µ) can be rewritten as

fNIG(x;α, η + θ + βt, δ, µ)c
′
t,
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where
c′t = eδt(

√
α2−(η+θ)2−

√
α2−(η+θ+βt)

2)+βtµ.

Therefore, one easily can derive an expression based on the cumulative
distribution functions FNIG(·):

e−rTE[(αt(St)
βt −K)+]

= e−rT c′tαtS
βt
0 (1− FNIG(

1

βt

ln(
K

αtS
βt
0

);α, η + θ + βt, δ, µ))

−K(1− FNIG(
1

βt

ln(
K

αtS
βt
0

);α, η + θ, δ, µ)).

6 Lower bound derived using the stochastic clock

Inspired by the idea of conditioning used to derive the model-independent
bounds in Section 2, we now present another method. Indeed, we will con-
dition on different values in the path of the subordinator, also called the
stochastic clock. Assuming that St = S0 exp(µt+ θGt + σBGt), where Bt is
a Brownian motion and where {Gt, t ≥ 0} is the stochastic clock, we can
write the average 1

n

∑n
i=1 Sti as

∑n
i=1 α(ti, Gti) exp(σBGti

), with α(ti, Gti) =

S0e
µti+θGti

n . As before, we assume that tn = T .

Using this notation, we can express the price of the Asian call option at
time t = 0 as

AC(K,n) = e−rTE[(
1

n

n∑
i=1

Sti −K)+]

= e−rTE[E[(

n∑
i=1

α(ti, Gti) exp(σBGti
)−K)+|Gt1 , ..., Gtn ]]

= e−rTE[EG[(

n∑
i=1

α(ti, Gti) exp(σBGti
)−K)+]]

where EG[.] is a short-hand notation to reflect E[.|Gt1 , ..., Gtn ].

Note that by conditioning, the inner expectation is essentially an option
on an average of lognormally distributed random variables. Indeed, after
conditioning we have that σBGti

are normally distributed r.v.’s with means
and variances that only depend on the values of Gti .
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Vanduffel et al. (2008a) proposed for E[(
∑n

i=1 αie
Xi − K)+] with Xi

(multi-variate) normal r.v.’s, a lower bound based on the so-called maximal
variance approximation, namely

E[(E[

n∑
i=1

αie
Xi | Λ =

n∑
i=1

λiXi]−K)+],

with an appropriate choice for the coefficients of the conditioning variable
Λ =

∑n
i=1 λiXi. Indeed, the λi are chosen in order to maximize the first or-

der approximation of the variance of E[
∑n

i=1 αie
Xi | Λ =

∑n
i=1 λiXi]. This

method leads to lower very accurate, analytical lower bound approximations
of the true prices (see e.g. Kaas et al. (2000), Vanduffel et al. (2008a), Van-
duffel et al. (2008b) and Valdez et al. (2009)).

Applying the appropriate formulae of Vanduffel et al. (2008a), namely
their equations (10), (17), (37) and (40), we derive the lower bound

AC(K,n) = e−rTE[EG[(
n∑

i=1

α(ti, Gti) exp(σBGti
)−K)+]]

≥ e−rTE[EG[(E[

n∑
i=1

α(ti, Gti) exp(σBGti
) | Λ =

n∑
i=1

λiσBGti
]−K)+]]

= e−rTE[EG[

n∑
i=1

α(ti, Gti)E[e
σBGti ]N (RGti

−N−1(p))−K(1− p)]] (25)

with λi = α(ti, Gti)E[e
σBGti ] = α(ti, Gti) exp

(
E
[
σBGti

]
+ 1

2Var[σBGti
]
)
,

RGti
=

∑n
j=1 α(ti, Gti)E[e

σBGti ]cov[BGti
, BGtj

]σ2

σΛ

σ2
Λ =

n∑
i=1

n∑
j=1

α(ti, Gti)α(tj , Gtj )E[eσBGi ]E[e
σBGtj ]cov[BGti

, BGtj
]σ2,

and with p the solution of the equation

Qp[EG[
n∑

i=1

α(ti, Gti) exp(σBGti
) | Λ =

n∑
i=1

λiσBGti
]] = K

where Qp(X) is the p-quantile risk measure for a r.v. X defined as

Qp(X) = inf{x ∈ R | FX(x) ≥ p}, p ∈ (0, 1),

where FX(x) = P [X ≤ x] and N (·) the cdf of a standard normal distribu-
tion.
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Since the expressions in (25) only depend on the values Gti of the path of
the subordinator, we can denote (25) as e−rTE[H(Gt1 , ..., Gtn)] for a certain
function H given by

H(Gt1 , ..., Gtn) := EG[

n∑
i=1

α(ti, Gti)E[e
σBGti ]N (RGti

−N−1(p))−K(1−p)].

(26)
Therefore, the lower bound (25) could be calculated by a numerical multi-

dimensional integration method. However, since there is usually a large num-
ber of spot times to take into account, one would need a high-dimensional
numerical integration method which usually turns out to be slow and more-
over not always precise due to the accumulated errors. Therefore, in this
paper, we use a Monte-Carlo simulation with GLB as control variates to
compute the values in (25). This method will be referred to as the Lower
Bound derived by using the Stochastic Clock (LBSC). As explained before,
such a Monte-Carlo simulation is easy to implement, and as our numerical
results in Section 7 will show, this method leads to very precise approxima-
tions. This method has the advantage that one has not to simulate Brownian
motions. Indeed, for this approach one only needs to generate the values of
the clock and of the analytical formula (26). Therefore, one only needs to
generate half the numbers in comparison with the case of time-changed
Brownian motion. Furthermore, the variance of the conditional expectation
H(Gt1 , ..., Gtn) is smaller than the variance of the Asian payoff so that con-
vergence is expected to be much faster than the crude Monte-Carlo (see also
Section 7.2.3).

