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Abstract

In this paper we investigate the consequences on the pricing of insurance
contingent claims when we relax the typical independence assumption made in
the actuarial literature between mortality risk and interest rate risk. Starting
from the Gaussian approach of Liu et al. (2014), we consider some multifactor
models for the mortality and interest rates based on more general affine models
which remain positive and we derive pricing formulas for insurance contracts like
Guaranteed Annuity Options (GAOs). In a Wishart affine model, which allows
for a non-trivial dependence between the mortality and the interest rates, we go
far beyond the results found in the Gaussian case by Liu et al. (2014), where the
value of these insurance contracts can be explained only in terms of the initial
pairwise linear correlation.

Key words: Stochastic mortality; affine interest rate models; dependence; guaran-
teed annuity options; Wishart process.

JEL codes: G13; G22.

1 Introduction

A large number of life insurance products, such as annuities, include interest rate and
mortality risks. Mortality risk is generally considered to be less difficult to be modelled
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than interest risk. Indeed, by virtue of the law of large numbers, actuarial practice
considered for a long time that the mortality risk can be diversified away by holding a
sufficiently large portfolio of similar contracts (see e.g. Milevsky and Young (2007) for a
discussion). Therefore, the traditional approach of actuaries consisted in modeling mor-
tality in a deterministic way as opposed to interest rates which were assumed stochastic
for quite some time now. Later, when stochastic mortality models showed up during the
90’s, the actuarial community made the assumption that mortality risk is independent
of interest risk. This assumption may seem acceptable in the short term. Nevertheless,
it seems also natural that catastrophic risks, like an earthquake or a severe pandemic,
will affect the economy and the financial markets in the short run. Furthermore, in the
long term, it seems intuitive that demographic changes can affect the economy. For
example, in Favero et al. (2011), the authors investigate the possibility that the slowly
evolving mean in the log dividend-price ratio is related to demographic trends. Maurer
(2014) explores how demographic changes affect the value of financial assets. He con-
siders a continuous time overlapping generations model where birth and mortality rates
are stochastic. His model suggests that demographic transitions explain substantial
parts of the time variation in the real interest rate, equity premium and conditional
stock price volatility. Moreover, he gives sufficient conditions for the interest rate to
be decreasing in the birth rate and increasing in the death rate. In Dacorogna and
Cadena (2015), the authors are interested in providing some empirical evidence of a
changing behavior of the economy and the financial markets during periods where the
mortality is relatively high. Another motivation of dependence between the mortality
and interest rates can be found in Nicolini (2004) where it is shown that the increase
in adult life expectancy in the 17th and 18th century can be considered a key factor
in explaining the increase in the accumulation of assets and the decline in the interest
rate that took place in pre-industrial England. To conclude, we mention that Dhaene
et al. (2013) investigate the conditions under which it is possible (or not) to transfer the
independence assumption from the physical world to the pricing world. In particular,
they show that this independence relation is not maintained in general. Therefore, as
also suggested by Miltersen and Persson (2005) and Liu et al. (2014), it is more reason-
able to have a pricing framework that allows for a dependence between mortality and
interest rates.

Nowadays, it is widely admitted that mortality intensities behave in a stochastic
way. There are important similarities between the force of mortality and interest rates
(see e.g. Milevsky and Promislow (2001), Dahl (2004), and Biffis (2005)). Luciano
and Vigna (2008) calibrate some affine models where the force of mortality follows ei-
ther a Cox-Ingersoll-Ross (CIR) process or an Ornstein-Ulhenbeck process to different
generations in the UK population and investigate their empirical relevance. They find
that Ornstein-Ulhenbeck processes (with zero long-term mean) seem to be appropriate
descriptors of human mortality. Dahl (2004), Dahl and Moller (2006) and Dahl et al.
(2008) treat the classical affine situation for both stochastic mortality rates and inter-
est rates, but in the independent situation under both the historical and the real world
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measure. Russo et al. (2011) focus upon the calibration of affine stochastic mortality
models using term insurance premiums.

In this paper we assume that the interest rate and the mortality dynamics are not
independent of each other. More precisely, we consider a general affine framework like
in Keller-Ressel and Mayerhofer (2015); our goal is to study the influence in pricing of
their dependence structure when focusing upon mortality and interest rates in different
models constructed by a linear combination of positive idiosyncratic and systematic
processes, inspired by factor models as in Duffie and Kan (1996) and Duffie and Gar-
leanu (2001). These linear combinations can be chosen so that the model either avoids
or allows interest rates and/or mortality rates to be negative. For mortality rates, it is
a desirable property to remain positive. However, the financial markets show the recent
years negative interest rates, see e.g. Borovkova (2016), Recchioni and Sun (2016) or
Russo and Fabozzi (2016). Although the spreads between the LIBOR rates and the
overnight indexed swap (OIS) rates of the same maturity have been far from negligible
since 2007, and several multiple curve interest rate models have been introduced (see
e.g. (Grbac and Runggaldier, 2015)), we choose in the present paper the interest rate
models still from the traditional single-curve models in order to study the influence of
the dependence between interest rates and mortality rates.

In particular, generalizing the investigations of Liu et al. (2014), we are interested in
two multifactor specifications that are nested in the general affine framework, namely
the multi-CIR and the Wishart model that have been successfully applied to many fields
of quantitative finance. Wishart processes have been first defined by Bru (1991) and
recently introduced in finance by Gouriéroux and Sufana (2003, 2011). They represent
a matrix extension of the square-root model that allows for a non trivial correlation
between the diagonal terms which are by definition positive (see e.g. Cuchiero et al.
(2011) for a complete characterization). This property enables to overcome an intrin-
sic constraint of the standard affine Duffie and Kan (1996) model. In addition, the
affine property of the Wishart process leads to a closed form expression for its moment-
generating function, so that pricing within the Wishart framework can be efficiently
performed via Fourier methods1.

From the empirical side, the advantages of interest rate models based on the Wishart
process have been underlined by Buraschi et al. (2008) and Chiarella et al. (2016). The
latter extends the former by estimating, using Kalman filtering techniques, an extended
version of the classical Wishart model, together with a multifactor CIR model. The

1The Wishart process has found applications to many fields of quantitative finance like multivariate
option pricing (see e.g. Da Fonseca et al. (2007, 2008); Da Fonseca and Grasselli (2011)), yield curve
modeling (see e.g. Buraschi et al. (2008); Gnoatto (2012); Chiarella et al. (2014); Da Fonseca et al.
(2013)), credit risk (Gouriéroux and Sufana (2010)), portfolio management (Buraschi et al. (2010),
Da Fonseca et al. (2011)), commodity derivative pricing (Chiu et al. (2015)) and foreign exchange
models (Leung et al. (2013); Branger and Muck (2012); Gnoatto and Grasselli (2014)).
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Wishart based model was found to outperform the multifactor CIR both in terms of
goodness of fit and hedging performance.

To the best of our knowledge, the first attempt to introduce dependence between
mortality and interest rates, was done by Miltersen and Persson (2005), see also Cairns
et al. (2006). We follow the methodology of Jalen and Mamon (2009) who introduced
a pricing framework in which the dependence between the mortality and the interest
rates is explicitely modelled. We apply the same change of probability measure to the
valuation of some insurance contracts such as indexed annuities and Guaranteed An-
nuity Options (GAOs). These options are available to holders of certain life insurance
policies and give them the right to convert their accumulated funds to a life annuity at
a fixed rate when the policy matures. These kind of guarantees became very popular
in the 1970’s and 1980’s when long term rates in many countries were quite high. We
mention that in Liu et al. (2014), a pricing formula for the GAO has been obtained
where the interest rate and mortality processes follow bivariate Gaussian dynamics. In
their setting, the dependence between mortality and interest rates is described just by
one constant, namely the pairwise linear correlation coefficient. We will show that in
(positive) structures such as the Wishart framework the aforementioned dependence
shows richer features.

