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Abstract

In this paper, we study the price of Variable Annuity Guarantees, particularly those of Guaran-
teed Annuity Options (GAO) and Guaranteed Minimum Income Benefit (GMIB), in the settings
of a derivative pricing model where the underlying spot (the fund) is locally governed by a geo-
metric Brownian motion with local volatility, while interest rates follow a Hull-White one-factor
Gaussian model. Notwithstanding the fact that in this framework, the local volatility depends on
a particularly complex expectation where no closed-form expression exists and it is neither directly
related to European call prices or other liquid products, we present in this contribution a method
based on Monte Carlo Simulations to calibrate the local volatility model. We further compare Vari-
able Annuity Guarantee prices obtained in three different settings, namely the local volatility, the
stochastic volatility and the constant volatility models all combined with stochastic interest rates
and show that an appropriate volatility modelling is important for these long-dated derivatives.
More precisely, we compare prices of GAO, GMIB Rider and barrier types GAO obtained by using
local volatility, stochastic volatility and constant volatility models.

1 Introduction

Variable Annuities are insurance contracts that propose a guaranteed return at retirement often higher
than the current market rate and therefore they have become a part of many retirement plans. Vari-
able Annuity products are typically based on an investment in a mutual fund composed of stocks and
bonds (see for example Gao [13] and Pelsser and Schrager [27]) and offer a range of options to give
minimum guarantees and protect against negative equity movements. One of the most popular type
of Variable Annuity Guarantees in Japan and North America is the Guaranteed Minimum Income
Benefit (GMIB). At her retirement date, a GMIB policyholder will have the right to choose between
the fund value at that time or (life) annuity payments based on the initial fund value at a fixed guar-
antee rate. Similar products are available in Europe under the name Guaranteed Annuity Options
(GAO). Many authors have previously studied the pricing and hedging of GMIBs and GAOs assuming
a geometric Brownian motion and a constant volatility for the fund value (see for example Boyle and
Hardy [7; 8], Ballotta and Haberman [3], Pelsser [26], Biffis and Millossovich [4], Marshall et al. [25],
Chu and Kwok [9]).

GAO and GMIB can be considered as long-dated options since their maturity is based on the re-
tirement date. When pricing long-dated derivatives, it is highly recommended that the pricing model
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used to evaluate and hedge the products takes into account the stochastic behavior of the interest
rates as well as the stochastic behavior of the fund. Furthermore, the volatility of the fund can have a
significant impact and should not be neglected. It has been shown in [8] that the value of the fund as
well as the interest rates and the mortality assumptions strongly influence the cost of these guarantees.
Some authors consider the evolution of mortality stochastic as well (see for example [3] and [4]). In
[33], van Haastrecht et al. have studied the impact of the volatility of the fund on the price of GAO
by using a stochastic volatility approach.

Another category of models capable of fitting the vanilla market implied volatilities are local
volatility models introduced in 1994 by Derman and Kani and by Dupire in resp. [11] and [12] and
recently extended by, among others, Atlan [2] in a two-factor local volatility model with stochastic
interest rates; and then by Piterbarg [28] and Deelstra and Rayée [10] in a three-factor model for
the pricing of long-dated FX derivatives. The main advantage of local volatility models is that the
volatility is a deterministic function of the equity spot and time, which avoids the issue in working in
incomplete markets in comparison with stochastic volatility models. Therefore local volatility models
are more appropriate for hedging strategies. The local volatility function is expressed in terms of im-
plied volatilities or market call prices and the calibration is undertaken on the entire implied volatility
surface directly. Consequently, local volatility models usually capture in a more precise manner the
surface of implied volatilities compared to stochastic volatility models.

Stochastic volatility models are advantageous in that it is possible to derive closed-form solu-
tions for some European derivatives. In [33], van Haastrecht et al. have derived closed-form formulae
for GAO prices in the Schobel and Zhu stochastic volatility model combined with Hull and White
stochastic interest rates. However, the GMIB Rider, one of the popular products traded by insurance
companies in North America (see [1]) has a more complicated payoff compared to a pure GAO and
therefore no closed-form solution exists for the price of a GMIB Rider, not even in the Schébel and Zhu
stochastic volatility model. The only way to evaluate a GMIB Rider is through the use of numerical
approaches, such as Monte Carlo simulations.

In this paper, we study the prices of GAO, GMIB Riders and barrier type GAOs in the settings of a
two-factor pricing model where the equity (fund) is locally governed by a geometric Brownian motion
with a local volatility, while interest rates follow a Hull-White one-factor Gaussian model. In this
framework, the local volatility expression contains an expectation for which no closed-form expression
exists and which is unfortunately not directly related to European call prices or other liquid products.
Its calculation can be done by numerical integration methods or Monte Carlo simulations. Alternative
approaches are to calibrate the local volatility from stochastic volatility models by using links between
local and stochastic volatility models or by adjusting the tractable local volatility surface coming from
a deterministic interest rates framework (see [10]).

Furthermore, we compare Variable Annuity Guarantee prices obtained in three distinct settings,
namely, the local volatility, the stochastic volatility and the constant volatility models, all in the set-
tings of stochastic interest rates. We show that using a non constant volatility for the volatility of
the equity fund value can have significant impact on the value of these Variable Annuity Guarantees
and that the impact generated by a local volatility model is not equivalent to the one generated by a
stochastic volatility model, even if both are calibrated to the same market data.



This paper is organized as follows: Section 2 is a summary of properties of the local volatility model
in a constant interest rates framework and of its extension in a stochastic interest rates framework.
In Section 3, we present an approach based on Monte Carlo simulations for the calibration of the
local volatility function in the stochastic interest rates setting. In Section 4, we present the three
types of Variable Annuity Guarantees we study in this paper, namely, the GAO, the GMIB Rider and
barrier type GAOs. In Subsection 4.1 we present the GAO, and then in Subsection 4.2 we define a
GMIB Rider and finally in Subsection 4.3, we study two types of barrier GAQO. Section 5 is devoted
to numerical results. In Subsection 5.1, we present the calibration procedure for the Hull and White
parameters and the calibration of the local volatility with respect to the vanilla market. Subsections
5.2, 5.3 and 5.4 investigate how the local volatility model behaves when pricing GAO, GMIB Rider
and barrier type GAOs (respectively) with respect to the Schébel-Zhu Hull-White stochastic volatility
model and the Black-Scholes Hull-White model. Conclusions are given in Section 6.

2 The local volatility model: from a constant to a stochastic interest
rates framework

In a constant interest rates setting, the risk neutral probability density of an underlying asset .S can
be derived from the market prices of European options. More precisely, the risk neutral price of a
Furopean Call with strike K and maturity 7' is given by

C(K,T)=e"TEC[(Sy — K)T] =T /0 +Oo(x — K)"¢(x, T)dx (1)

where @ denotes the risk neutral measure, r is the constant interest rate and where ¢(x, T') corresponds
to the risk neutral probability density of the underlying asset S at time T". Differentiating this equation
(1) twice with respect to K one obtains the well-known equality

0?C(K,T)
OK?
Using these results, Dupire [12] and Derman and Kani [11] introduced in 1994, in the setting
of constant interest rates, the so-called local volatility models for the underlying assets which have
a deterministic time and state-dependent volatility function, consistent with the current European
option prices. In a local volatility model with constant interest rate, the underlying asset S (paying a
constant dividend yield ¢) is assumed to be governed by the following risk neutral dynamics

=e "Ty(K,T).

dS(t) = (r —q)S(t)dt + o(t, S(t))S(t)dW?(t), (2)

where Wé? (t) is a Brownian motion under the risk neutral measure ) and where the diffusion function
o(t,S(t)) satisfies conditions such that equation (2) has a unique solution.

Dupire [12] and Derman and Kani [11] noted that there is a unique volatility function consistent
with European option prices, and called it the local volatility function. Indeed, given a complete set
of European option prices for all strikes and expirations, this local volatility function is given uniquely
by
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This local volatility model is very tractable since the local volatility surface can directly be com-
puted from vanilla option market prices.