7 Numerical illustrations

In this section, we present different sets of numerical results in order to
illustrate the methods introduced in this paper. We focus on the two sub-
ordinated Brownian motion Lévy models that were described in Section 4,
namely the variance gamma (VG) and normal inverse Gaussian (NIG) pro-
cesses. For deriving the numerical results, we made use of the CPU Intel
Core i7-3630 QM 2.40GHz and RAM 8.00GB under the Windows8 OS 64
bit.

7.1 General Set-up

We present our numerical results for Asian options in the context of a VG
economy (see Subsection 7.2.1) and a NIG economy (see Subsection 7.2.2).
We use a crude Monte-Carlo (CMC) approach as the benchmark to compare
the results of the Monte-Carlo approaches that use as control variates the
Arithmetic Lower Bound (ALB), resp. the Geometric Lower Bound (GLB)
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as presented in Section 3, with the results of the semi-analytic lower bound
approach (LBSC) that was explained in Section 6. In all instances, we use
the same 50,000 simulations to perform the calculations. Specifically, for the
different methods mentioned we provide the estimated mean, the standard
error (S.E.), the computation time (C), the variance reduction factor (Var-
RF) and the efficiency reduction factor (Eff-RF). These parameters are well-
known and do not require further explanation except the last two.

The variance reduction factor (Var-RF) is defined as the ratio between
the variance of the estimator for the method at hand and the variance of
the estimator under the crude Monte-Carlo approach. Note indeed that vari-
ance reduction techniques precisely allow to obtain greater precision for the
same budget of computer time, or, equivalently, to obtain a given degree of
precision with less simulation time. Therefore, it is natural to consider the
variance reduction factor as a first performance measure. However, to mea-
sure the efficiency of approaches, we should not only consider the variance
reduction but also the computation time and the possibility of bias. Let µ be
the unknown quantity that we estimate (i.e. the mean of the control variate
at hand) and let Y be the corresponding estimator. The bias7, variance and
mean square error of Y are defined as,

Bias(Y ) = E[Y ]− µ,

Var(Y ) = E[(Y − E[Y ])2],

MSE(Y ) = E[(Y − µ)2] = (Bias(Y ))2 +Var(Y ),

where the mean square error reflects both the bias and the variance. A
second possible measure (see Glasserman (2003) and L’Ecuyer (1994)) to
reflect the efficiency (Eff) of an estimator Y is then to use the inverse of the
average computation time (C) multiplied by the mean square error:

Eff(Y ) =
1

C(Y )MSE(Y )
.

This efficiency measure balances the issues of computation time, bias
and variance reduction and has a strong intuitive appeal. Note however that
computation time also depends on the efficiency of the particular code that
is used and computer specifications. Furthermore, the penalty for bias in this

7In this paper we do not consider the bias that arises because of the error caused by the
numerical method at hand, but only the bias that appears if one uses a biased estimator.
In other words, we only consider the bias when using the LBSC approach to approximate
the true value (see Section 6). However, note that all other control variate based methods
that we discuss are also biased to some extent even when the estimator used is unbiased.
Indeed, numerical integration methods such as the Gauss Laguerre quadrature or Fast
Fourier Transforms also have an error term as well and are therefore biased.
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measure appears in an ad-hoc way and lacks a strong theoretical foundation.
In some situations (e.g. in the context of risk management) a biased approach
may be perfectly acceptable to some degree whereas in other cases (e.g. a
trading context) this feature may be considered as completely unacceptable.
In other words, the precise interpretation of the efficiency reduction factor
(Eff-RF) also depends on the context at hand. This remark also explains why
we in the numerical illustrations we also provide the computation time for
all methods used, and also why we separately show the (estimated) relative
bias for the LBSC approach. Formally, the relative bias (Rel. Bias) is defined
as

Rel. Bias =

∣∣∣∣E[Y LBSC]− µ

µ

∣∣∣∣ ,
where Y LBSC is the statistical estimator under the LBSC approach. Note
that µ is not known and needs to be estimated. To this end, we use an un-
biased estimator based on 10,000,000 simulations, namely the crude Monte-
Carlo with the arithmetic lower bounds as control variates (CMC with
ALBs).

We also compare the results with two other methods that were recently
proposed in the literature. In Dingec and Hormann (2012), the authors pro-
pose a Monte Carlo method with control variate for the pricing of arithmetic
Asian options in a Lévy setting. The idea of this method is to use as a control
variate the geometric average Asian option payoff as calculated under the
hypothesis of a geometric Brownian motion. The method is further based on
the numerical inversion of the cumulative distribution function of the incre-
ments and is therefore applicable to Lévy processes for which the transition
law is known. In Fusai and Meucci (2008), the authors propose a Monte
Carlo method in which the control variate is the corresponding geometric
Asian option but now computed in the (true) Lévy setting. The theoretical
value of the geometric Asian option is here obtained using the Fast Fourier
Transform method. We denote the methods of Fusai and Meucci (2008) and
Dingec and Hormann (2012) in this paper further as CMC-GA Lévy resp.
CMC-GA BS.

Finally, we make some remarks regarding the reported computation time
(C). All methods require some pre-processing. In particular, the regression
coefficients that are inherent in the approaches that use control variates need
to be computed separately (to avoid bias). All these coefficients are com-
puted from the same sample using 100 000 replications. The computation
time for estimating these coefficients are not included in the reported com-
putation time results. Furthermore, the method of Fusai and Meucci (2008)
uses the Fast Fourier Transform approach to price the value of the geometric
Asian option that is used as control variate. Setting up this framework is
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not completely straightforward and the method needs to be adapted (i.e.,
the level of discretization and/or truncation used) to the specificities (e.g.
the strike) of the payoff at hand. We do not consider these efforts when re-
porting computation time. Finally, the computational effort that is needed
to estimate the bias of the LBSC approach is not included in the reported
computation time for this method. Indeed, this computational effort only
arises becasue it is not possible to estimate bias with a closed-form for-
mula and does not reveal information on the intrinsic quality (speed) of the
method itself.