The remainder of this paper is organized as follows. In Section 2, we present our
model in a general affine approach and we define the change of probability measure used
in the sequel for the pricing purpose. In Section 3, we concentrate upon some insurance
products and we present different ways for determining their fair values in our setting.
In Section 4, we specify the dynamics of the affine processes in two important speci-
fications: the multidimensional CIR process and the Wishart case. For both settings
we derive formulas for the price of the insurance contracts of Section 3. In Section 5
we perform a sensitivity analysis with respect to parameters that rule the dependence
structure between interest rates and mortality risks. We provide concluding remarks
in Section 6. Finally, we gather in the Appendix some technical results and a brief
overview on affine processes.

2 The general pricing model

We consider a filtered probability space (Ω, G, (Gt)t, Q) where Q is a risk-neutral
martingale measure. By the presence of both mortality and interest rate risk, we
are dealing with a pricing problem in an incomplete market. Following the standard
practice, we assume that the right risk-neutral probability can be selected on the basis
of e.g. available market data (for another approach about the non-diversifiable mortality
risk in an incomplete market, see e.g. Bayraktar et al. (2009)).

We denote by τM(x) the positive random variable corresponding to the future life-
time of an individual aged x at time 0, admitting a random intensity µ(s, x+ s). As in

4



e.g. Biffis (2005), we regard τM(x) as the first jump-time of a nonexplosive G-counting
process N recording at each time t ≥ 0 whether the individual died (Nt 6= 0) or not
(Nt = 0). Let Rt be the filtration generated by the interest rate process and Mt the
one associated to the mortality intensity. We denote by Ft := Rt ∨Mt the minimal
σ-algebra containing Rt∪Mt. The filtration (Gt)t denotes the flow of information avail-
able as time goes by: this includes knowledge of the evolution of both state variables
above up to each time t and of whether the policyholder has died by then. Therefore,
Gt := Ft ∨Ht, with

Ht := σ(1{τM (x)≤s;0≤s≤t}),

being the smallest filtration with respect to which τM(x) is a stopping time. We further
assume2 that N is a doubly stochastic process or Cox process driven by the subfiltration
F of G, which implies that for all 0 ≤ t ≤ T and k ∈ N:

Q (NT −Nt = k | FT ∨Ht) =

(∫ T
t
µ(s, x+ s)ds

)k
exp

(
−
∫ T
t
µ(s, x+ s)ds

)
k!

. (1)

The idea behind the specification of F is that it provides enough information about the
evolution of the interest rates and the intensity of mortality, i.e. about the likelihood
of death happening, but not enough information about the actual occurrence of death.
Such information is carried by the larger filtration G, with respect to which τM(x) is
a stopping time. The application of the law of iterated expectations and the use of
(1) with k = 0 yield that the ‘probability of survival’ up to time T ≥ t, on the set
{τM(x) > t}, is given by

Q(τM(x) > T |Gt) = EQ
[
e−

∫ T
t µ(s,x+s)ds|Gt

]
.

We notice that this kind of reasonings is widely used in the credit risk literature, see
e.g. Duffie and Singleton (1999).

Given a time-homogeneous affine Markov process X taking values in a non empty
convex subset E of Rd (d ≥ 1), endowed with the inner product 〈., .〉, we assume that
the dynamics of the force of mortality µ(t, x+ t) are given by

µ(t, x+ t) = µ̄x + 〈Mx, Xt〉, (2)

and the dynamics of interest rate rt by

rt = r̄ + 〈R,Xt〉, (3)

for some constants r̄, µ̄x ∈ R and Mx, R in Rd, that is mortality and interest rate are
linear projections of the common stochastic factor X along constant directions given by

2Notice that Biffis (2005) uses an analogous hypothesis under the assumption of independence of
mortality and interest rates.
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the parameters Mx, R. We will be interested in the cases where X is a classical affine
process with state space Rm

+ ×Rn or an (affine) Wishart process on the state space S+
d

(the set of d× d symmetric positive definite matrices). When R and Mx are vectors in
Rd (resp. matrices in Md), the corresponding inner product between R and Mx is the
scalar product (resp. the trace of the matrix product RMx).
In the following, if there is no confusion about the age x, we will denote µ(t, x+ t) by
µt and we will omit the superscript or argument x in the notations of µ̄, M and τM .

At this stage we remain generic on the process X: in the Appendix A we recall
the definition of affine process as in Keller-Ressel and Mayerhofer (2015) who provide
a unified approach including the classical affine and the Wishart specification for the
process X.

We are interested in calculating an insurance contingent claim paying a single ben-
efit CT upon survival of the insured (with age x at time 0) at time T , which is FT -
measurable. Using the risk-neutral pricing approach, this basic insurance contract de-
pending upon (possibly correlated) mortality and interest rates has the following value
at time t, which we denote by SBt(CT ;T ) as in Biffis (2005)

SBt(CT ;T ) = EQ
[
e−

∫ T
t rsds1{τM>T}CT |Gt

]
.

Using the law of iterated expectations and the facts that {rt}t is adapted with respect
to the filtration {Ft}t and that CT is FT -measurable, we can write:

SBt(CT ;T ) = EQ
[
e−

∫ T
t rsdsCTEQ [1{τM>T}|Gt ∨ FT ] |Gt] .

From this, we note that SBt(CT ;T ) is zero on the set {τM ≤ t}. Focusing on the set
{τM > t}, we exploit the doubly stochastic property, obtaining:

SBt(CT ;T ) = 1{τM>t}E
Q
[
e−

∫ T
t (rs+µs)dsCT |Gt

]
.

The conditioning on Gt can be reduced to that on Ft, as shown in Appendix C of Biffis
(2005). As a conclusion, by using equations (2) and (3):

SBt(CT ;T ) = 1{τM>t}E
Q
[
e−

∫ T
t (rs+µs)dsCT |Ft

]
= 1{τM>t}E

Q
[
e−

∫ T
t r̄+µ̄+〈R+M,Xs〉dsCT |Ft

]
. (4)

In the following, EQ [·|Ft] is also denoted by EQ
t [·].

This insurance product is a building block for more complex contingent claims based
upon survival at a given date, as will be shown in Section 3.

6



In order to evaluate this elementary product, we will use a change of probability
measure approach. Indeed, we will define the probability measure QT,µ with the Radon-
Nikodym derivative of QT,µ with respect to Q as

dQT,µ

dQ
:= ζT =

e−
∫ T
0 r̄+µ̄+〈R+M,Xs〉ds

EQ
[
e−

∫ T
0 r̄+µ̄+〈R+M,Xs〉ds

] ,
and we define ζTt as the conditional expectation under Q of ζT with respect to the
filtration Ft, which is by definition a martingale under Q. Hence, we obtain for t ≤ T

ζTt = EQ[ζT |Ft] =
e−

∫ t
0 r̄+µ̄+〈R+M,Xs〉dsEQ

[
e−

∫ T
t r̄+µ̄+〈R+M,Xs〉ds|Ft

]
EQ
[
e−

∫ T
0 r̄+µ̄+〈R+M,Xs〉ds

] .