Another useful property of the local volatility model is its link with stochastic volatility models.
More precisely, if the underlying spot is governed by the following risk neutral dynamics with constant
interest rate,

dS(t) = (r — q)S(t)dt + v (t, v(£) S AW (L), (4)

and applying Gyongy’s mimicking theorem [17], one can show that the local volatility is given by the
square root of the conditional expectation under the risk neutral measure! @ of the instantaneous
equity stochastic spot volatility to the square at the future time ¢, conditional on the equity spot level
S(t) being equal to K:

o(t, K) = \/EQ[V2(t,V(t)) | 5(t) = K]. (5)

Common designs for the function (¢, v(t)) are v(t), exp(1/v(t)) and y/v(t). The stochastic variable
v(t) is often modelled by a Cox-Ingersoll-Ross (CIR) process (such as the Heston model [19]) or by
an Ornstein-Uhlenbeck process (OU) (such as the Schdbel and Zhu [30] stochastic volatility model,
implying that the function (¢, v(t)) can allow for negative values).

While for short-dated options (less than 1 year), assuming constant interest rates does not lead to
significant mispricing, for long-dated derivatives, the effect of interest rate volatility becomes increas-
ingly pronounced with increasing maturity and can become as important as that of the underlying
spot volatility. In this paper we use the extended version of the previous model where interest rates
are stochastic and where the volatility of the underlying spot S is a local volatility function. More pre-
cisely, we consider a model where the underlying S is governed by the following risk neutral dynamics

(see [2])

dS(t) = (r(t) — q)S(t)dt + o (t, S(t))S(t)dWé?(t), (6)

where the local volatility function (o (t,S(t))) satisfies conditions such that equation (6) has a unique
solution. As before, the constant parameter ¢ denotes the continuous dividend yield. We assume that
interest rates follow a Hull-White one-factor Gaussian model [20] defined by the Ornstein-Uhlenbeck
process

dr(t) = [0(t) — a(t)r(t)]dt + o (£)dW S (2), (7)

! Assuming that the risk neutral probability measure @ used in the stochastic volatility framework is the same as the
one used in the local volatility framework.



where 6(t), 0, (t) and «(t) are deterministic functions of time and where W (t) is a Brownian motion
under the risk neutral measure @, correlated with Wg (t). We assume that the dynamics of the
underlying S (i.e. the fund) and the interest rates are linked by a constant correlation structure:

EQ[dWE ()dW S (t)] = psrdt. (8)

We use the popular Hull-White model as it is a tractable nontrivial interest rate model, allowing
closed-form solutions for many derivatives, a fact which is useful for the calibration.

In the following we will denote this model by LVHW since it combines a local volatility model
with a Hull-White one-factor Gaussian model. When o (¢, S(t)) equals a constant, this model reduces
to the Black-Scholes Hull-White model, denoted by BSHW.

Differentiating the expression of a European call price (C(K,T')) with respect to its maturity T
and twice with respect to the strike K, we can derive the local volatility expression associated to this
two-factor model (see [10]). Indeed the analogue expression of the local volatility function (3) in the
framework of stochastic interest rates is given by

9CRT) 4 4C(K, T) — gK 29T 1+ KP(0, T)EQT [1(T)1 (5(1)> 1}
o(T,K) = 5 5
172 0%2C
2K OK?

, 9)

where P(0,T) is the price of a zero-coupon bond maturing at time 7" and where Qr is the T-forward
measure associated to the zero-coupon bond with maturity 7" as numeraire.

This local volatility function is not easy to calibrate with respect to the vanilla market since there
is no immediate way to link the expectation term (E®@T [r(T)1¢s(r)>K}]) with vanilla option prices or
other liquid products. However, we present in Section 3 a calibration method based on Monte Carlo
simulations.

Note that when assuming constant interest rates,

C(K,T) 9(P(0,T) [;F(x — K)T¢p(x,T)dx)

0K 0K

400
— P(0.7) /K (e, T)dz = —P(0, T)E® [Lis s gy (10)

where ¢p(x,T) corresponds to the T-forward probability density of the underlying asset at time T
Substituting (10) in equation (9), we find back the equation (3) in the setting of constant interest rates.

The difference between the tractable local volatility function o1 ¢(7, K) coming from the one-factor
Gaussian model (see equation (3)) and the local volatility function which takes into account the effects
of stochastic interest rates oo¢ (7', K) (i.e. equation (9)) can also be derived. Indeed, first remark that
the expectation E@7 [7(T)1{s(m)>K}] can be written as
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where we have used the well-known result that under the T-forward measure Qr: EQ7[r(T) | 73] =
f@t,T), for T > t, where f(t,T) is the forward rate at time ¢ for the maturity 7". Substituting equation
(11) in equation (9) and using the fact that in a constant interest rates framework, the forward rate
f£(0,T) is given by the interest rate r, one obtains the expression

P(0,T)Cov[r(T), 1(s(1)> )]
1K82C’ ’
OK?

05;(T,K) — 014(T, K) =

(12)

where Cov?7T (X,Y) represents the covariance between two stochastic variables X and Y under the
T-forward measure Q7.

Since the market often quotes options in terms of implied volatilities ¢, instead of option prices,
it is more convenient to express the local volatility in terms of implied volatilities. The implied
volatility of an option with price C'(K,T), is defined through the Black-Scholes formula (C™* (K, T) =
CBS(K,T,0imp)) and therefore computing the derivatives of call prices through the chain rule and
substituting in equation (3) leads to the following equation (see [34]) in the setting of constant interest
rates,

o(TK) = VegaBS( % + 9552 + (r — ) K %52)
’ B 1 B 1 2d 0T im 0%0im did_ ;00im
3K*Vega S(gimpKQT + aimplzﬁ oK T oxz T atm,,( ak”)?)

7] zm 9 im
B 02,0+ 2T Cimp =52 + 2(r — Q) KT 03y g1 (13)
- 3] im 8 im 0 im
(1+ KdyVT=572)2 4+ K2T 0y (“5rs® — di (%3, p)z\f)

with

2
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Vega?S = e~ T S(O)N"(d VT,




Using the same approach in the setting of stochastic interest rates, the local volatility expression
(9) can be written in terms of implied volatilities ojy:

VegaPS (% + “5pe — qK %) + Kr(0)e "OTN(d-) + KP(0,T)ER" [r(T)Lis(r)>x))

12 BS 1 2dy _ 00imp | 0%0imp | dyd— (O0imp o
3 K Vega (GomRzr T e KVT 0K T arz T o (o7 )?)

o(T,K) =

(14)

Note that the difference between agf(T, K) and a%f(T ,K) can be derived in terms of implied
volatilities (ojmp) by using equation (14) and (13) and leads to

Kr(0)e "OTA(d_) — VegaBSr(O)KaU”"p + KP(0,T)EQT[r(T )I{S(T)>K}]

1p2 BS 1 2d+ 9% imyp T imp dyd— (0%imp\2
s K=Vega (ampK2T+ Cimp KT OK + Sz t a,-m,,( o))

J%f(T7K) _U%f(TvK) =

(15)

Finally, a link also exists between the local volatility model and a stochastic volatility one under the
assumption that interest rates follow the same stochastic model. Consider the following risk neutral
dynamics for the equity spot

dS(t) = (r(t) — q)St)dt + ~(t, v(t))S(t)dWE (1), (16)

where r(t) and v(t) are stochastic processes. In [2] and [10], it is proven that if a local volatility exists,
such that the one-dimensional probability distribution of the equity spot modelled by diffusion (6) is
the same as the one of the equity spot with dynamics (16) for every time ¢ when assuming that the
risk neutral probability measure @) used in the stochastic and the local volatility framework is the
same, then the local volatility function o(¢,S(t) = K) is given by the square root of the conditional
expectation under the t-forward measure of the instantaneous equity stochastic spot volatility to the
square at the future time ¢, conditional on the equity spot level S(t) being equal to K:

)= EXR2 (1) | () = K. an

Local volatility models with stochastic interest rates are often used by practitioners to price long-
dated derivatives (see for example [28]). In the following we study the pricing of long-dated insurance
derivatives, namely Variable Annuity Guarantees, in this local volatility framework with stochastic
interest rates. In Section 3, we present a Monte Carlo approach for the calibration of this local
volatility model with respect to the implied volatility surface. Details about the products we study
and numerical results are presented in resp. Section 4 and Section 5.