7.2 Numerical results for a Variance Gamma economy

We first calculate Asian option prices in a VG model. We refer to equation
(19) for the risk neutral price process and we take the parameters as in Table
8 of Albrecher et al. (2008), namely σ = 0.2684, ν = 1.1737, θ = −0.1280.
This setting leads to an annual volatility for the log-returns of 30, 211% (see
also Dingec and Hormann (2012) for more details). In our numerical example
we take as starting value S0 = 100, as risk-free interest rate r = 0.03 and we
consider that the options are averaged monthly with maturity T = 10 years,
namely the number of averaging n = 120 (see Table 1). We also give results
for higher and lower volatility cases, namely, σ = 0.5884 and σ = 0.058
corresponding to annual volatilities of 60, 452% and 15, 031% respectively
(see Table 2 and 3 respectively).

In Table 1, 2 and 3, the Mean, Rel. Bias, S.E., C, Eff-RF and Var-RF are
presented in these VG settings for the different approaches and for different
strikes. We also present the “True Value” which is estimated by using the
CMC with ALB method and an extremely large number of simulations (10
millions).

7.3 Numerical results for a Normal Inverse Gaussian econ-
omy

In this subsection we calculate Asian option prices in the settings of a NIG
model. In Table 4, results are presented for Asian option prices in the settings
of a NIG process, with the log-return following the density (20) and the
parameters’ values are taken from Albrecher and Predota (2004), namely
α = 136.29, η = −8.95, δ = 0.0059, µ = 0.00079. The initial value S0 is
chosen to be 50, the maturity is 20 days and the number of averaging days
n equals the number of days until maturity, namely n = 20. The yearly risk-
free interest rate equals r = 0.1. We also give results for a higher volatility,
namely δ = 0.1059, keeping the short maturity of 20 days (see Table 5).
Finally, we present results for a high volatility, namely δ = 0.5 and a long
maturity of 5 years with monthly averaging, n = 60 (see Table 6). The
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VG Model with an annual volatility of 30.211 % and a maturity of 10 years
Strike True Value Approach Mean Rel. Bias S.E. C. Eff-RF Var-RF

CMC 43.7069 - 0.2043 3.09 1.0 1.0
CMC-GA BS 43.7912 - 0.1547 8.99 0.6 1.7

K=60 43.6440 CMC-GA Lévy 43.6111 - 0.0263 4.10 45.5 60.3
CMC with ALBs 43.6194 - 0.0184 3.80 100.2 123.3
CMC with GLBs 43.5956 - 0.0318 3.74 34.1 41.3
LBSC 43.6163 0.0633% 0.0019 50.30 3.3 11 561.9
CMC 32.2381 - 0.1918 3.07 1.0 1.0
CMC-GA BS 32.3366 - 0.1470 9.04 0.6 1.7

K=80 32.1815 CMC-GA Lévy 32.1553 - 0.0243 4.04 47.3 62.3
CMC with ALBs 32.1567 - 0.0179 3.77 93.5 114.8
CMC with GLBs 32.1318 - 0.0290 3.71 36.2 43.7
LBSC 32.1815 0.0357% 0.0018 50.40 16.6 11 354.1
CMC 23.1672 - 0.1747 3.09 1.0 1.0
CMC-GA BS 23.2488 - 0.1372 9.21 0.5 1.6

K=100 23.1446 CMC-GA Lévy 23.1437 - 0.0226 4.16 44.4 59.8
CMC with ALBs 23.1186 - 0.0170 3.70 88.2 105.6
CMC with GLBs 23.0971 - 0.0253 3.62 40.7 47.7
LBSC 23.1136 0.1339% 0.0015 50.62 1.9 13 564.5
CMC 16.3973 - 0.1558 3.08 1.0 1.0
CMC-GA BS 16.4650 - 0.1257 9.21 0.5 1.5

K=120 16.4151 CMC-GA Lévy 16.4400 - 0.0213 4.16 39.6 53.5
CMC with ALBs 16.3942 - 0.0161 3.72 77.5 93.6
CMC with GLBs 16.3790 - 0.0212 3.63 45.8 54.0
LBSC 16.3870 0.1710% 0.0010 50.20 1.9 24 273.6
CMC 9.6845 - 0.1282 3.08 1.0 1.0
CMC-GA BS 9.7259 - 0.1077 9.01 0.5 1.4

K=150 9.7445 CMC-GA Lévy 9.7753 - 0.0203 4.13 29.7 39.9
CMC with ALBs 9.7265 - 0.0154 3.47 61.5 69.3
CMC with GLBs 9.7214 - 0.0169 3.43 51.7 57.5
LBSC 9.7152 0.1084% 0.0007 50.60 8.9 33 541.3

Table 1: Summary of the simulations for VG Models with σ = 0.2684, ν =
1.1737, θ = −0.1280, S0=100, r = 0.03, the maturity is 10 years (T = 10)
and there is monthly averaging (n=120).
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VG Model with an annual volatility of 60.452 % and a maturity of 10 years
Strike True Value Approach Mean Rel. Bias S.E. C. Eff-RF Var-RF

CMC 49.4934 - 0.8367 3.24 1.0 1.0
CMC-GA BS 49.3145 - 0.7660 9.18 0.4 1.2

K=60 50.5757 CMC-GA Lévy 50.1774 - 0.3715 4.09 4.0 5.1
CMC with ALBs 50.3151 - 0.1160 3.96 42.6 52.0
CMC with GLBs 49.8362 - 0.4730 3.85 2.6 3.1
LBSC 50.1856 0.7712% 0.0056 51.07 0.3 22 323.6
CMC 42.6894 - 0.8279 3.26 1.0 1.0
CMC-GA BS 42.5279 - 0.7628 9.30 0.4 1.2