Therefore, using Bayes’ rule, the conditional expectation involving CT under the new
measure can be calculated by the following fraction

EQT,µ [CT |Ft] =
EQ
[
e−

∫ T
t r̄+µ̄+〈R+M,Xs〉dsCT |Ft

]
P̃ (t, T )

,

where
P̃ (t, T ) = EQ

t

[
e−

∫ T
t r̄+µ̄+〈R+M,Xs〉ds

]
denotes the price at time t of a pure endownment insurance or (to stress the similarities
in finance) a survival zero-coupon bond (SZCB hereafter) with maturity T (for an insured
of age x at time 0, who is still alive at time t). It is a life insurance product which gives
one dollar at time T upon survival of the insured at that time3.
As X is an affine process, it is well-known that this expectation can be obtained as
follows

P̃ (t, T ) = e−(r̄+µ̄)(T−t)EQ
[
e−

∫ T
t 〈R+M,Xs〉ds|Ft

]
= e−(r̄+µ̄)(T−t)e−Φ(0,1)(T−t,R+M)−〈Ψ(0,1)(T−t,R+M),Xt〉 (5)

where the functions Φ(0,1)(·, R+M) and Ψ(0,1)(·, R+M) satisfy the system of generalized
Riccati ODEs (39) and (40) recalled in the Appendix.
Finally, formula (4) can be expressed as the following product

SBt(CT ;T ) = 1{τM>t}P̃ (t, T )EQT,µ [CT |Ft] . (6)

Note that if CT = 1, the (unitary) survival benefit is related to the SZCB in the
following way

SBt(1;T ) = 1{τM>t}P̃ (t, T ), (7)

3Note that P̃ (t, T ) can be used as a numéraire because it can be replicated by a strategy involving
longevity bonds (see e.g. Lin and Cox (2005)), in analogy with the usual bootstrapping procedure used
to find the zero rate curve starting by coupon bonds.
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meaning that the unitary survival benefit is basically equivalent to a SZCB modulo the
probability that the insured is alive at time t; in particular, SB0(1;T ) = P̃ (0, T ).
The main advantage of this approach is that, as we can observe in (6), it allows us to
split the survival benefit as the product of two expectations: the first one corresponds
to the price of the SZCB (given by (5)) and the second one is related to the expectation
of the benefit CT under the probability measure QT,µ, which remains to be determined.

Remark 1. We point out that our approach boils down to the ones of Liu et al. (2013,
2014) since they use as numéraire the unitary survival benefit of (7) and we use the
SZCB. Our single-step change-of-measure approach is slightly different from the ones
of Jalen and Mamon (2009) insofar the latters use a double-step procedure in order
to simplify the initial expression. Indeed, Jalen and Mamon (2009) start by using
the forward measure with the money market account as numéraire in order to price a
unitary survival benefit (i.e. SBt(1;T )). Then, in order to determine the GAO value,
they introduce a new measure, which is associated to SBt(1;T ) as numéraire. Even if
from a theoretical point of view the two methods are equivalent, it is worth recalling that
each time a change of measure is used, the drift of the processes in question changes
according to the Girsanov theorem. For example, in the setting of Wishart processes,
the two step change of measure approach leads to a Wishart process whose drift depends
upon the solution of a time varying Riccati differential equation which needs to be solved
numerically (typically by a Runge–Kutta method). On the contrary, within our approach
we end up with a time homogeneous Riccati differential equation which can be solved by
using the well-known linearization method (see e.g. Da Fonseca et al. (2008)).

3 Annuities and Guaranteed Annuity Options

In this section we consider the pricing of two insurance contracts issued at time 0 for
an insured aged x years. The first contract is a T1-year deferred indexed annuity which
provides a unit amount plus a percentage of the short interest rate at the beginning
of each year from T1 upon survival of the insured, see e.g. Biffis (2005). The second
contract is a guaranteed annuity option (GAO), which is one of the most familiar
embedded options in life insurances, see e.g. Hardy (2003). They began to be included
in some UK pension policies in the 1950’s and became very popular in the 1970’s and
1980’s in the UK. One of the most popular type of GAOs in the US and Japan provide
the right to convert a policyholder’s accumulated fund to a life annuity at a fixed
rate when the policy matures (see e.g. Ballotta and Haberman (2003, 2006), Boyle
and Hardy (2006), Deelstra and Rayée (2013)) and they are referred to as Guaranteed
Minimum Income Benefit (GMIB). In this paper, we will consider a simple GAO type
within traditional endownment policies such as studied e.g. in Pelsser (2003), Liu et al.
(2013, 2014) and Zhu and Bauer (2011). According to Pelsser (2003), this form of GAO
is very popular since it plays a crucial role in with-profit policies.
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The fair values are derived by using the change of measure described in the previous
section. For the indexed annuity, we also present an alternative way based on Fourier
methods like in Duffie et al. (2000).

3.1 Indexed annuities

We start by recalling the definition of a whole life annuity due. A whole life annuity is
an insurance product that gives the policyholder a predetermined periodic payoff until
his death. Let us denote an immediate annuity paying a payoff Cj in the beginning of
year j = 0, 1, . . . in case of the insured’s survival at each policy date by following the
notation of Biffis (2005), namely by:

äx(C) =
ω−x−1∑
j=0

SB0(Cj; j),

where ω is the largest possible survival age. Therefore, the present value at time 0 of a
whole life annuity due with yearly payments of one unit from 0 on for a person aged x
at time 0 is given by

äx := äx(1) =
ω−x−1∑
j=0

P̃ (0, j),

where we use the standard notation4 for the whole life annuity due. Following the
notations of (Liu et al., 2014), the present value at time T of a whole life annuity due
with yearly payments of one unit from T on for a person aged x at time 0, will be
denoted by äx(T ) if there is no confusion that T is is referring to time and not to a
payoff; and is given by

äx(T ) =

ω−(x+T )−1∑
j=0

P̃ (T, T + j). (8)

We now consider a T1-years deferred whole life annuity which turns out a monetary
unit plus a percentage γ of the short rate at each policy date T1, T1 + 1, T1 + 2, . . . upon
survival of the insured. Following the notation of Biffis (2005), we denote this T1-years
deferred indexed annuity by SB0(äx+T1(1 + γr);T1), where the insured has age x at
time 0. Therefore

SB0(äx+T1(1 + γr);T1) =
ω−x−1∑
h=T1

SB0(1 + γrh;h)

=
ω−x−1∑
h=T1

EQ
[
e−

∫ h
0 (rs+µs)ds(1 + γrh)

]
. (9)

4We refer to e.g. Dickson et al. (2013) for an excellent introduction to actuarial notions.
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We provide two different approaches for evaluating this indexed annuity product in the
setting of our general affine model.

The first expression is obtained by using the change of numéraire defined in the
previous section. The second one follows from the methodology derived in Duffie et al.
(2000).

Proposition 1. The present value of a T1-years deferred life annuity which pays out a
monetary unit plus a percentage γ of the short rate at each policy date T1, T1+1, T1+2, . . .
upon survival of the insured is given by

SB0(äx+T1(1 + γr);T1) =
ω−x−1∑
h=T1

P̃ (0, h)
(

1 + γr̄ + γ 〈R,EQh,µ [Xh]〉
)

(10)

=
ω−x−1∑
h=T1

(
(1 + γr̄)P̃ (0, h)

+ γe−(r̄+µ̄)hL0
ν(0, h,−(R +M), 0, νR)

)
(11)

where L0
ν denotes the derivative wrt ν ∈ R at ν = 0 of the following function

L(t, T, θ1, θ2, νθ3) = EQ
t

[
e
∫ T
t 〈θ1,Xu〉du+〈(θ2+νθ3),XT 〉

]
, (12)

with (t, T, θ1, θ2, νθ3) ∈ [0, T ] × R+ × R3d for which the transform is well-defined and
interchangeability between the derivative and the expectation is allowed5.

Remark 2. From (10) it follows that if we know the dynamics of X under the measure
Qh,µ, it will be possible to calculate EQh,µ [Xh] and we can get an explicit pricing formula.
On the other hand, in (11) we have applied the Fourier method as in Duffie et al. (2000),
which does not need any change of probability measure.