3 Calibration

Before using a model to price any derivatives, practitioners are used to calibrate it on the vanilla
market. The calibration consists of determining all parameters present in the model in such a way
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that all European option prices derived in the model are as consistent as possible with the correspond-
ing market ones. More precisely, practitioners need a model which, after calibration, is able to price
vanilla options so that the resulting implied volatilities match the market-quoted ones.

The calibration procedure for the LVHW model can be decomposed in three steps: (i) Parameters
present in the Hull-White one-factor dynamics for the interest rates, namely 6(t), a(t) and o, (t), are
chosen to match European swaptions. Such methods are well developed in the literature (see for
example [6]). (ii) The correlation coefficient pg, is estimated from historical data. (iii) After these two
steps, one has to find the local volatility function which is consistent with the implied volatility surface.

3.1 The Monte Carlo approach

In this section we present a Monte Carlo approach for the calibration of the local volatility expression
(9) or (14). More precisely, we use Monte Carlo simulations to calculate an approximation of the
expectation E@T [7(T)1¢s(T)>K}]- Therefore we have to simulate interest rates r(¢) and the fund value
S(t) up to time T starting from the actual interest rate r(0) and fund value S(0) respectively. Note
that in the remainder of the paper we concentrate on the Hull and White model where a(t) = o and
or(t) = o, are positive constants. In that case, one can fit the market term structure of interest rates
exactly if the parameter 6(¢) satisfies (see [6] and [21])

o mkt 0,
o) = 20D

02
FafmR0, ) +

5o (1 o 672011‘,),

where f™#(0,t) denotes the market instantaneous forward rate at time 0 for the maturity ¢ and where

8];;“ denotes partial derivatives of f™** with respect to its second argument.

Since the expectation EQT [7(T)1¢s(T)>K}] is expressed under the measure @, we use the dynamics
of S(t) and r(t) under that measure, namely,

dS(t) = (r(t) — g — o (t, S(£)o,b(t, T)psy)S(t)dt + o (t, S(£))S(H)AWST (¢), (18)
dr(t) = [0(t) — ar(t) — o2(t)b(t, T)]dt + o, dW2T (1), (19)

where b(t,T) = 1(1 — e=(T=1),
Following the Monte Carlo principle, we simulate n times (i.e. n scenarios) the stochastic variables
r(t) and S(t) up to time T, using At = t;41 —t;, i = 0,...,p—1 as time step of discretization, assuming

that to = 0 and ¢, = T" and applying an Euler scheme.

Note that with a well-known change of variable, one can remove the need to calculate 6(¢). The
idea is to rewrite the stochastic interest rates as a sum of a stochastic and a deterministic part (see
[23]):

r(t) = x(t) + T(t), (20)



where the stochastic part obeys the following dynamics:

dz(t) = —(az(t) + o2(t)b(t, T))dt + o, (t)dWT (t) (21)

and where the deterministic part obeys the dynamics :

dz(t) = (0(t) — az(t))dt, (22)

which yields (see [23])

#t) = 0,0 +

2a2 (1 . e—oat)2.

In the Monte Carlo simulation method, the Euler scheme is used? for the discretization of equations
(18) and (21):

S(ter) = S(tr) + (r(tk) — g — o (e, S(t))orb(te, T)psr) S (tk) At + o (tr, S(t4))S (tr) VAL Zs,
w(try1) = a(ty) — [ax(ty) + o2bty, T)At + 0,V Atps, Zs + 1/ 1 — p2, 2],
r(tkt1) = (k1) + Z(tes), (23)
where
;

_ m g,
l‘(tk) = f kt(o,tk) + 2&2

1

(1 —e %)% and b(ty,, T) = —(1 — e~ *(Tt))
o

and Z, and Zg are two independent standard normal variables.

As one can see in equation (23), the local volatility function has to be known for the simulation
of the path for S(t) and r(t). Consequently, the only possible way to work is forward in time. Let
assume that market Call prices are available for p maturities® t1, o, ...,tp. Furthermore, we assume
that the “initial” local volatility o(tg, K) is known for all strike K. More precisely, in this paper, the
“initial” local volatility we use is obtained by using the local volatility expression given by equation
(3). Note that this local volatility is directly obtained by using market data (see equation (13))%.

?We assume that the local volatility function obtained by Monte Carlo simulations satisfies conditions to ensure that
the Euler approximation will converge to the solution of equations (18) and (21). For example, the local volatility has to
be smooth and positive. For more details about the convergence of the Euler approximation we refer the reader to [16].
However you one can check numerically whether the convergence to the solution of the SDE is satisfied. The convergence
is satisfied if one obtains the given market Call prices when using the “calibrated” local volatility.

3If the market does not price European Call options for all these maturities, an alternative method is to build first the
whole implied volatility surface from available market data by using an interpolation method as for example a bicubic
spline (see for example [29]). The implied volatility surface can also be built from a stochastic volatility model or the
SABR model (see for example [14]).

“We assume that the “initial” local volatility o(to, K) is equal in both the stochastic and the constant interest rates
framework. At time to, the interest rate is given by the fixed market data r(to) and in this case, expression (9) is
equivalent to expression (3).



The first step is to determine the local volatility function at time step ¢ for all strikes K. Knowing
the “initial” local volatility function o(tg, K), S(t1) and r(¢1) can be simulated. Then, the expectation
E@4 [r(t1)1{54,)>K}] can be computed for all K by using:

n

1
EQ [r(t1)1(s(1)>K}] = - > ri(t) (s, )5k} (24)
=1

At this step we are able to build the local volatility function o(¢1, K) at time t; for all strikes K
by using equation (9). Following the same procedure we can easily calibrate the local volatility at
time t9 by using the local volatility obtained at time ¢; and also the simulated paths until time ts.
Following this procedure we are able to generate the local volatility expression up to a final date T' = t,,.

4 Variable Annuity Guarantees

In this section we present three different Variable Annuity products and in section 5.2, we discuss
the price of all these products using local, stochastic and constant volatility models. First, we define
the Guaranteed Annuity Option in Subsection 4.1, and in Subsection 4.2 we define the Guaranteed
Minimum Income Benefit (Rider). This latter product has the particularity to be strongly dependent
upon the path of the fund value. Finally, in Subsection 4.3, we study two barrier type GAOs with a
strong dependence upon the path of the interest rates.

4.1 Guaranteed Annuity Options

Consider an x year policyholder who disposes at time 71" of the payout of his capital policy which
corresponds to an amount of money S(7'). A Guaranteed Annuity Option gives to the policyholder
the right to choose either an annual payment of S(7")g where g is a fixed rate called the Guaranteed
Annuity rate or a cash payment equal to the equity fund value S(7T') at time 7" which can be considered
as an annual payment of S(7')r;(T"), with 7,(T") being the market annuity payout rate. Assuming that

the mortality risk is unsystematic and independent of the financial risk, the market annuity payout
w—(z+T)
rate is defined by 7, (T") = ﬁ with 4,(T) = .  wpa+7P(T,T+n) where w is the largest survival
n=

0
age, P(T,T + n) is the zero-coupon bond at time 7" maturing at 7'+ n and ,,p,+7 is the probability
that the remaining lifetime of the policyholder at time T is strictly greater than n. At time 7" the
value of the GAO is given by

V(T) = max(5(T)gi.(T),S(T)) (25)
w—(x+T)

= S(T)+gS(Tmazx | > wperr P(T,T+n) - K0, (26)
n=0

where K = é.