K=80 43.8048 CMC-GA Lévy 43.4574 - 0.3698 4.19 3.9 5.0
CMC with ALBs 43.5767 - 0.1077 3.77 51.1 59.1
CMC with GLBs 43.1395 - 0.4590 3.67 2.9 3.3
LBSC 43.4394 0.8341% 0.0107 50.64 0.3 5 986.7
CMC 37.5352 - 0.8185 3.24 1.0 1.0
CMC-GA BS 37.4047 - 0.7589 9.13 0.4 1.2

K=100 38.7141 CMC-GA Lévy 38.3246 - 0.3688 4.19 3.8 4.9
CMC with ALBs 38.4763 - 0.1001 3.93 55.1 66.9
CMC with GLBs 38.0813 - 0.4444 3.86 2.8 3.4
LBSC 38.3370 0.9741% 0.0110 50.15 0.3 5 536.7
CMC 33.5189 - 0.8091 3.26 1.0 1.0
CMC-GA BS 33.4197 - 0.7547 9.26 0.4 1.1

K=120 34.6617 CMC-GA Lévy 34.3530 - 0.3685 4.22 3.7 4.8
CMC with ALBs 34.4984 - 0.0933 3.74 65.6 75.2
CMC with GLBs 34.0747 - 0.4297 4.09 2.8 3.5
LBSC 34.3474 0.9067% 0.0112 50.80 0.4 5 218.8
CMC 28.9148 - 0.7954 3.27 1.0 1.0
CMC-GA BS 28.8438 - 0.7479 9.17 0.4 1.1

K=150 30.0585 CMC-GA Lévy 29.8106 - 0.3693 4.22 3.6 4.6
CMC with ALBs 29.9484 - 0.0848 3.68 78.2 88.0
CMC with GLBs 29.5825 - 0.4081 3.38 3.7 3.8
LBSC 29.7612 0.9892% 0.0103 51.00 0.5 5 963.4

Table 2: Summary of the simulations for VG Models with σ = 0.5884, ν =
1.1737, θ = −0.1280, S0=100, r = 0.03, the maturity is 10 years (T = 10)
and there is monthly averaging (n=120).
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VG Model with an annual volatility of 15.031 % and a maturity of 10 years
Strike True Value Approach Mean Rel. Bias S.E. C. Eff-RF Var-RF

CMC 42.2141 - 0.0964 3.05 1.0 1.0
CMC-GA BS 42.2457 - 0.0794 9.06 0.5 1.5

K=60 42.1930 CMC-GA Lévy 42.1844 - 0.0055 4.02 233.1 307.2
CMC with ALBs 42.1899 - 0.0053 3.85 262.1 330.8
CMC with GLBs 42.1869 - 0.0077 3.55 134.7 156.7
LBSC 42.1876 0.0127% 0.0064 51.15 8.0 226.9
CMC 28.2458 - 0.0903 3.03 1.0 1.0
CMC-GA BS 28.2773 - 0.0750 9.18 0.5 1.4

K=80 28.2478 CMC-GA Lévy 28.2397 - 0.0047 4.01 278.9 369.1
CMC with ALBs 28.2340 - 0.0068 3.74 142.9 176.3
CMC with GLBs 28.2321 - 0.0082 3.54 103.8 121.3
LBSC 28.2377 0.0357% 0.0066 50.65 3.4 187.2
CMC 16.3192 - 0.0757 3.04 1.0 1.0
CMC-GA BS 16.3471 - 0.0642 9.34 0.5 1.4

K=100 16.3258 CMC-GA Lévy 16.3300 - 0.0038 4.10 294.2 396.8
CMC with ALBs 16.3292 - 0.0076 3.92 76.9 99.2
CMC with GLBs 16.3285 - 0.0082 3.87 66.9 85.2
LBSC 16.3204 0.0333% 0.0061 50.33 5.2 153.5
CMC 7.7266 - 0.0540 3.05 1.0 1.0
CMC-GA BS 7.7447 - 0.0473 9.61 0.4 1.3

K=120 7.7350 CMC-GA Lévy 7.7528 - 0.0033 4.12 198.2 267.8
CMC with ALBs 7.7311 - 0.0073 3.86 43.2 54.7
CMC with GLBs 7.7301 - 0.0072 3.60 47.7 56.3
LBSC 7.7306 0.0568% 0.0050 51.10 3.9 116.6
CMC 1.4876 - 0.0221 3.04 1.0 1.0
CMC-GA BS 1.4937 - 0.0204 9.39 0.4 1.2

K=150 1.4991 CMC-GA Lévy 1.5112 - 0.0032 4.13 35.1 47.7
CMC with ALBs 1.5056 - 0.0049 3.92 15.8 20.3
CMC with GLBs 1.5088 - 0.0057 3.62 12.6 15.0
LBSC 1.5007 0.1084% 0.0034 50.40 2.1 42.3

Table 3: Summary of the simulations for VG Models with σ = 0.058, ν =
1.1737, θ = −0.1280, S0=100, r = 0.03, the maturity is 10 years (T = 10)
and there is monthly averaging (n=120).
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NIG Model with an annual volatility of 12.611 % and a maturity of 20 days
Strike True Value Approach Mean Rel. Bias S.E. C. Eff-RF Var-RF

CMC 3.1248 0.003959 0.48 1.0 1.0
CMC-GA BS 3.1271 0.000788 1.07 11.3 25.2

K=47 3.1271 CMC-GA Lévy 3.1270 0.000017 1.00 27 357.7 56 995.3
CMC with ALBs 3.1271 0.000034 0.68 9 776.0 13 849.3
CMC with GLBs 3.1271 0.000038 0.70 7 255.4 10 580.8
LBSC 3.1271 0.0001% 0.000002 14.80 34 667.5 3 207 703.5
CMC 1.6466 0.003821 0.50 1.0 1.0
CMC-GA BS 1.6485 0.000738 1.08 12.4 26.8