Proof. i) [Change of measure approach] By using the change of numéraire associated
with a SZCB, we can express the indexed annuity (9) as follows

SB0(äx+T1(1 + γr);T1) =
ω−x−1∑
h=T1

EQ
[
e−

∫ h
0 (rs+µs)ds(1 + γrh)

]
=

ω−x−1∑
h=T1

P̃ (0, h)EQh,µ [1 + γrh]

=
ω−x−1∑
h=T1

P̃ (0, h)
(

1 + γr̄ + γ 〈R,EQh,µ [Xh]〉
)
,

where we used the equation (3) in the last equality.

5Such regularity assumptions can e.g. be found in Duffie et al. (2000) for the CIR case and in
Cuchiero et al. (2011) for the Wishart case.

10



ii) [Fourier method] By computing the derivative of (12) with respect to ν and
evaluating at ν = 0, we get

∂νL(t, T, θ1, θ2, νθ3)|ν=0 = EQ
t

[
e
∫ T
t 〈θ1,Xu〉du+〈θ2,XT )〉〈θ3, XT 〉

]
.

Simple calculations lead to the following equalities

SB0(äx+T1(1 + γr);T1) =
ω−x−1∑
h=T1

SB0(1 + γrh;h)

=
ω−x−1∑
h=T1

EQ
[
e−

∫ h
0 (rs+µs)ds(1 + γrh)

]
=

ω−x−1∑
h=T1

e−(r̄+µ̄)h
(

(1 + γr̄)EQ
[
e−

∫ h
0 〈R+M,Xs〉ds

]
+ γEQ

[
e−

∫ h
0 〈R+M,Xs〉ds〈R,Xh〉)

])
.

We notice that
EQ
[
e−

∫ h
0 〈R+M,Xs〉ds

]
= e(r̄+µ̄)hP̃ (0, h)

and that, by adopting the notation of Chiarella et al. (2014)

EQ
[
e−

∫ h
0 〈R+M,Xs〉ds〈R,Xh〉

]
= ∂νL(0, h,−(R +M), 0, νR)|ν=0

= L0
ν(0, h,−(R +M), 0, νR).

Collecting terms gives the result.

3.2 Guaranteed Annuity Options

Consider an x year old policyholder at time 0 who disposes at (retirement) age Rx of a
unitary payoff. A GAO gives to the policyholder the right to choose at time T ≡ Rx−x
between an annual payment of g, where g is a fixed rate called the Guaranteed Annuity
rate, or a cash payment equal to the capital 1. As already mentioned, this contract is
an example of an embedded option in life insurance policies. In the 1970s and 1980s,
when long term interest rates were high, the option was far out of the money, to the
point that the most popular guaranteed rate for a male aged 65 in the UK, was an
annuity cash value ratio of g = 1/9 (see e.g. Bolton et al. (1997)). Afterwards, when
in the 1990’s long term interest rates started to fall, the value of guaranteed annuity
options increased. Nowadays, due to the long term nature of these contracts, the change
in financial and mortality variables seems to be a challenging issue for life insurance
compagnies.
We first concentrate on the evolution of a whole life annuity due for a person aged x
at time 0, which gives an annual payment of one unit amount at the beginning of each
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year from time T on and this conditional on survival. As noticed before in (8), such an
annuity can be seen as a sum of SZCBs and therefore its value at time T boils in the
general affine approach down to

äx(T ) =

ω−(x+T )−1∑
j=0

P̃ (T, T + j)

=
ω−Rx−1∑
j=0

EQ
T

[
e−

∫ T+j
T (r̄+µ̄)+〈(R+M),Xs〉ds

]
=

ω−Rx−1∑
j=0

e−(r̄+µ̄)(j)e−Φ(0,v)(j,R+M)−〈Ψ(0,v)(j,R+M),XT 〉

where Φ(0,v)(j, R + M) and Ψ(0,v)(j, R + M) are resp. given by (39) and (40) in the
Appendix.

At time T the value of the contract with the embedded GAO can be expressed by
the following decomposition

V (T ) = max(gäx(T ), 1)

= 1 + gmax

(
äx(T )− 1

g
, 0

)
.

Applying the risk neutral valuation procedure, we find the value at time t = 0 of the
second term, which is called the GAO option price entered by an x-year policyholder
at time t = 0:

C(0, x, T ) = EQ
[
e−

∫ T
0 (rs+µs)dsgmax

(
äx(T )− 1

g
, 0

)]
. (13)

When using the probability measure QT,µ defined in (2), the GAO option price decom-
poses into the following product

C(0, x, T ) = gP̃ (0, T )EQT,µ
[
max

(
äx(T )− 1

g
, 0

)]
. (14)

As the payoff of the GAO is very similar to the one of a basket option, for most
models the values of (13) and (14) can only be performed by Monte Carlo simulations.
In Liu et al. (2014) numerical experiments in the Gaussian setting have shown that
equation (14) is a bit more precise and in particular it is less time-consuming than the
implementation of equation (13). In Section 5 we will investigate this issue in different
affine models such as the multi-CIR and the Wishart cases.

12



4 Models

The Gaussian framework has been deeply investigated in the insurance literature on
derivative products (see e.g. Jalen and Mamon (2009), Liu et al. (2014), Luciano and
Vigna (2008) and references therein), leading to simple formulas, but also to the possi-
bility to get negative rates. In this section we focus on more general affine models and
we investigate the influence in pricing of their dependence structure, which reduces to be
constant in the Gaussian setting. In particular, we concentrate on factor models based
upon multi-CIR and Wishart processes. In the former we circumvent the typical trivial
correlation structure of the multi-CIR case (where positive factors must be uncorrelated
in order to preserve the affine property of the model) by assuming that mortality and
interest rates are driven by systematic and idiosyncratic factors. The Wishart case is
more interesting as it allows for more sophisticated dependence between the positive
factors.

4.1 The multi-CIR case

In this subsection, we model X by an n-dimensional affine process whose independent
components evolve according to the CIR risk neutral dynamics

dXit = ki(θi −Xit)dt+ σi
√
XitdW

Q
it , i = 1, .., n.

To see that this example fits into the general affine framework described in the Ap-
pendix, it is enough to take

a(x) =


σ2

1x1 0 . . . 0

0 σ2
2x2

. . .
...

...
. . . . . . 0

0 . . . 0 σ2
nxn


and

b(x) =


k1θ1

k2θ2
...

knθn

+


−k1 0 . . . 0

0 −k2
. . .

...
...

. . . . . . 0
0 . . . 0 −kn



x1

x2
...
xn


in equation (38). The price of the SZCB P̃ (t, T ) can be easily derived in this framework:

P̃ (t, T ) = EQ
t

[
e−

∫ T
t (r̄+µ̄)+〈(R+M),Xs〉ds

]
= e−(r̄+µ̄)(T−t)

n∏
i=1

EQ
t

[
e−

∫ T
t (Ri+Mi)Xisds

]
= e−(r̄+µ̄)(T−t)

n∏
i=1

e−φi(T−t,Ri+Mi)−ψi(T−t,Ri+Mi)Xit (15)
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where φi and ψi are solution of the Riccati equations (39)-(40) which become (see e.g.
Duffie et al. (2000)):

∂ψi(τ, ui)

∂τ
= 1− kiψi(τ, ui)−

uiσ
2
i

2
ψi(τ, ui)

2,

∂φi(τ, ui)

∂τ
= kiθiuiψi(τ, ui),

with τ = T − t, ui = Ri +Mi and initial conditions ψi(0, ui) = 0 and φi(0, ui) = 0.
The solutions of this system are given by

ψi(τ, ui) =
2ui

ζ(ui) + ki
− 4uiζ(ui)

ζ(ui) + ki

1

(ζ(ui) + ki) exp[ζ(ui)τ ] + ζ(ui)− ki
, (16)

φi(τ, ui) = −kiθi
σ2
i

[ζ(ui) + ki]τ +
2kiθi
σ2
i

log[(ζ(ui) + ki) exp[ζ(ui)τ ] + ζ(ui)− ki]

−2kiθi
σ2
i

log(2ζ(ui)), (17)

where ζ(ui) =
√
k2
i + 2uiσ2

i .