Applying the risk neutral valuation procedure, we can write the value of a GAO entered by an
z-year policyholder at time £t = 0 as
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V(z,0,T) = EQ[effOTT(S)dSV(T)l(TI>T)|.7:0]
= EQ~ foTT(S)dSV(T)]EQ[l(TDT)]
= EQe o OBy (1] 1, (27)

where 7, is a random variable which represents the remaining lifetime of the policyholder. Substituting
equation (26) in (27) leads to

V(2,0,T) = 7p EQfe™ o "O48(TY + O(x,0,T). (28)
where
. w—(x+T)
C(2,0,T) = 7p, E? |e™Jo "4 gS(T) |maz | > wpasrP(T.T +n) — K,0 . (29)
n=0

By definition of the risk neutral measure @, the discounted value of the risky fund e~ Jo rs)ds g (T)
is a martingale and therefore the value of the GAO becomes

V(z,0,T) = 7p,5(0) + C(x,0,T). (30)

The first term in equation (30) is a constant and therefore, in literature, one generally only studies
the second term C(z,0,7). In [3] and [33], the authors define C(z,0,T") as the GAO total value. In
this paper we retain the same terminology. More precisely, in section 5.2, when we compare GAO
total values obtained in different models, we compare values obtained for C'(x,0,T).

To derive analytical expressions for C'(z,0,7") in the Black-Scholes Hull-White and the Schobel-
Zhu Hull-White models it is more convenient to work under the measure Qg (where the numeraire is

the fund value S), rather than under the risk neutral measure @ (see [3] and [33]). By the density
T
process & = f%sm — e o r(s)ds%

defined, see e.g. Geman et al. [15]. Under this new measure Qg, the C(z,0,T) value becomes

a new probability measure (g equivalent to the measure @) is

w—(z+T) +
C(2,0,T) = 7p.9S(0)E?s > wpesrP(TT+n)—K | |. (31)
n=0
Under Qg the model dynamics turn out to be
dS(t) = [r(t)—q+0>(t, S()]S(E)dt + o (t, S(1))S (AW (b), (32)
dz(t) = [—ax(t) + prsoro(t,S(t))]dt + o.dW9S (t). (33)

The zero-coupon bond P(T,T + n) in the Gaussian Hull and White one-factor model with o and
o, constant has the following expression (see e.g. [23])
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P(T, T +n) = A(T, T + n)e " T+n)a(D) (34)

where

PO, T +n) —LV(0,T4n)—V (0,T)~V (T, T+
A(T7T+n) = W@ 2[ (7 n) (7 ) ( ’ 7’1)}7
1
b(T7 T+ n) = a(l - e—om)’
2 2 1 3
Vit ty) = %[tg —t + ae‘o‘(t?‘tﬂ — %e—m(trtl) — 5

where P™¥(0, T') denotes the market price of a zero coupon bond with maturity 7. Substituting the
expression (34) in equation (31) leads to the following pricing expression for C'(z,0,7T) under Qg

w—(z+T) +

C(x,0,T) = 7p.gS(0)E?s > wpesr AT, T + n)e 0TI _ | : (35)

n=0

Note that when pricing GAO using a local volatility model, one has to use some numerical methods
like Monte Carlo simulations. The calculation of the price can be based on the equation (35) but it
is also convenient to work under the T-forward measure 7, where the dynamics of S(t) and r(t) are
given by (18) and (19) respectively and where the GAO value is given by

w—(z+T) +

C(2,0,T) = 1pegP(0,TVE®T |S(T) | Y wpuyrA(T, T +n)e MTTEW=I g |0 (36)

n=0

Since in both cases one has to compute the local volatility value at each time step, both methods
are equivalent in time machine consumption.

4.2 Guaranteed Minimum Income Benefit (Rider)

Guaranteed Minimum Income Benefit (GMIB) is the term used in North America for an analogous
product of a GAO in Europe (see [18]). GAO and GMIB payoffs are usually slightly different, but
they are common in offering both maturity guarantees in the form of a guaranteed minimum income
on the annuitization of the maturity payout.

Many different guarantee designs exist for GMIB. The policyholders can for example choose be-
tween a life annuity or a fixed duration annuity; or choose an annual growth rate guarantee for the
fund, or a withdraw option, etc. (for more details see [18] and [1]). In this paper we focus on the
valuation of an “exotic GMIB”, namely a GMIB Rider.

A GMIB Rider (based on examples given in [1] and in [25]) gives the z year policyholder the right
to choose at the date of annuitization 7' between 3 guarantees: an annual payment of gS(0)(1 + 74)7

12



where 74 is a guaranteed annual rate; an annual payment of g maz(S(n)), n =1,2,...,T where S(n),
n

n=1,2,...,T are the anniversary values of the fund or a cash payment equal to the equity fund value
S(T) at maturity 7. Therefore, at time T the value of the GMIB Rider is given by

V(T) = max(S(0)(1 + r4)" giin (T), mag(S(n))gds(T), S(T)), (37)
where A is the set of anniversary dates A = {1,2,...,T}. The valuation of this product in the Black-
Scholes Hull-White model has been studied by e.g. Marshall et al. in [25].

Assuming that the mortality risk is unsystematic and independent of the financial risk, we can
write the value of a GMIB Rider entered by an z-year policyholder at time t = 0 as

V(2,0,T) = E9[e b "OBV(T)] p,
= P(0,T)E°"[V(T)] rps- (38)

The GMIB Rider payoff is path-dependent and more complex than a pure GAO. There is no closed-
form expression in the BSHW neither in the SZHW model nor in the LVHW model. Consequently one
has to use numerical methods to evaluate the expectation in equation (38) in all models we consider.
In Subsection 5.3, we compare GMIB Rider values given by using the LVHW model, the SZHW model
and the constant volatility BSHW model using a Monte Carlo approach.

4.3 Barrier GAQOs

In this section, we introduce path-dependent GAOs which are barrier type options. The first one is a
“down-and-in GAO” which becomes activated only if the interest rates reach a downside barrier level.
This product is attractive for buyers since it protects against low interest rates at the retirement age
and has a smaller price than the pure GAO price. The second exotic GAO we study below is the
“down-and-out GAQO” which becomes deactivated if the interest rates reach a downside barrier level.
This barrier option gives protection to insurers against low market of interest rates. For example it
allows to avoid situations as occurred in the UK where insurers have sold products with guarantee
rates g of around 11% while the market rates are currently very low®, resulting in considerable losses
for insurance companies. To our knowledge, no closed-form solutions exist for the price of these path-
dependent GAOs in the BSHW model nor in the SZHW and LVHW models. Therefore we will also
price these path-dependent derivatives by using a Monte Carlo simulation approach.

Under the measure (g, the price of the “down-and-out GAQO” is given by the following expression

w—(x+T) +

CPO(2,0,T) = 7p.gS(0)EYs > e AT T +n)e T K 100 p ociery | - (39)
n=0

where we use the notation of Section 4.1. The barrier B is defined as a barrier for the homogeneous
part x(t) and therefore the interest rates r(t) = x(t) + Z(¢) have a time dependent barrier.

®In United Kingdom in the 1970’s and 1980’s the most popular Guaranteed Annuity rate proposed by UK life insurers
was about 11% (see Bolton et al. [5]).

13



Figure 1: Example of path realization

When pricing barrier options with Monte Carlo simulations it is possible to miss some barrier
hitting realization between two time steps. Consider the particular path realization of Figure 1.
There are five time steps and none of the five underlying realizations have breached the barrier and
therefore the path is going to count in the payoff sum. Following the idea presented in [31], we should
weight the actualized payoff by a certain factor accounting for the probability of breaching the barrier
between the discrete time points. As a weighting factor we can use the product over all time intervals
Al = t; 11 — t; of the survival probability of the option,

n

w =[] Peuro(A}). (40)

=1

Assuming that the volatility of the equity is constant over the interval A¢, it is possible to derive
an analytical expression for Psy.,(A}) applicable in all different models treated in this paper. More
precisely, under this assumption, z(t+ A?) is normally distributed with mean p, and variance o2 given
by

PSror0s (1 _ efaAg')

He = )
(6
2 UE —20Ai

Using the well-known reflection principle (see [32]), we have the analytical expression for Py, (A?)

Pouro(AY) = P(x(s) > B, t <s <t+ A} (42)
_ % —2Bug P
oz A} oz A
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The last assumption about the volatility of the equity is in contradiction with the nature of the
LVHW and the SZHW models. However, as time intervals become smaller, this assumption is more
and more justified.