K=48.5 1.6484 CMC-GA Lévy 1.6492 0.000015 1.02 33 277.2 67 885.5
CMC with ALBs 1.6487 0.000194 0.69 280.1 386.6
CMC with GLBs 1.6487 0.000196 0.72 264.3 380.6
LBSC 1.6484 0.0006% 0.000010 15.20 2 548.1 161 081.9
CMC 0.4241 0.002524 0.49 1.0 1.0
CMC-GA BS 0.4247 0.000526 1.08 10.5 23.1

K=50 0.4249 CMC-GA Lévy 0.4250 0.000011 1.05 25 742.6 55 162.6
CMC with ALBs 0.4246 0.000306 0.71 47.0 68.2
CMC with GLBs 0.4246 0.000306 0.69 48.3 68.0
LBSC 0.4250 0.0017% 0.000009 15.10 1 494.2 73 918.4
CMC 0.0256 0.000632 0.53 1.0 1.0
CMC-GA BS 0.0253 0.000231 1.11 3.6 7.4

K=51.5 0.0258 CMC-GA Lévy 0.0280 0.000008 1.09 3 206.2 6 593.8
CMC with ALBs 0.0257 0.000176 0.75 9.1 12.8
CMC with GLBs 0.0257 0.000177 0.76 8.9 12.7
LBSC 0.0258 0.0021% 0.000009 15.00 180.4 5 125.9

Table 4: Summary of the simulations for NIG Models with α = 136.29,
η = −8.95, δ = 0.0059, µ = 0.00079, S0=50, r = 0.1, the maturity is 20
days (T = 20/365) and there is daily averaging (n=20).

performances of the different methods are summarized for different strikes.

7.4 Discussion

From an analysis of the Tables 1 to 6, we observe that the LBSC approach
is performing very well in terms of the variance reduction. It is in many
cases the approach with the highest values for the variance reduction factor
Var-RF (Tables 1, 2, 4, 5 and 6). In particular, the approach is performing
outstanding when the volatility of the underlying risky asset reaches aver-
age to high levels. Recall that all other things being equal, the higher the
variance reduction the smaller the number of simulations that are needed
to obtain a given accuracy. Therefore, for a given acceptable bound on the
standard error (S.E.), the LBSC approach often needs the smallest calcula-
tion time (even if we consider the fact that for each replication the method
requires more running resources). We explain the feature of the high variance
reduction ability for the LBSC as follows: The approach is based on con-
ditioning, which allows to avoid simulation of the Brownian motion. More
precisely, for each realization of the stochastic clock one uses an analytical
formula for approximating the (conditional) option price. Next, by generat-
ing different scenarios for the clock one obtains an estimated price for the
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NIG Model with an annual volatility of 53.428 % and a maturity of 20 days
Strike True Value Approach Mean Rel. Bias S.E. C. Eff-RF Var-RF

CMC 3.5012 0.014344 0.48 1.0 1.0
CMC-GA BS 3.5064 0.000365 1.07 691.1 1 540.6

K=47 3.5060 CMC-GA Lévy 3.5069 0.000204 1.00 2 378.0 4 954.3
CMC with ALBs 3.5073 0.001231 0.68 95.8 135.7
CMC with GLBs 3.5073 0.001258 0.70 89.1 129.9
LBSC 3.5059 0.0030% 0.000006 14.80 601.0 5 079 044.3
CMC 2.4169 0.012600 0.50 1.0 1.0
CMC-GA BS 2.4180 0.000339 1.08 638.3 1 378.7

K=48.5 2.4177 CMC-GA Lévy 2.4188 0.000187 1.02 2 221.7 4 532.3
CMC with ALBs 2.4197 0.001291 0.69 69.0 95.3
CMC with GLBs 2.4198 0.001311 0.72 64.2 92.4
LBSC 2.4176 0.0045% 0.000001 14.90 450.0 113 211 803.8
CMC 1.5542 0.010476 0.49 1.0 1.0
CMC-GA BS 1.5554 0.000311 1.08 514.6 1 134.3

K=50 1.5549 CMC-GA Lévy 1.5553 0.000174 1.05 1 689.1 3 619.4
CMC with ALBs 1.5551 0.001272 0.71 46.8 67.8
CMC with GLBs 1.5552 0.001281 0.69 47.5 66.9
LBSC 1.5550 0.0060% 0.000002 15.00 411.7 20 992 432.5
CMC 0.9267 0.008248 0.53 1.0 1.0
CMC-GA BS 0.9292 0.000278 1.11 420.2 880.1

K=51.5 0.9288 CMC-GA Lévy 0.9311 0.000163 1.09 1 244.4 2 559.1
CMC with ALBs 0.9276 0.001197 0.75 33.6 47.5
CMC with GLBs 0.9276 0.001197 0.76 33.1 47.5
LBSC 0.9289 0.0113% 0.000001 15.10 216.7 32 759 400.1

Table 5: Summary of the simulations for NIG Models with α = 136.29,
η = −8.95, δ = 0.1059, µ = 0.00079, S0=50, r = 0.1, the maturity is 20
days (T = 20/365) and there is daily averaging (n=20).
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NIG Model with an annual volatility of 21.05 % and a maturity of 5 years
Strike True Value Approach Mean Rel. Bias S.E. C. Eff-RF Var-RF

CMC 12.6258 0.050729 1.12 1.0 1.0
CMC-GA BS 12.6403 0.004346 1.82 83.8 136.2

K=45 12.6220 CMC-GA Lévy 12.6238 0.004364 2.00 75.7 135.1
CMC with ALBs 12.6234 0.003498 1.54 153.0 210.3
CMC with GLBs 12.6238 0.005214 1.88 56.4 94.7
LBSC 12.6191 0.0232% 0.000004 31.20 10.8 130 013 302.8
CMC 10.1218 0.048370 1.14 1.0 1.0
CMC-GA BS 10.1292 0.004246 1.85 80.0 129.8