We will now specialize the price of indexed annuities and GAOs in this framework.

4.1.1 Indexed annuity in the multi-CIR case

Let us first concentrate upon the T1-years deferred annuity in the multidimensional CIR
framework. As in the general setting, we apply two approaches which give different
formulas.

Proposition 2 (Change of measure approach). In the multidimensional CIR model,
the present value of a T1-years deferred life annuity which pays a monetary unit plus a
percentage γ of the short rate at each policy date T1, T1 + 1, T1 + 2, . . . upon survival of
the insured can be written as follows:

SB0(äx+T1(1 + γr);T1) =
ω−x−1∑
h=T1

P̃ (0, h)

(
1 + γr̄ + γ

n∑
i=0

RiEQh,µ [Xih]

)
(18)

where the expectation of Xih under the measure Qh,µ is given by

EQh,µ [Xih] =

(
xie

σ2i
kiθiui

φi(h,ui) + kiθi

∫ h

0

exp

(
σ2
i

kiθiui
φi(h− s, ui) + kis

)
ds

)
exp (−kih) .

Proof. Plugging rh = r̄ +
∑n

i=0RiXih into equation (10) gives immediately (18). From
Girsanov’s theorem it follows that

dWQT,µ
t = dWQ

t +
√
a(Xt)ψ(T − t, R +M)dt,

14



where ψ(τ, ·) = (ψ1(τ, ·), . . . , ψn(τ, ·))> is given in equation (16). We have

dXit = (ki(θi −Xit)− σ2
iψi(T − t, Ri +Mi)Xit)dt+ σi

√
XitdW

QT,µ
it

for i = 1, . . . , n, so that the expectation yi(t) := EQT,µ [Xit] is solution of the following
ODE

dyi(t)

dt
= kiθi − (σ2

iψi(T − t, ui) + ki)yi(t), yi(0) = xi

that can be solved by standard methods.

Proposition 3 (Fourier approach). In the multidimensional CIR model, the present
value of a T1-years deferred life annuity which pays a monetary unit plus a percentage
γ of the short rate at each policy date T1, T1 + 1, T1 + 2, . . . upon survival of the insured
is given by

SB0(äx+T1(1 + γr);T1) =
ω−x−1∑
h=T1

(
(1 + γr̄)P̃ (0, h)

+ γe−(r̄+µ̄)hL0
ν(0, h,−(R +M), 0, νR)

)
where

L0
ν(t, T, θ1, θ2, νθ3) =

 n∑
i=1

∂νL̃i(t, T, θi1, θi2, νθi3)
n∏
j=1
j 6=i

L̃j(t, T, θj1, θj2, νθj3)


∣∣∣∣∣∣∣
ν=0

,

with
L̃k(t, T, θk1, θk2, νθk3) = EQ

t

[
e
∫ T
t θk1Xkudu+(θk2+νθk3)XkT

]
. (19)

Proof. We repeat equality (11) from the previous section

SB0(äx+T1(1 + γr);T1) =
ω−x−1∑
h=T1

(
(1 + γr̄)P̃ (0, h)

+ γe−(r̄+µ̄)hL0
ν(0, h,−(R +M), 0, νR)

)
where

L0
ν(0, h,−(R +M), 0, νR) = ∂νL(0, h,−(R +M), 0, νR)|ν=0

with
L(t, T, θ1, θ2, νθ3) = EQ

t

[
e
∫ T
t

∑n
i=0 θ1iXiudu+

∑n
i=0(θi2+νθi3)XiT

]
.

Now

∂νL(t, T, θ1, θ2, νθ3)|ν=0 = ∂ν

(
n∏
i=1

EQ
t

[
e
∫ T
t θi1Xiudu+(θi2+νθi3)XiT

])∣∣∣∣∣
ν=0

=

 n∑
i=1

∂νL̃i(t, T, θi1, θi2, νθi3)
n∏
j=1
j 6=i

L̃j(t, T, θj1, θj2, νθj3)


∣∣∣∣∣∣∣
ν=0
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where L̃k is given by

L̃k(t, T, θk1, θk2, νθk3) = EQ
t

[
e
∫ T
t θk1Xkudu+(θk2+νθk3)XkT

]
.

We notice that Lemma 1 in Appendix A gives explicit results for (19).

4.1.2 Guaranteed Annuity Options in the multi-CIR case

We start from the explicit expression for the annuity:

äx(T ) =

ω−(x+T )−1∑
j=0

EQ
T

[
e−

∫ T+j
T r̄+µ̄+

∑n
i=0(Ri+Mi)Xisds

]

=

ω−(x+T )−1∑
j=0

e−(r̄+µ̄)j

n∏
i=1

e−φi(j,Ri+Mi)−ψi(j,Ri+Mi)XiT ,

where we used equation (15) and where φi(j, Ri+Mi) and ψi(j, Ri+Mi) are resp. given
by (16) and (17).

The expression of the annuity can now be substituted in (13) or (14) in order to
obtain the GAO value, which is given by resp.

C(0, x, T ) = EQ
[
e−

∫ T
0 (rs+µs)dsgmax

(
äx(T )− 1

g
, 0

)]
(20)

or

C(0, x, T ) = gP̃ (0, T )EQT,µ
[
max

(
äx(T )− 1

g
, 0

)]
. (21)

Note that the dynamics of X are known under both Q and QT,µ, so that we have
two alternative expressions to which we can apply a Monte Carlo simulation in order
to evaluate the GAO option price.

4.2 The Wishart case

In this section we assume that the affine process (Xt)t≥0 is a d-dimensional Wishart
process. Given a filtered probability space (Ω,G,Ft,Q) as in Section 2 and a d × d
matrix Brownian motion W (i.e. a matrix whose entries are independent Brownian
motions), the Wishart process Xt (without jumps) is defined as the solution of the
d× d-dimensional stochastic differential equation

dXt = (βQ>Q+HXt +XtH
>)dt+

√
XtdWtQ+Q>dW>

t

√
Xt, t ≥ 0, (22)
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where X0 = x ∈ S+
d , β ≥ d− 1, H ∈Md (the set of real d× d matrices) Q ∈ GLd (the

set of invertible real d× d matrices) and Q> its transpose. Bru (1991) proved existence
and uniqueness of a weak solution for equation (22). In the case where β ≥ d+ 1, Bru
(1991) showed that there exists a unique strong solution which takes values in S++

d , i.e.
the interior of the cone of positive semidefinite symmetric d × d matrices denoted by
S+
d (see also Cuchiero et al. (2011)).

The price of a SZCB in the Wishart case can be derived as follows

P̃ (t, T ) = EQ
t

[
e−

∫ T
t r̄+µ̄+Tr((R+M)Xs)ds

]
= e−(r̄+µ̄)(T−t)e−φ(T−t,R+M)−Tr[ψ(T−t,R+M)Xt], (23)

where φ and ψ solve the following system of ODE’s (τ = T − t)
∂φ
∂τ

= Tr[βQ>Qψ(τ, R +M)],

φ(0, R +M) = 0,
∂ψ
∂τ

= ψ(τ, R +M)H +H>ψ(τ, R +M)− 2ψ(τ, R +M)Q>Qψ(τ, R +M) +R +M,

ψ(0, R +M) = 0.