The price of the “down-and-in GAQO” can easily be computed from the price of the “down-and-out
GAQO” and the “pure GAO” by using the following relation

CP1(x,0,T) = C(z,0,T) — CPO(z,0,T). (44)

Note that for knock-in type options, the survival probability is readily derived from the one coming

from the corresponding knock-out type option by complementarity (PXI =1 — PSI;,OU)

5 Numerical results

In this section we study the contribution of using a local volatility model with Hull and White stochas-
tic interest rates (LVHW) (introduced in Section 2) to the pricing of Variable Annuity Guarantees.
More precisely, we compare GAO, GMIB Rider and two barrier type GAO prices obtained by using the
LVHW model to those obtained with the Schébel-Zhu Hull-White (SZHW) stochastic volatility model
and the Black-Scholes with Hull and White stochastic interest rates (BSHW). For a fair analysis, first
one must calibrate these three models to the same options market data. To this end, we have used
the same data as in [33]. More precisely, the equity components (fund) of the Variable Annuity Guar-
antees considered are on one hand the EuroStoxx50 index (EU) and on the other hand the S&P500
index (US). In the following subsection we explain in detail the calibration of the three models. We
summarize the calibration of the interest rate parameters and the calibration of the SZHW and the
BSHW made in [33] and explain the calibration of the local volatility surface for the equity component
in our LVHW model. In Subsection 5.2 we compare GAQO values obtained by using the LVHW model
with the SZHW and the BSHW prices studied in [33]. In Subsection 5.3 and Subsection 5.4, we do
the same study for path-dependent Variable Annuity Guarantees namely GMIB Riders and barrier
type GAOs.

5.1 Calibration to the Vanilla option’s Market

In order to compare LVHW GAO results to those obtained in the BSHW and the SZHW models pre-
sented in van Haastrecht et al. [33] we are using Hull and White parameters and the implied volatility
curve they used®. In [33], interest rate parameters are calibrated to EU and US swaption markets us-
ing swaption mid prices of the 31st of July 2007. Moreover, the effective 10 years correlation between
the log equity returns and the interest rates is determined by time series analysis of the 10-year swap
rate and the log returns of the EuroStoxx50 index (EU) and the S&P500 index (US) over the period
from February 2002 to July 2007 and turns out to be resp. 34.65% and 14.64% for the EU and the
US market. The equity parameters in the SZHW and BSHW models are calibrated by using vanilla
option prices on the EuroStoxx50 and S&P500 index obtained from the implied volatility service of

SWe would like to thank A. van Haastrecht, R. Plat and A. Pelsser for providing us the Hull and White parameters
and interest rate curve data they used in [33].
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Figure 2: Plot of the implied volatility (built from the 10-years S&P500 implied volatility curve and
assuming a constant implied volatility with respect to the maturity (% = 0)) and the corresponding

market call prices surface.

MarkIT7.

In [33] the authors have calibrated the equity model to market option prices maturing in 10 years
time. In the LVHW model, the equity volatility is a local volatility surface and the calibration consists
in building this surface using equation (14). This calibration procedure uses the whole implied volatil-
ity surface and returns a local volatility for all strikes and all maturities. In this paper we consider
three distinct cases. In the first case, we assume that the implied volatility is constant with respect to
the maturity (% = 0) and denote the local volatility model by LVHW1. The second case denoted

by LVHW?2 considers an increasing term structure (agj’f"’ = 0.01) and finally in the third case denoted

by LVHW3, the implied volatility is a decreasing function of the maturity (8(;;” = —0.003). Note that
for the aid of a fair comparison between the models, we have consistently retained the same volatility
smile at time T = 10. A plot of the “S&P500” implied volatility surface and the resulting market call
option prices (in the case (8(37”1”’ = 0)) can be found in Figures 2(a) and 2(b). By applying the Monte
Carlo approach described in Section 3.1, the corresponding local volatility surface can be derived, see
Figure 3(a). In Section 2, we have explained the difference between the local volatility derived in a
constant interest rate framework and the local volatility derived in a stochastic interest rates one (see
equation (12)). Figure 3(c) is a plot of this difference and Figure 3(b) is a plot of the local volatility
derived in a constant interest rates framework (see equation (3)) using the same market data, namely
the “S&P500” implied volatility surface in the case of a constant implied volatility with respect to the

maturity (Figure 2(a)).

Both Stochastic volatility and local volatility models are able to reproduce the market smile. For
example in Table 1, we compare the market implied volatility (for a range of seven different strikes
and a fixed maturity 7" = 10) with the calibrated volatility of each of the three models. We observe
that the local volatility model (LVHW1) and the stochastic volatility model (SZHW) are both well
calibrated since they are able to generate the Smile/Skew quite close to the market one. Note that,
the LVHW1 implied volatilities are extracted from the European call values obtained by Monte Carlo
simulations. Therefore, in the last column of Table 1, the corresponding + 95% confidence intervals

"A financial data provider, which provides (mid) implied volatility quotes by averaging quotes from a large number
of issuers.
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Implied volatility, 10-year call options, US
strike | Market | BSHW | SZHW | LVHW1 (+ 95% interval)

80 27.50% 25.80% | 27.50% 27.503% (£ 0.01778 %)
90 26.60% 25.80% | 26.60% 26.601% (% 0.01745 %)
95 26.20% 25.80% | 26.20% 26.198% (£ 0.01693 %)
100 25.80% 25.80% | 25.80% 25.800% (% 0.01631 %)
105 25.40% 25.80% | 25.40% 25.397% (% 0.01501 %)
110 25.00% 25.80% | 25.00% 24.998% (% 0.01432 %)
120 24.30% 25.80% | 24.40% 24.333% (£ 0.01325 %)

Implied volatility, 10-year call options, EUR
strike | Market | BSHW | SZHW | LVHW1 (£ 95% interval)

80 27.80% 26.40% | 27.90% 27.826% (£ 0.0214 %)
90 27.10% 26.40% | 27.10% 27.103% (£ 0.0200 %)
95 26.70% 26.40% | 26.70% 26.699% (£ 0.0194 %)
100 26.40% 26.40% | 26.40% 26.396% (4 0.0189 %)
105 26.00% 26.40% | 26.00% 25.999% (4 0.0181 %)
110 25.70% 26.40% | 25.70% 25.702% (£ 0.0173 %)
120 25.10% 26.40% | 25.10% 25.101% (£ 0.0165 %)

Table 1: Comparison of the implied volatility curve (for 10-year call options) generated by the SZHW,
the BSHW and the LVHW1 models after being calibrated to the market implied volatility. US and
European market implied volatilities are taken from [33].

Local volatilty {stochastic interest rates) Local volatility {constant interest rates)

local olatiity
lacal latilty

(a) local volatility (stochastic interest (b) local volatility (constant interest
rates) rates)

Lacal volatilty difference

difference

(c) difference

Figure 3: Plot of the local volatility obtained in both stochastic and constant interest rates framework
and finally, the difference between these two local volatilities. These local volatility surfaces are built
from the S&P500 implied volatility surface assuming a constant implied volatility with respect to the

imp

maturity (=57 = 0)), namely Figure 2(a).
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are also given. However, contrarily to the SZHW model, the LVHW model has to be calibrated over
the whole implied volatility surface and as we will see in Subsection 5.2, 5.3 and 5.4, this fact has an
impact to the price of Variable Annuity Guarantees.

5.2 GAO results

In this section, we study the impact generated to GAO values by using the LVHW model compared
to prices obtained by using the BSHW and the SZHW models computed in [33]. We therefore make
the same assumptions as in [33], namely that the policyholder is 55 years old and that the retirement
age is 65 (i.e. the maturity 7' of the GAO option is 10 years). The fund value at time 0, S(0) is
assumed to be 100. The survival rates are based on the PNMAOQO® table of the Continuous Mortality
Investigation (CMI) for male pensioners.