K=50 10.1101 CMC-GA Lévy 10.1141 0.004254 2.20 67.0 129.3
CMC with ALBs 10.1110 0.003777 1.54 121.4 164.0
CMC with GLBs 10.1113 0.005139 1.82 55.5 88.6
LBSC 10.1075 0.0255% 0.000004 32.20 12.5 142 851 816.1
CMC 7.9205 0.045000 1.12 1.0 1.0
CMC-GA BS 7.9329 0.004065 1.82 75.4 122.5

K=55 7.9216 CMC-GA Lévy 7.9192 0.004067 2.33 58.8 122.4
CMC with ALBs 7.9207 0.003865 1.55 98.0 135.6
CMC with GLBs 7.9201 0.004743 1.89 53.3 90.0
LBSC 7.9193 0.0288% 0.000003 31.50 13.8 177 883 174.4
CMC 6.1020 0.041040 1.13 1.0 1.0
CMC-GA BS 6.0955 0.003918 1.84 67.4 109.7

K=60 6.0872 CMC-GA Lévy 6.0835 0.003910 2.29 54.4 110.2
CMC with ALBs 6.0835 0.003822 1.56 83.5 115.3
CMC with GLBs 6.0815 0.004264 1.91 54.8 92.6
LBSC 6.0852 0.0323% 0.000003 31.30 15.7 220 145 773.8

Table 6: Summary of the simulations for NIG Models with α = 136.29,
η = −8.95, δ = 0.5, µ = 0.00079 ∗ 30, S0=50, r = 0.1, the maturity is 5
years (T = 5) and there is monthly averaging (n=60).
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(unconditional) option price. It is then clear that the variance of the esti-
mator using the LBSC approach is lower than the estimator when using the
traditional Monte Carlo simulation. Intuitively, this difference in variance
is expected to be quite significant because the stochastic clock is only one
source of randomness for the Asian option price, and is independent of the
second source, which is the Brownian motion. Unfortunately, and mainly
driven by the presence of bias, this efficiency in terms of variance reduction
is not reflected in the other efficiency measure Eff-Rf. One also observes that
the bias is increasing in maturity and volatility but remains rather small.
We believe that the LBSC approach is particularly useful in a risk manage-
ment context because the feature of variance reduction may be considered
as more important than the fact that the approach provides estimates that
are biased. Note indeed that especially in risk management computation
time is still an issue because simulations are typically carried out in the real
world and the risk-neutral world jointly (e.g. when calculating the risk for a
portfolio of options over a one year horizon one needs to compute prices in
the risk neutral world conditional on the occurrence of real-world scenarios).
In this instance, small pricing errors can surely be neglected but speed is
important. Therefore, for Asset-Liability management purposes, the LBSC
approach is a very suitable candidate.
As for the unbiased Monte Carlo approaches that are based on control vari-
ates, the analysis of the different tables shows that there are two approaches
that depart from the others and show nice performance statistics. These are
the crude Monte-Carlo with the arithmetic lower bounds as control vari-
ates (CMC with ALBs) and the control variate approach (CMC-GA Lévy)
of Fusai and Meucci (2008). Tables 1, 2 and 6 show that the CMC with
ALBs method is outperforming for the different criteria considered whereas
Tables 3, 4 and 5 support the use of CMC-GA Lévy. A closer inspection of
the specifications of the different numerical illustrations, in particular con-
sidering the aspects maturity and volatility, suggests that the method of
Fusai and Meucci (2008) is better adapted to deal with products that have
a rather short maturity (Tables 4 and 5) or when the volatility of the un-
derlying is rather low (Table 3). In contrast, the CMC with ALBs approach
is outperforming when the maturities involved are longer (like in insurance
products) and in these instances its performance increases with increasing
volatility; see Tables 1, 2 and 6. We further investigate these observations by
performing a further sensitivity analysis of the factors maturity and volatil-
ity using a NIG economy. The results of this analysis are shown in Table 7
and 8 and confirm the above findings. In summary, the numerical examples
provide strong evidence that the CMC with ALBs approach is suitable in
an insurance context that involves longer maturities, whereas the method
of Fusai and Meucci (2008) is more suitable in a trading context involving
shorter maturities. On a more qualitative note, we point out that the CMC
with ALBs approach and the CMC with GLBs approach computes the ex-
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NIG Model with an annual volatility of 30.07 % and a maturity of 1 year

Strike Approach Mean S.E. C. Eff-RF Var-RF

CMC 7.8910 0.0354 0.23 1.0 1.0
K=45 CMC-GA Lévy 7.9164 0.0014 0.37 399.6 642.8

CMC with ALBs 7.9119 0.0030 0.22 149.4 142.9

CMC 1.3985 0.0172 0.25 1.0 1.0
K=60 CMC-GA Lévy 1.4057 0.0012 0.40 137.0 219.2

CMC with ALBs 1.4054 0.0027 0.26 38.8 40.3

NIG Model with an annual volatility of 30.07 % and a maturity of 5 years

Strike Approach Mean S.E. C. Eff-RF Var-RF

CMC 13.4823 0.0720 1.00 1.0 1.0
K=45 CMC-GA Lévy 13.4578 0.0081 1.70 46.8 79.5

CMC with ALBs 13.4667 0.0059 1.15 129.3 148.7

CMC 7.8520 0.0615 1.10 1.0 1.0
K=60 CMC-GA Lévy 7.8560 0.0075 1.83 40.3 67.0

CMC with ALBs 7.8518 0.0057 1.32 98.5 118.1

NIG Model with an annual volatility of 30.07 % and a maturity of 10 years

Strike Approach Mean S.E. C. Eff-RF Var-RF

CMC 16.0506 0.0972 5.60 1.0 1.0
K=45 CMC-GA Lévy 16.0415 0.0200 8.90 14.8 23.5

CMC with ALBs 16.0302 0.0088 6.72 102.3 122.7

CMC 12.2261 0.0923 5.60 1.0 1.0
K=60 CMC-GA Lévy 12.2298 0.0193 9.05 14.2 22.9

CMC with ALBs 12.2151 0.0083 6.65 104.2 123.8

Table 7: Summary of the simulations for NIG Models with α = 136.29,
η = −8.95, µ = 0.00079, δ = 1.02, S0=50, r = 0.1, the maturity are 1, 5 and
10 years and there is monthly averaging.