(24)

As proposed in Grasselli and Tebaldi (2008) and Da Fonseca et al. (2008), matrix
Riccati equations can be linearized by doubling the dimension of the problem. Indeed,
defining (

A11(τ) A12(τ)
A21(τ) A22(τ)

)
= exp

(
τ

(
H 2Q>Q

R +M −H>
))

it turns out that it is possible to express ψ(τ, R +M) as follows:

ψ(τ, R +M) = A−1
22 (τ)A21(τ),

and for φ(τ, R +M) we get

φ(τ, R +M) =
β

2

(
log(det(A22(τ))) + τTr[H>]

)
.

4.2.1 Indexed annuity in the Wishart case

We first derive the dynamics of the Wishart process under the measure QT,µ. To do
that, we find the dynamics of the SZCB price P̃ (t, T ) that can be found by applying
Ito’s lemma to the expression (23):

dP̃ (t, T )

P̃ (t, T )
= (r̄ + µ̄− Tr[(R +M)Xt])dt− Tr[ψ(τ, R +M)

√
XtdWtQ]

−Tr[ψ(τ, R +M)Q>(dWt)
>
√
Xt].
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Girsanov’s theorem gives the link between the d × d matrix Brownian motions under
QT,µ and Q:

dWQT,µ
t = dWt +

√
Xtψ(T − t, R +M)Q>dt.

As a consequence, the dynamics of Xt under QT,µ are given by

dXt = βQ>Qdt+
(
H −Q>Qψ(τ, R +M)

)
Xtdt+Xt

(
H> − ψ(τ, R +M)Q>Q

)
dt

+
√
Xt

(
dWQT,µ

t

)
Q+Q>

(
dWQT,µ

t

)>√
Xt. (25)

We now recall a useful result of Kang and Kang (2013) on the distribution of a
Wishart process with time-varying linear drift.

Proposition 4. (Kang and Kang (2013), Proposition A.6.) Let X be a Wishart process
with time-varying linear drift which solves the following stochastic differential equation

dXt = (βQ>Q+H(t)Xt +XtH(t)>)dt+
√
XtdWtQ+Q>dW>

t

√
Xt, X0 = x,

where β ≥ d − 1, Q is a d × d matrix, x is a symmmetric positive semidefinite ma-
trix, H(.) is a d×d matrix valued continuous function, and W is a standard d×d matrix
Brownian motion. Then XT has noncentral Wishart distributionWd(β, V (0), V (0)−1Ψ̃(0)>xΨ̃(0)),
where V (t) and Ψ̃(t) solve the following system of ODEs

d

dt
Ψ̃(t) = −H(t)>Ψ̃(t),

d

dt
V (t) = −Ψ̃(t)>Q>QΨ̃(t),

with terminal conditions Ψ̃(T ) = Id and V (T ) = 0.

We can now state the following proposition, which gives the price of a T1-years
deferred indexed annuity product by using the change of measure described in Section
2.

Proposition 5 (Change of measure approach). In the Wishart model, the present value
of a T1-years deferred life annuity which pays out a monetary unit plus a percentage γ
of the short rate at each policy date T1, T1 + 1, T1 + 2, . . . upon survival of the insured is
given by

SB0(äx+T1(1 + γr);T1) =
ω−x−1∑
h=T1

P̃ (0, h)
(

1 + γr̄ + nγ Tr[RV (0)] + γ Tr
[
RΨ̃(0)>xΨ̃(0)

])
,

where V (t) and Ψ̃(t) are solutions of the following system of ordinary differential equa-
tions

d

dt
Ψ̃(t) = −H̃(h− t, R +M)>Ψ̃(t),

d

dt
V (t) = −Ψ̃(t)>Q>QΨ̃(t),
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with H̃(h− t, R+M) = H −Q>Qψ(h− t, R+M) and terminal conditions Ψ̃(T ) = Id
and V (T ) = 0.

Proof. In order to obtain the fair value of this insurance product, we first determine the
term EQh,µ [Xh] . Introducing the notation H̃(h− t, R+M) = H−Q>Qψ(h− t, R+M),
the dynamics of Xt under the measure Qh,µ in (25) are given by

dXt =
(
βQ>Q+ H̃(h− t, R +M)Xt +XtH̃(h− t, R +M)>

)
dt

+
√
Xt(dW

Qh,µ
t )Q+Q>(dWQh,µ

t )>
√
Xt.

Hence, under Qh,µ, X is a Wishart process with time-varying linear drift. By virtue of
Proposition 4, Xh has a noncentral Wishart distribution

Xh ∼ Wd(δ, V (0), V (0)−1Ψ̃(0)>xΨ̃(0)).

The expectation of Xh under Qh,µ is then given by (see Appendix B)

EQh,µ [Xh] = nV (0) + Ψ̃(0)>xΨ̃(0),

which gives the result.

We now concentrate on the method of Duffie et al. (2000) in the Wishart framework.

Proposition 6 (Fourier approach). In the Wishart model, the present value of a T1-
years deferred life annuity which pays a monetary unit plus a percentage γ of the short
rate at each policy date T1, T1 + 1, T1 + 2, . . . upon survival of the insured is given by

SB0(äx+t(1 + γr);T1) =
ω−x−1∑
h=T1

(
(1 + γr̄)P̃ (0, h)

+ γe−(r̄+µ̄)h
(
Tr(a0

ν(h)X0) + c0
ν(h)

)
eTr(a0(h)X0)+c0(h)

)
(26)

where
a0(h) = A22(h)−1A21(h)

c0(h) = −1
2

Tr
[
(Q>Q)−1βQ2 log(A22(h))

]
− h

2
Tr
[
(Q>Q)−1βQ2H>

]
a0
ν(h) = −(A22(h))−1RA12(h)a0(h) + (A22(h))−1RA11(h)

c0
ν(h) = −1

2
Tr
(
βDlog, A22(h)(RA12(h))

)
with (

A11(h) A12(h)
A21(h) A22(h)

)
= exp

(
h

(
H 2Q>Q

R +M −H>
))

,

and where Dlog, A(E) represents the Fréchet derivative of the logarithm function com-
puted for the matrix A in the direction E ∈Mn.
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We recall that the Fréchet derivative of a function f : Mn 7→Mn at a point A ∈Mn

is a linear functional E ∈Mn to Df, A(E) ∈Mn such that

f(A+ E)− f(A)−Df, A(E) = o(||E||).

If Df, A(E) exists then it is unique. We refer to Al-Mohy et al. (2013) for an efficient
algorithm for computing the Fréchet derivative of the matrix logarithm.

Proof. As the Wishart process Xt is affine, it is well-known that there exist some
deterministic functions such that the Laplace transform of the process and its integral
is an exponential of the affine function of Xt and these deterministic functions showing
up as coefficient, see e.g. Bru (1991) or Da Fonseca et al. (2007), Da Fonseca et al.
(2008). The moment generating function L turns out to be

L(t, T, θ1, θ2, νθ3) = exp(Tr(a(τ)Xt) + c(τ)) (27)

with τ = T − t and where a(τ), c(τ) solve the Riccati ODEs
∂a
∂τ

= a(τ)H +H>a(τ) + 2a(τ)Q2a(τ) + θ1,

a(0) = θ2 + νθ3,
∂c
∂τ

= Tr[βQ>Qa(τ)],

c(0) = 0,

and then can be expressed as follows:{
a(τ) = ((θ2 + νθ3)A12(τ) + A22(τ))−1((θ2 + νθ3)A11(τ) + A21(τ))

c(τ) = −1
2

Tr
[
(Q>Q)−1βQ2 log((θ2 + νθ3)A12(τ) + A22(τ))

]
− τ

2
Tr
[
(Q>Q)−1βQ2H>

]
.