In Table 2 we give prices obtained for the GAO using the LVHW model case 1 (LVHW1), the
LVHW model case 2 (LVHW2), the LVHW model case 3 (LVHW3), the SZHW and the BSHW
models for different guaranteed rates g. The results for the SZHW and BSHW models are obtained
using the closed-form expression derived in resp. [33] and [3]. Note that GAO prices presented in this
section derived by the BSHW and SZHW models are slightly different than those presented in [33].
These differences come from the interpolation method used for constructing the zero coupon bond
curve. As it was pointed out in [33], GAO prices are sensitive to the interest rate curve and a small
change in the zero coupon bond curve induces changes in GAO prices. The results for the LVHW
model are obtained by using Monte Carlo simulations (100 000 simulations and 5000 steps). Figure 4
shows the corrections induced by the LVHW and the SZHW models with respect to the BSHW model®.

US GAO EUR GAO

2.5000 2.5000
2.0000 /% 2.0000
1.5000 = 1.5000
//./.\I —— SZHW-BSHW
1.0000 == LVHW1-BSHW 1.0000 == L VHW1-BSHW

LVHW2-BSHW LVHW2-BSHW
0.5000 0.5000 -

—— LVHW3-BSHW i [VHW3-BSHW

0.0000 & 0.0000
7% 8% 9% 10% 11% 12%  13% 7% 8% 9% 10% 11% 12% 13%

g g

= SZHW-BSHW

correction
correction

Figure 4: Graphical representation of the LVHW1, LVHW2, LVHW3 and the SZHW model corrections
with respect to the BSHW model for different guaranteed annuity rates g.

Table 3 presents the time value given by the difference between the GAO total value and its intrin-
sic value. The volatility of an option is an important factor for this time value since this value depends

8Available at http://www.actuaries.org.uk/research-and-resources/pages/00-series-mortality-tables-assured-lives-
annuitants-and-pensioners

9More precisely, the LVHW correction is the difference between the LVHW price and the BSHW price. Similarly, the
SZHW correction is the difference between the SZHW price and the BSHW price.
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GAO Total Value US
g BSHW SZHW LVHW1 SE LVHW2 SE LVHW3 SE
7% 0.906860 1.045977 1.021760 | 0.013730 0.970480 | 0.013374 1.059320 | 0.014154
8% 3.160037 3.567810 3.463430 | 0.026539 3.299570 | 0.025895 3.562870 | 0.027142
8.88% 7.101917 7.869198 7.584480 | 0.039751 7.332270 | 0.038987 7.808470 | 0.040443
9% 7.738402 8.555375 8.326130 | 0.041560 8.024770 | 0.040791 8.533410 | 0.042259
10% 14.880173 | 16.141393 | 15.690000 | 0.055644 | 15.271200 | 0.054907 | 16.034900 | 0.056342
11% 23.643769 | 25.267434 | 24.900900 | 0.066981 | 24.374900 | 0.066285 | 25.350600 | 0.067621
12% 33.689606 | 35.586279 | 35.117300 | 0.075737 | 34.507000 | 0.075030 | 35.626800 | 0.076333
13% 44.382228 | 46.570479 | 45.742500 | 0.082976 | 45.070200 | 0.082227 | 46.296100 | 0.083563
GAO Total Value EUR
g BSHW SZHW LVHW1 SE LVHW2 SE LVHW3 SE
7% 0.395613 0.583057 0.486412 | 0.007961 0.428838 | 0.007326 0.502376 | 0.008006
8% 2.259404 2.882720 2.622240 | 0.019585 2.417440 | 0.018578 2.704880 | 0.019687
8.46% 4.095928 4.981611 4.664650 | 0.026196 4.323210 | 0.025098 4.719230 | 0.026313
9% 7.210501 8.393904 8.004080 | 0.033921 7.565690 | 0.032806 8.193780 | 0.034034
10% 15.421258 | 17.017295 | 16.597400 | 0.045658 | 15.974700 | 0.044657 | 16.880900 | 0.045707
11% 25.530806 | 27.369899 | 26.964500 | 0.053381 | 26.202900 | 0.052448 | 27.285900 | 0.053395
12% 36.282533 | 38.300598 | 37.885600 | 0.058946 | 37.031900 | 0.057988 | 38.234200 | 0.058954
13% 47.164918 | 49.351551 | 48.908600 | 0.063960 | 47.979600 | 0.062924 | 49.284400 | 0.063964

Table 2: Comparison of GAO total values in the BSHW, the SZHW and the LVHW1, LVHW2 and
LVHW3 models for different guaranteed annuity rates g. The rates g of 8.88% and 8.46% correspond
to the at-the-money guaranteed annuity rates in the US and EUR market respectively.

on the time until maturity and the volatility of the underlying instrument’s price. The time value
reflects the probability that the option will gain in intrinsic value or become profitable to exercise
before maturity. Figure 5 is a plot of the time value given by all considered models. For a deeper
analysis about time value we refer the interested reader to [33].

US GAO Time Value EUR GAO Time Value
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Figure 5: Graphical representation of GAO time values of the BSHW, the SZHW and the LVHW1,
LVHW2 and LVHW3 models for different guaranteed annuity rates g.

These results show that the use of a non constant volatility model such as the SZHW model and
the LVHW model has a significant impact on the total value and the time value of GAOs. Further-
more, the term structure of the implied volatility surface has also an influence on the total value. The

19



GAO Time Value US
g BSHW SZHW | LVHW1 | LVHW2 | LVHW3

7% 0.9069 1.0460 1.0218 0.9705 1.0593
8% 3.1600 3.5678 3.4634 3.2996 3.5629
8.88% 7.1019 7.8692 7.5845 7.3323 7.8085
9% 6.4575 7.2745 7.0452 6.7439 7.2525
10% 2.9527 4.2140 3.7626 3.3438 4.1075
11% 1.0698 2.6935 2.3269 1.8009 2.7766
12% 0.4691 2.3658 1.8968 1.2865 2.4063
13% 0.5152 2.7034 1.8755 1.2032 2.4291

GAO Time Value EUR
g BSHW SZHW | LVHW1 | LVHW2 | LVHW3

7% 0.3956 0.5831 0.4864 0.4288 0.5024
8% 2.2594 2.8827 2.6222 2.4174 2.7049
8.46% 4.0959 4.9816 4.6647 4.3232 4.7192
9% 1.1839 2.3673 1.9775 1.5391 2.1672
10% -1.7792 -0.1831 -0.6030 -1.2257 -0.3195
11% -2.8435 -1.0044 -1.4098 -2.1714 -1.0884
12% -3.2656 -1.2475 -1.6625 -2.5162 -1.3139
13% -3.5570 -1.3704 -1.8134 -2.7424 -1.4376

Table 3: Comparison of GAO time values of the BSHW, the SZHW and the LVHW1, LVHW2 and
LVHW3 models for different guaranteed annuity rates g.

numerical results show that the LVHW3 prices tend to the SZHW prices, whereas the LVHW2 prices
are the lowest of the three LVHW models, but still above the BSHW prices. In the LVHW1 model
prices remain between BSHW and SZHW values.

The fact that GAO prices obtained in different implied volatility scenarios turn out to be signif-
icantly different, underlines that it is most important to always take into account the whole implied
volatility surface. This impact in GAO value can be justified by equation (33) where you observe the
influence of the level of the equity spot S; in the dynamics of x; under the measure Qg.

In [33], it is pointed out that GAO values are also particularly sensible to three different risk
drivers namely the survival probabilities, the fund value and the interest rate market curve. From
equation (35), we can easily deduce that an increase of 2% of the equity fund value S(0) will induce
an % increase of the GAO value. It is also clear that a shift in the mortality table will induce a
shift in the GAO value in the same direction. Finally, a shift down applied to the interest rates curve
will increase the GAO value. The sensibility of GAO prices with respect to the implied volatility, the
survival probabilities, the fund value and the interest rates market curve underline the fact that for
practical purposes, the market data used should be considered as important as the model used.