pectations of the control variates using Gauss Laguerre integration whereas
the method of Fusai and Meucci (2008) requires the Fast Fourier Transform
approach. We found the former approach rather easy to implement and did
not encounter major difficulties. The implementation of the Fast Fourier
Transform requires a careful handling of discretization and truncation (see
also Carr and Madan (1998)), which makes it sometimes more difficult to
use.

8 Applications to other products

8.1 Unit Linked Insurance

Unit linked insurance products are life type insurance products where policy-
holder’s premiums are used to purchase units in investment funds generally
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NIG Model with an annual volatility of 40.05 % and a maturity of 1 year

Strike Approach Mean S.E. C. Eff-RF Var-RF

CMC 8.6853 0.0461 0.25 1.0 1.0
K=45 CMC-GA Lévy 8.7163 0.0025 0.40 218.8 350.1

CMC with ALBs 8.7129 0.0042 0.27 113.8 122.9

CMC 2.4488 0.0277 0.27 1.0 1.0
K=60 CMC-GA Lévy 2.4598 0.0021 0.44 102.4 166.9

CMC with ALBs 2.4586 0.0038 0.30 47.2 52.5

NIG Model with an annual volatility of 40.05 % and a maturity of 5 years

Strike Approach Mean S.E. C. Eff-RF Var-RF

CMC 14.6706 0.0996 1.10 1.0 1.0
K=45 CMC-GA Lévy 14.6663 0.0147 1.80 28.2 46.2

CMC with ALBs 14.6692 0.0089 1.30 105.4 124.6

CMC 9.7760 0.0890 1.15 1.0 1.0
K=60 CMC-GA Lévy 9.7992 0.0138 1.88 25.4 41.5

CMC with ALBs 9.7969 0.0081 1.35 103.7 121.7

NIG Model with an annual volatility of 40.05 % and a maturity of 10 years

Strike Approach Mean S.E. C. Eff-RF Var-RF

CMC 17.0460 0.1473 6.00 1.0 1.0
K=45 CMC-GA Lévy 17.0598 0.0448 9.20 7.0 10.8

CMC with ALBs 17.0398 0.0172 7.00 62.6 73.0

CMC 13.8717 0.1423 5.88 1.0 1.0
K=60 CMC-GA Lévy 13.8974 0.0437 9.14 6.8 10.6

CMC with ALBs 13.8764 0.0160 6.86 67.9 79.2

Table 8: Summary of the simulations for NIG Models with α = 136.29,
η = −8.95, µ = 0.00079, δ = 1.81, S0=50, r = 0.1, the maturity are 1, 5 and
10 years and there is monthly averaging.
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composed of different assets such as for example bonds and stocks, usually
selected by the policyholder8. Since the fund value (St)t is composed of risky
assets, the insurance company generally proposes a minimum guarantee at
maturity in order to protect the policyholder against an economy downfall.
Let assume that the policyholder invests only in a single investment fund or
stock and that investment premiums Pi are paid at time ti, i = 0, 1, 2, ..., n−1
which allow the policyholder to purchase Pi/Sti units and each unit has a
value ST at expiry T = tn. The payoff of the contract at maturity T (con-
ditional upon survival of the insured until time T ) is therefore given by the
maximum of the fund value (FVn) and a certain minimum payment K

max(FVn,K) = max

(
n−1∑
i=0

Pi
ST

Sti

,K

)
= K +max

(
n−1∑
i=0

Pi
ST

Sti

−K, 0

)
.

For example in the case of a guaranteed rate of return R, insurance compa-
nies often determine K to be equal to K =

∑n−1
i=0 Pie

R(T−ti) (see Schrager
and Pelsser (2004)) where the investment premiums Pi can be a function of
the guaranteed rate of return R.
Following Schrager and Pelsser (2004), we assume that at time i = 0, ..., n−1
the premium Pi is given by Pi = GPi−FCi− ciFVi, where GPi is the gross
premium at time i which is paid at regular intervals until expiry of the in-
surance contract; FCi is a fixed cost at time i, including investment costs,
administration costs; ci is the fund value related cost deduction (including
mortality charges) and FVi is the fund value at time i. In Schrager and
Pelsser (2004), it is shown that

n−1∑
i=0

Pi
ST

Sti

=
n−1∑
i=0

P̃n
i

ST

Sti

where P̃n
i = (GPi − FCi)

∏n−i−1
j=1 (1 − cn−j) which is deterministic. In par-

ticular if ci is constant over time and denoted by ci ≡ c we have P̃n
i =

(GPi − FCi)(1 − c)n−i−1. In that case, the no-arbitrage price of the unit
linked contract can be rewritten as

P = K + E

[
max

(
n−1∑
i=0

P̃n
i

ST

Sti

−K, 0

)]
.

Following our approach of modelling the spot price by an exponential VG or
NIG process, namely St = S0e

Zt where Zt is a VG or NIG process, and using
the independent and stationary increment properties of Lévy processes, we
obtain

n−1∑
i=0

P̃n
i

ST

Sti

=

n−1∑
i=0

P̃n
i e

ZT−Zti
D
=

n−1∑
i=0

P̃n
i e

Z′
T−ti

8Some insurers even give the possibility to invest in individual stocks (see Schrager and
Pelsser (2004))
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where Z ′ is an independent copy of the Lévy process Z, and where
D
= reflects

equality in law.
The no-arbitrage price of the unit linked contract is now given by

P = K + E

[
max

(
n−1∑
i=0

P̃n
i e

Z′
T−ti −K, 0

)]
.