Furthermore, by computing the derivative of (27) with respect to ν at ν = 0, one
obtains

L0
ν(t, T, θ1, θ2, νθ3) =

(
Tr(a0

ν(τ)Xt) + c0
ν(τ)

)
exp

(
Tr(a0(τ)Xt) + c0(τ)

)
where a0(τ) = a(τ)|ν=0, c0(τ) = c(τ)|ν=0, a0

ν(τ) = ∂νa(τ)|ν=0 and c0
ν(τ) = ∂νc(τ)|ν=0.

According to Chiarella et al. (2014), these expressions are known and are given by

a0
ν(τ) = −(θ2a12(τ) + a22(τ))−1θ3a12(τ)a0(τ)

+ (θ2a12(τ) + a22(τ))−1θ3a11(τ),

c0
ν(τ) = −1

2
Tr
(
βDlog, θ2a12(τ)+a22(τ)(θ3a12(τ))

)
.
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4.2.2 Guaranteed Annuity Options in the Wishart model

We start by adapting the formula of the annuity expression äx(T ) in (8) to the Wishart
framework

äx(T ) =

ω−(x+T )−1∑
j=0

P̃ (T, T + j)

=
ω−Rx−1∑
j=0

e−(r̄+µ̄)(j)e−φ(j,R+M)−Tr[ψ(j,R+M)XT ]

where φ(j, R+M) and ψ(j, R+M) are solutions of the PDE system (24), with τ = j.

As before, by applying the risk neutral valuation procedure, we can write the value
of the GAO option price entered by an x-year policyholder at time t = 0 as

C(0, x, T ) = EQ
[
e−

∫ T
0 (rs+µs)dsgmax

(
äx(T )− 1

g
, 0

)]
, (28)

or, by using the probability measure QT,µ defined in (2), as

C(0, x, T ) = gP̃ (0, T )EQT,µ
[
max

(
äx(T )− 1

g
, 0

)]
. (29)

As the dynamics of the Wishart process X are available under Q and QT,µ (see (22)
and (25)) and P̃ (0, T ) is given by (23), we can perform Monte Carlo simulations under
both measures in order to find the price of the GAO.

5 Numerical illustrations

In this section, we will present several numerical experiments for the insurance prod-
ucts and affine models considered in Sections 3 and 4. Similarly to the work of Liu
et al. (2014) in the Gaussian framework, we are interested in explaining the value of
insurance contracts in terms of the dependence structure between the interest rate and
the mortality process.

5.1 Multidimensional CIR model

In this subsection, we consider a 3-dimensional CIR process, having independent com-
ponents Xt = (X1t, X2t, X3t). This corresponds to the most parsimonious choice that
allows for some dependence. We assume that the interest rate process (rt)t≥0 and the
mortality process (µt)t≥0 are described by

rt = r̄ +X1t +X2t, µt = µ̄+m2X2t +m3X3t, (30)
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with r̄, µ̄, m2 and m3 constants. Hence, X1 and X3 correspond to idiosyncratic factors
and X2 to a systematic factor. In our illustration the coefficient m2 is fixed and m3 is
chosen such that

EQ[µT ] = Cx(T ), (31)

meaning that the expectation of the mortality is fixed to a given level Cx(T ) corre-
sponding to the mortality rate, predicted by e.g. a Gompertz-Makeham model (see e.g.
Dickson et al. (2013)), at age x+ T for an individual aged x at time 0. This condition
is equivalent to

µ̄+m2EQ[X2,T ] +m3EQ[X3,T ] = Cx(T ) (32)

where
EQ[Xi,T ] = Xi,0e

−kiT + θi
(
1− e−kiT

)
.

We have chosen this example since this interest rate model was completely calibrated
in Chiarella et al. (2016). This example implies always positive interest rates, which
is not necessarily satisfied lately. We admit that in practice it would be better to
fix positive linear coefficients m2 and m3 for the mortality model, leading to positive
mortality rates6 and to adapt another example of our family of interest rates with linear
coefficients r1 and r2 so that interest rates can be potentially negative.
In the setting (30), the linear pairwise correlation between (rt)t≥0 and (µt)t≥0, denoted
by ρt, forms a stochastic process given by

ρt =
m2σ

2
2X2t√

σ2
1X1t + σ2

2X2t

√
m2

2σ
2
2X2t +m2

3σ
2
3X3t

. (33)

We generate different values for the linear pairwise correlation by varying the parameter
m2 (and therefore also m3 by the constraint (31)).
Following Liu et al. (2014), we consider an individual of x = 50 years old at time 0
and we assume ω = 100. We divide the time period into l = 1500 equal sub-intervals
and we simulate 100, 000 sample paths. The parameters of the insurance products are
given in Table 1. We choose r̄ = −0.12332 and µ̄ = 0, in other words, the interest rate
process (rt)t≥0 and the mortality process (µt)t≥0 are modeled by

rt = −0.12332 +X1t +X2t, µt = m2X2t +m3X3t,

where the parameters of the 3-dimensional CIR process are given in Table 2. The pa-
rameters of the interest rate process are taken from Chiarella et al. (2016), in particular
r̄ and the parameters for X1 and X2. The parameters of the mortality rate are chosen
rather arbitrarily but in line with results about mortality tables and insurance products

6Our numerical study although showed that our mortality process almost always stayed positive
during the 35 years of simulations.
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in literature.7 The expected value in (32) is fixed to the level C50(15) = 0.014. For
this choice, we applied the formula for mortality rates and the chosen parameters by
the Belgian regulator (“Arrêté Vie 2003”) for the pricing of life annuities purchased by
males. Indeed, for an individual of age x, the mortality rate is given by:

µ(x) = aµ + bµ.c
x
µ aµ = − ln(sµ) bµ = − ln(gµ). ln(cµ)

where the parameters sµ, gµ, cµ take the values given in Table 3.

Product Parameters
GAO g = 0.111 T = 15

Indexed annuity γ = 0.06 T1 = 15

Table 1: Parameter values of the insurance contracts.

CIR process Parameters
X1 k1 = 0.3731 θ1 = 0.074484 σ1 = 0.0452 X1(0) = 0.0510234
X2 k2 = 0.011 θ2 = 0.245455 σ2 = 0.0368 X2(0) = 0.0890707
X3 k3 = 0.01 θ3 = 0.0013 σ3 = 0.0015 X3(0) = 0.0004

Table 2: Parameter values of the 3-dimensional CIR process.

sµ: 0.999441703848
gµ: 0.999733441115
cµ : 1.101077536030

Table 3: Belgian legal parameters for modelling mortality rates, for life insurance prod-
ucts, targetting a male population.

Figure 1 shows the Monte Carlo estimates for the expectation of the process of
linear pairwise correlation ρt given by (33) for different values of m2 for t ∈ [0, 15]. We
observe that the correlation estimates remain relatively stable over time.

5.1.1 Sensitivity with respect to volatilities

We are interested in seeing how prices of GAOs and an indexed annuities are affected
by changes in the volatility level. In Figure 2 and 3, we observe that the price of each
insurance product is increasing with respect to the volatility of the idiosyncratic factor
of the mortality and the one of the interest rate process.

7In practice, an elaborated calibration of the mortality parameters would be possible by following
the approach in Russo et al. (2011) if the necessary data are available.
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Figure 1: Expectation of ρt for different values of m2.

Figure 2: Fair value of a GAO and an indexed annuity as a function of σ1

5.1.2 Sensitivity study with respect to the correlation between mortality
and interest rates

In Table 4 and Table 5 we give the Monte Carlo estimates for the expectation of the
interest rate and the mortality rate at three different times t = 1, 15 and 30 year and
for different values of m2. We observe that, at each different time t, the expected values
of the rates remain relatively stable and are not influenced by the change of correlation.
This fact is important because it allows us to study the behavior of the price as a
function of solely the correlation.