5.3 GMIB Rider

In this section, we analyze how the BSHW, the SZHW and the LVHW models behave when pricing

a GMIB Rider. This product has a strong dependence on the path of the equity fund S coming from

the anniversary component in the payoff, namely man(S (n))gix(T) (see equation (37)), where A is
ne

the set of anniversary dates A = {1,2,...,T}. We use exactly the same initial data as for the GAO.
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More precisely, the policyholder is assumed to be 55 years old with a retirement age of 65 (i.e. the
maturity 7" of the GMIB Rider is 10 years). The fund value at time 0, S(0) is assumed to be 100. The
survival rates are based (as before) on the PNMAOQO table of the Continuous Mortality Investigation
(CMI) for male pensioners. We present numerical results obtained only in the US market because
the European market leads to similar behavior in pricing and conclusions. The parameters used in
each model are those obtained after calibration as explained in Section 3. In Table 4, we compare
the price of a GMIB Rider for eight different guaranteed annuity rates g and three different guaran-
teed annual rates 4 (computed by using Monte Carlo simulations with 100 000 simulations and 5000
steps). Note that currently, the standard rate r4 offered by insurance companies is around 5% (see [1]).
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Figure 6: Graphical representation of GMIB Rider total values given by the SZHW, the LVHWI1,
LVHW2 and LVHW3 models for different guaranteed annuity rates g and for three different fixed
guaranteed annual rates r,. The corrections given by each model with respect to the BSHW model
are also presented.

Contrarily to the results obtained for GAOs (in Section 5.2), the corrections given to GMIB values
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US GMIB Rider Total Value r, = 0%

g BSHW SE SZHW SE LVHW1 SE LVHW?2 SE LVHW3 SE
™% 113.5440 | 0.2892 95.9552 | 0.0720 | 107.6490 | 0.1235 | 118.8630 | 0.1497 | 104.1640 | 0.1185
8% 122.3090 | 0.2951 99.5474 | 0.0776 | 115.0510 | 0.1298 | 128.5280 | 0.1577 | 109.8140 | 0.1233

8.88% | 131.4990 | 0.3063 | 104.7690 | 0.0810 | 123.1420 | 0.1375 | 138.5730 | 0.1675 | 116.6260 | 0.1300
9% 132.8540 | 0.3083 | 105.6330 | 0.0896 | 124.3560 | 0.1387 | 140.0450 | 0.1690 | 117.6870 | 0.1310
10% 144.9830 | 0.3290 | 114.0400 | 0.0900 | 135.4570 | 0.1503 | 153.1060 | 0.1830 | 127.5870 | 0.1414
11% 158.2590 | 0.3557 | 124.0140 | 0.0938 | 147.8150 | 0.1636 | 167.3030 | 0.1990 | 138.9400 | 0.1536
12% 172.1850 | 0.3857 | 134.7800 | 0.1001 | 160.8320 | 0.1779 | 182.0900 | 0.2163 | 151.0450 | 0.1669
13% 186.3910 | 0.4171 | 145.8680 | 0.1077 | 174.1050 | 0.1925 | 197.1540 | 0.2341 | 163.4870 | 0.1806

US GMIB Rider Total Value r, = 5%

g BSHW SE SZHW SE LVHW1 SE LVHW2 SE LVHW3 SE
7% 124.253 | 0.2770 | 103.267 | 0.0713 | 119.021 | 0.1325 | 128.412 | 0.1577 114.516 0.1238
8% 135.096 | 0.2804 | 109.527 | 0.0738 | 128.454 | 0.1404 | 139.552 | 0.1666 122.620 0.1308

8.88% | 145.994 | 0.2897 | 116.600 | 0.0768 | 138.313 | 0.1495 | 150.778 | 0.1767 131.384 0.1392
9% 147.576 | 0.2914 | 117.684 | 0.0818 | 139.766 | 0.1509 | 152.407 | 0.1783 132.699 0.1405
10% 161.528 | 0.3105 | 127.717 | 0.0830 | 152.701 | 0.1637 | 166.769 | 0.1927 144.587 0.1526
11% 176.537 | 0.3354 | 139.129 | 0.0859 | 166.782 | 0.1783 | 182.269 | 0.2093 157.761 0.1663
12% 192.154 | 0.3637 | 151.289 | 0.0877 | 181.503 | 0.1938 | 198.384 | 0.2272 171.643 0.1809
13% 208.030 | 0.3934 | 163.754 | 0.0944 | 196.494 | 0.2097 | 214.782 | 0.2459 185.806 0.1959

US GMIB Rider Total Value r, = 8%

g BSHW SE SZHW SE LVHW1 SE LVHW?2 SE LVHW3 SE
7% 139.3960 | 0.2579 | 118.7200 | 0.0759 | 133.1170 | 0.1441 | 141.7610 | 0.1600 | 128.9560 | 0.1339
8% 153.0990 | 0.2589 | 130.1780 | 0.0775 | 145.4630 | 0.1542 | 155.3320 | 0.1710 | 140.6420 | 0.1439

8.88% | 166.4050 | 0.2661 | 141.3230 | 0.0820 | 157.6800 | 0.1651 | 168.5760 | 0.1831 | 152.3680 | 0.1547
9% 168.3040 | 0.2676 | 142.9100 | 0.0828 | 159.4420 | 0.1667 | 170.4710 | 0.1849 | 154.0570 | 0.1563
10% 184.7890 | 0.2834 | 156.6750 | 0.0904 | 174.8370 | 0.1812 | 187.0320 | 0.2013 | 168.8660 | 0.1705
11% 202.2100 | 0.3051 | 171.2920 | 0.0988 | 191.2250 | 0.1972 | 204.6760 | 0.2197 | 184.6850 | 0.1863
12% 220.1720 | 0.3304 | 186.4520 | 0.1075 | 208.1920 | 0.2141 | 222.8780 | 0.2389 | 201.0500 | 0.2027
13% 238.3830 | 0.3571 | 201.8650 | 0.1163 | 225.4030 | 0.2314 | 241.3100 | 0.2586 | 217.6730 | 0.2194

Table 4: Comparison of GMIB Rider total values obtained in the BSHW, the SZHW and the LVHW1,
LVHW2 and LVHW3 models for different guaranteed annuity rates g and guaranteed annual rates r,
of 0%, 5% and of 8%.

by the SZHW model with respect to the BSHW ones are always negative. For GMIB Riders the
highest values are always given by the LVHW2 model while the smallest values are coming from the
SZHW model. In the GAO case, the SZHW and the LVHW3 GAO values were quite close and leading
to the highest values among the observed models. For GMIB Riders, however, the smallest prices are
given by the SZHW and the LVHW3 models, as illustrated in Figure 6.
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5.4 Barrier GAOs