It is easy to observe the relation between unit linked insurance products
and Asian options and therefore the approaches developed in this paper are
suitable to price such insurance contracts.

8.2 Ratchet equity-indexed annuities (EIAs)

In this subsection, we focus on pricing ratchet equity-indexed annuities
(EIAs) with Asian-end design. An equity-indexed annuity contract is a fixed
annuity earning a minimum rate of interest and offering a potential gain
which is tied to the performance of an underlying equity index S which is in
general measured on the basis of the returns generated by the index over the
lifetime of the contract. There exist different types of EIAs and the most
popular ones are the annual ratchet EIAs. In the case of annual ratchet
EIAs, the index return level Rt is measured each year based on the equity
index performances. In the literature you can find different designs for Rt

and according to Lin and Tan (2003), the most common type of design is
based on averaging (which according to Marrion (2000,1) represent approx-
imately 60 % of Annual Reset EIAs), for example the index return is often

determined by Rt =
1
N

∑N−1
i=0 St−i/N

St−1
−1, where N is the number of reset dates

in one year to calculate the index return measure.
According to Lin and Tan (2003) and Marrion (2000,1), ratchet EIAs are
among the most popular contracts in the North America market in terms
of their sales volume. According to Marrion (2000,1), 70% of EIAs sold in
the market are of this type. There exist two types of ratchet EIAs, namely
the simple ratchet EIAs and the compounded ratchet EIAs. Following Bal-

lotta (2010), simple ratchet EIAs payoffs B
(s)
T and compounded ratchet EIAs

payoffs B
(c)
T at maturity T are respectively given by

B
(s)
T = 1 + T F +

T∑
t=1

[
(αRt − F )+ − (αRt − C)+

]
B

(c)
T =

T∏
t=1

[
1 + F + (αRt − F )+ − (αRt − C)+

]
where C and F ∈ (0, 1) denote fixed Cap and Floor rates respectively pro-
viding respectively an upper bound to the rate of return and a minimum
guarantee, and where Rt reflects the index return and α a fixed percentage,
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called the participation rate.
Therefore, ratchet EIAs can be seen as a portfolio composed of a risk-free
component and a sequence of bull spreads composed of call options of types
depending on the design of Rt. Using the moment-matching method and as-
suming a VG economy for the equity index St, Ballotta (2010) has derived
an approximation for a ratchet EIA where the index return is measured by

Rt =
1
N

∑N−1
i=0 St−i/N

St−1
− 1, where N is the number of reset dates in one year

to calculate the index level measure.
Modelling the equity index S by an exponential VG or NIG process, namely
St = S0e

Zt where Zt is a VG or NIG process (see Section 4), and because
of independent and stationary increment properties of Lévy processes, the
no-arbitrage price of the ratchet EIAs is in the settings of Ballotta (2010)
in the simple case given by

B
(s)
0 = e−rT (1 + T F ) + e−rTE

[
T
(

α
N

∑N−1
i=0 e

Z′
1−i/N −KF

)+]
− e−rTE

[
T
(

α
N

∑N−1
i=0 e

Z′
1−i/N −KC

)+]
and in the compounded case by

B
(c)
0 = e−rTE

1 + F +

(
α

N

N−1∑
i=0

e
Z′
1−i/N −KF

)+

−

(
α

N

N−1∑
i=0

e
Z′
1−i/N −KC

)+
T

whereKF = α+F andKC = α+C; and where as before Z ′ is an independent
copy of the Lévy process Z. Hence the pricing problem of such ratchet EIAs
with Asian-end design reduces to the problem of pricing two Asian options
with a maturity of one year and a strike of KF and KC . It is now easy to
understand that the approximating price approaches developed in this paper
to price Asian options can be useful for insurance companies that deal with
ratchet EIAs.

9 Conclusions

In this paper we propose two methods for pricing Asian style payoffs in a
Lévy market setting. A first approach consists in using model-independent
lower bounds for Asian options as control variates in a traditional Monte
Carlo scheme (CMC with ALBs approach). Numerical results show that
this approach outperforms other (unbiased) methods when the contracts in-
volve longer maturities. In contrast, the Monte Carlo method with geometric
control variate of Fusai and Meucci (2008) seems to be more efficient in a
rather short maturity context. Note that the CMC with ALBs approach
avoids the use of FFT (needed in the well known Fusai and Meucci (2008)
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method), which requires more programming efforts and needs to be adjusted
to the specificities of the payoff at hand (issues of discretization, truncation
and singularities). In this respect Mont Carlo methods are more general
approaches that often require less programming efforts than deterministic
numerical techniques. We conclude that the (unbiased) CMC with ALBs
approach is suitable in a pricing context especially for the pricing of insur-
ance Asian type derivatives as these involve longer maturities. Note that we
also briefly discussed the application of the methods presented in this paper
to other insurance products like ratchet equity-indexed annuities and unit
linked insurance agreements.

A second approach (LBSC) is based on a conditioning on the stochastic
clock, which makes the nature of the problem multi-variate normal and
allows us to make use of very accurate closed form approximations that
we apply conditionally. Next, Monte-Carlo simulations with control variates
are used to account for the stochasticity of the clock itself. This approach
is biased but the bias appears to be small in practical examples. Moreover,
the method is simple to implement and its variance reduction ability usually
surpasses all the other methods developed in this paper as well as the popular
control variate Monte Carlo methods of Fusai and Meucci (2008) and Dingec
and Hormann (2012). Therefore, the last method offers an attractive trade-
off between accuracy and efficiency (speed), which is particularly useful in
a risk management context.
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