In this subsection, we compare the LVHW price, the SZHW price and the price obtained by using
the three different cases of the LVHW model for “down-and-in GAOs” given by equation (44) and
computed by using Monte Carlo simulations (100 000 simulations and 5000 steps). While GMIB
Riders are path-dependent especially in S(t), these barrier options are particularly dependent on the
path of the interest rates r(t). In Table 5, total values of “down-and-in GAOs” with five different
barriers are presented. The first barrier is taken to be equal to B = —0.015 and corresponds to a
market annuity rate r,(T") equal to 8%. More precisely, when z* = —0.015 and r,(T) = 8%, the
definition of market annuity rate holds, namely,
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Figure 7: Graphical representation of DI GAO corrections of the SZHW, the LVHW1, LVHW?2 and
LVHWS3 models for different guaranteed annuity rates g with respect to the BSHW model.
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BSHW DI GAO Total Value (US) BSHW GAO
: Barrier | ¢ 00% | 7.00% | 6.00% | 5.00% | 4.00%
% 0.9069 | 0.9069 | 0.6754 | 0.0931 | 0.0023 0.9069
8% 3.1600 | 2.8189 | 1.3813 | 0.1053 | 0.0086 3.1600
8.88% 6.9412 | 5.0746 | 2.0215 | 0.2096 | 0.0198 7.1019
9% 75111 | 5.3759 | 2.0906 | 0.2878 | 0.0385 7.7384
10% 13.3689 | 8.2064 | 2.8525 | 0.2979 | 0.0581 14.8802
1% 19.6122 | 10.8281 | 3.3454 | 0.5995 | 0.0829 23.6438
12% 26.3137 | 13.6888 | 4.0752 | 0.6122 | 0.1110 33.6896
13% 33.2845 | 16.7626 | 5.0114 | 0.6437 | 0.1297 44.3822
SZHW DI GAO Total Value (US) SZHW GAO
% 1.0460 | 1.0460 | 0.7869 | 0.1085 | 0.0064 1.0460
8% 3.5678 | 3.1925 | 1.5783 | 0.1680 | 0.0145 3.5678
8.88% 76988 | 5.7147 | 2.3250 | 0.1969 | 0.0372 7.8692
9% 8.3141 | 6.0276 | 2.3623 | 0.2168 | 0.0518 8.5554
10% 14.6116 | 9.1621 | 3.2343 | 0.2759 | 0.0586 16.1414
1% 21.2745 | 12.0856 | 3.8351 | 0.3093 | 0.0679 925.2674
12% 28.3855 | 15.2518 | 4.6729 | 0.3367 | 0.0811 35.5863
13% 35.8365 | 18.6996 | 5.7971 | 0.5005 | 0.1373 46.5705
LVHW1 DI GAO Total Value (US) LVAW1 GAO
% 1.0218 | 1.0218 | 0.7731 | 0.1383 | 0.0331 1.0218
8% 3.4634 | 3.1009 | 1.5804 | 0.2079 | 0.0772 3.4634
8.88% 74179 | 54514 | 2.1841 | 0.2320 | 0.0817 7.5845
9% 8.0950 | 5.8578 | 24303 | 0.2630 | 0.1223 8.3261
10% 14.1694 | 8.8259 | 3.2620 | 0.3096 | 0.1485 15.6900
1% 20.8737 | 11.8444 | 4.0955 | 0.3627 | 0.1801 24.9009
12% 27.7819 | 14.8798 | 4.9278 | 0.4283 | 0.2190 35.1173
13% 34.7312 | 17.9215 | 5.7595 | 0.4941 | 0.2492 45.7425
LVHW?2 DI GAO Total Value (US) LVAW?2 GAO
% 0.9705 | 0.9705 | 0.7361 | 0.1184 | 0.0068 0.9705
8% 3.2096 | 2.9612 | 1.4667 | 0.1657 | 0.0401 3.2096
8.88% 71769 | 5.3578 | 1.9822 | 0.2087 | 0.0651 7.3323
9% 7.8041 | 5.6591 | 2.2500 | 0.2157 | 0.0657 8.0248
10% 13.8150 | 8.5819 | 3.0712 | 0.2736 | 0.0936 15.2712
1% 20.4883 | 11.5410 | 3.8766 | 0.3429 | 0.0996 924.3749
12% 27.3924 | 14.5022 | 4.6793 | 0.4150 | 0.1048 34.5070
13% 34.3552 | 17.4711 | 5.4916 | 0.4765 | 0.1133 45.0702
LVHW3 DI GAO Total Value (US) LVHW3 GAO
7% 1.0593 | 1.0593 | 0.8039 | 0.1605 | 0.0008 1.0593
8% 3.5629 | 3.1964 | 1.5906 | 0.2499 | 0.0045 3.5629
8.88% 76300 | 5.6593 | 2.2524 | 0.2608 | 0.0104 7.8085
9% 8.2023 | 6.0394 | 24369 | 0.3192 | 0.0131 8.5334
10% 14.4721 | 9.1002 | 3.2908 | 0.3953 | 0.0140 16.0349
1% 21.2630 | 12.1972 | 4.1453 | 0.4700 | 0.0487 25.3506
12% 28.2351 | 15.2863 | 4.9954 | 0.5330 | 0.0497 35.6268
13% 35.2509 | 18.3785 | 5.8336 | 0.5942 | 0.0516 46.2961

Table 5: Comparison of “down-and-in GAO” total values given by the BSHW and the SZHW and the
LVHW models for eight different guaranteed annuity rates g and for five different barriers. The pure
GAO values for the eight different guaranteed annuity rates g are also given in the last column.

24



The other barriers correspond to rates r,(T) of 7%, 6%, 5% and 4% respectively or equivalently to
barrier levels B equal to -0.033, -0.05225, -0.0791 and -0.1019 respectively. Note that since the initial
value of z(0) is equal to 0, the barrier level B has to be smaller and consequently strictly negative.
The value of a “pure GAO” is given in the last column of Table 5. A graphical representation of
the corrections given by each model with respect to the BSHW model can be found in Figure 7, and
this for eight different guaranteed annuity rates g. In the case of barrier GAOs the corrections given
by each model are more complicated to analyze in the sense that there is no general conclusion with
respect to the correction behavior. More precisely, we are not able to answer the question which model
gives the highest values or the smallest ones because the prices depend on both the barrier level and
the guaranteed annuity rate g.

When the barrier level is equal to 4%, the “down-and-in GAO” value is close to zero. In that
case, the survival probability of the “down-and-in GAQ” is close to zero. The “down-and-out GAO”
can easily be computed from the price of the “down-and-in GAO” and the “pure GAO” by using the
relation CP9(z,0,T) = C(z,0,T) — CPI(2,0,T). Consequently, when the barrier level is equal to
4%, the “down-and-out GAQO” value is close to the GAO value. In that case, the survival probability
of the “down-and-out GAQO” is close to one.

6 Conclusion

In this paper we used a local volatility model with stochastic interest rates to price and hedge long
maturities life insurance contracts. This model takes into account the stochastic behavior of the in-
terest rates as well as the vanilla market smile effects. Practitioners often price and hedge derivatives
with a local volatility model since it has the property to be able to capture the whole implied volatility
surface and moreover it has the advantage of implying a complete market.

A first contribution of the paper is the calibration of a local volatility surface in a stochastic inter-
est rates framework. We have developed a Monte Carlo approach for the calibration and this method
has successfully been tested on US and Furopean market call data.

The second contribution is the analysis of the impact of using a local volatility model to the
pricing of long-dated insurance products as Variable Annuity Guarantees. More precisely, we have
compared prices of GAO, GMIB Rider and barrier GAO obtained by using the local volatility model
with stochastic interest rates to the prices given by a constant volatility and a stochastic volatility
model, all calibrated to the same data. The particularity of the GMIB Rider is the strong dependence
on the path of the equity fund; whereas, the interest rate barrier type options have a strong depen-
dence on the path of interest rates. The results confirm that calibrating such models to the vanilla
market is by no means a guarantee that derivatives will be priced identically in the different models.

This study shows that using a non constant volatility has a significant impact on the price of Vari-
able Annuity Guarantees. The constant volatility Black Scholes model turns out to underestimate the
value of GAO compared to the Schébel and Zhu stochastic volatility model and the local volatility
model in a stochastic interest rates setting. While the constant volatility Black Scholes model turns
out to overestimate the GMIB Riders.
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Furthermore, we show that the price of Variable Annuity Guarantees depends on the whole op-
tion’s implied volatility surface and that the calibration of the model used has to be done on the
whole implied volatility surface and not only with respect to the implied volatility at maturity of the
Variable Annuity Guarantee considered.

This paper underlines the fact that due to the sensibilities of Variable Annuity Guarantee prices
with respect to the model used (after calibration to the Vanilla market), and also the sensibilities with
respect to data, namely, the survival probability table and the yield curve, practitioners should be
cautious in their model choice as well as in the choice of the market data and the calibration of the
model.

The results presented in this paper demonstrate that stochastic and local volatility models, per-
fectly calibrated on the same market implied volatility surface, do not imply the same prices for
Variable Annuity Guarantees. In [24], the authors underline that the market dynamics could be bet-
ter approximated by a hybrid volatility model that contains both stochastic volatility dynamics and
local volatility ones. The study of a pure local volatility model is crucial for the calibration of such
hybrid volatility models (see [10]). For future research we plan to calibrate hybrid volatility models,
based on the results obtained for the pure local volatility model. We will further study the impact of
the hybrid volatility models to GAOs, GMIB Riders and barrier GAOs. The hedging performance of
all these models is another area for future work.
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