Table 6 presents the prices of GAOs and indexed annuities for different values of
m2, and therefore for different values of the initial pairwise linear correlation coefficient
ρ0. We observe that when ρ0 increases then both the value of the GAO and the indexed
annuity increase as well, in line with Liu et al. (2014) in a Gaussian framework. Finally,
as in Liu et al. (2014), we also find that the prices computed by the formula based
upon the change of measure (formula (21)) are more precise than the once computed
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Figure 3: Fair value of a GAO and an indexed annuity as a function of σ3

m2 ρ0 EQ[r1] EQ[r15] EQ[r30]
-0.1 -0.7196 0.0257508 (0.0000449) 0.0638806 (0.0001403) 0.0842519 (0.0001898)
-0.01 -0.4128 0.0258241 (0.0000448) 0.0639768 (0.0001405) 0.0842502 (0.0001904)
-0.001 -0.0516 0.0257827 (0.0000447) 0.0641229 (0.0001402) 0.0844225 (0.0001900)
0.001 0.0520 0.0258079 (0.0000448) 0.0637467 (0.0001397) 0.0842712 (0.0001902)
0.01 0.4355 0.0258816 (0.0000448) 0.0639790 (0.0001405) 0.0842924 (0.0001908)
0.1 0.7310 0.0258550 (0.0000447) 0.0642154 (0.0001406) 0.0846799 (0.0001905)

Table 4: Expectation of the interest rate process in the multi-CIR specification for
different values of m2. Numbers in parentheses represent the standard deviation of the
corresponding MC estimate.

by formula (20), as can be noticed by the standard deviations of the Monte Carlo
estimations. A possible explanation lies in the fact that Equation (29) is the product
of the price of a survival bond, which can be calculated in an exact way, and the
expectation of a relatively easy payoff; whereas formula (28) is the expectation of a
product which is more involved and needs some more trajectories in order to obtain an
equivalent precision.

5.2 Wishart model

In this section we assume that X follows a Wishart process. As previously, our goal
consists in describing the behaviour of the fair value of GAOs and indexed annuities in
terms of the dependence between the interest and the mortality rates. We recall that
the mortality process (µt)t≥0 and the interest rate process (rt)t≥0 are modeled by

rt = r̄ + Tr(RXt), µt = µ̄+ Tr(MXt), t ≥ 0. (34)
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m2 ρ0 EQ[µ1] EQ[µ15] EQ[µ30]
-0.1 -0.7196 0.0106074 (0.0000058) 0.0140120 (0.0000222) 0.0171573 (0.0000311)
-0.01 -0.4128 0.0108656 (0.0000028) 0.0139928 (0.0000107) 0.0168927 (0.0000151)
-0.001 -0.0516 0.0108978 (0.0000026) 0.0139911 (0.0000099) 0.0168495 (0.0000140)
0.001 0.0520 0.0109016 (0.0000025) 0.0140022 (0.0000097) 0.0168837 (0.0000137)
0.01 0.4355 0.0109253 (0.0000023) 0.0140005 (0.0000091) 0.0168563 (0.0000129)
0.1 0.7310 0.0111908 (0.0000035) 0.0140301 (0.0000135) 0.0166159 (0.0000187)

Table 5: Expectation of the mortality process in the multi-CIR specification for dif-
ferent values of m2. Numbers in parentheses represent the standard deviation of the
corresponding MC estimate.

m2 ρ0 GAO with formula (20) GAO with formula (21) Indexed annuity
-0.1 -0.7196 0.2246406 (0.0008418) 0.2257942 (0.0005775) 5.8269507
-0.01 -0.4128 0.2531518 (0.0009962) 0.2531801 (0.0006618) 6.1072984
-0.001 -0.0516 0.2567771 (0.0010047) 0.2571203 (0.0006748) 6.1387679
0.001 0.0520 0.2579532 (0.0010129) 0.2588907 (0.0006766) 6.1458521
0.01 0.4355 0.2638415 (0.0010419) 0.2611032 (0.0006890) 6.1781468
0.1 0.7310 0.3000678 (0.0012543) 0.3003570 (0.0008096) 6.5415269

Table 6: Fair values for the GAO and the indexed annuity in the multi-CIR specification.

For arbitrary d× d matrices R and M , the infinitesimal quadratic covariation between
(µt)t≥0 and (rt)t≥0 is given by

d〈r, µ〉t = d〈Tr(RX),Tr(MX)〉t
= 4 Tr(M>Q>QRXt)dt,

where we used the fact that for A,B ∈ Md and a d × d matrix Brownian motion W ,
one has d〈Tr(AW ),Tr(BW )〉t = Tr(AB>)dt. The infinitesimal quadratic variation of
(rt)t≥0 and (µt)t≥0 can be deduced similarly

d〈r〉t = 4 Tr(Q>QRXtR
>)dt,

d〈µ〉t = 4 Tr(Q>QMXtM
>)dt.

In the following, we assume8 that d = 2 and we will make the simple choice of R and
M :

M =

(
0 0
0 1

)
, R =

(
1 0
0 0

)
. (35)

8We assume this very simple model for the ease of exposition. Wishart processes with a dimension
strictly larger than (3× 3) are difficult to implement, in the same way as high-dimensional numerical
methods like FFT become difficult. Wishart processes with dimension d ≤ 3 are however already very
interesting since their flexibility for modeling dependence structures goes far beyond e.g. the CIR case.
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For this choice, the stochastic correlation between (rt)t≥0 and (µt)t≥0 is given by

ρt =
(Q11Q12 +Q22Q21)X12

t√
(Q2

11 +Q2
21)X11

t (Q2
22 +Q2

12)X22
t

. (36)

As one can see from (36), modelling X by a Wishart process allows (even in this simple
case) for a more general dependence structure than in the multidimensional CIR spec-
ification. Therefore, we will analyse the sensitivity in two ways. The first sensitivity
study consists in varying the off-diagonal parameters of the initial Wishart process X0

and seeing the impact on the prices. The second sensitivity study is based upon a
change in the off-diagonal components of the matrix Q, which describe the dependence
structure of the diagonal elements.
We use the Monte Carlo simulation method to obtain the fair value of a GAO. We
generate 20,000 sample paths. Following Liu et al. (2014), we consider an individual
of x = 50 years old at time 0 and we assume ω = 100. The contract specifications are
(still) the ones given in Table 1. In the remainder of this section the parameters R and
M for the mortality process (µt)t≥0 and the interest rate process (rt)t≥0 are given by
(35) and we choose r̄ = 0.04 and µ̄ = 0 in (34).

5.2.1 Impact of a change in the initial value of the process

We are interested to see the impact on the value of a GAO and the indexed annuity
when the off-diagonal components of the initial Wishart process X0 (i.e. X12

0 ) change.
We consider two examples. In Example 1 (resp. Example 2), the off-diagonal elements
of the volatility matrix Q are negative (resp. positive). We will observe that the fair
value is either increasing or decreasing according to the initial correlation.

Example 1
In this experiment, we consider the following Wishart process:

H =

(
−0.5 0.4
0.007 −0.008

)
, Q =

(
0.06 −0.0006
−0.06 0.006

)
, X0 =

(
0.01 X12

0

X12
0 0.001

)
, β = 3.

Similarly to the CIR specification, we checked the constancy of the expected values of
the interest rate and the mortality intensity with respect to a fluctuating correlation. As
before, we consider the rates at 3 distinct maturities: 1, 15 and 30 years. Expectations
are computed via the Monte Carlo simulation method with 1500 sample paths. At each
period, it turns out that the Monte Carlo estimates remain relatively stable despite the
change of X12

0 . In Figure 4 we plot the Monte Carlo estimation for the expectation of
the linear pairwise correlation process ρt given by formula (36). According to Figure 4,
note that each path converges to the same value. Indeed, we recall that the expected
long-term matrix of the Wishart process X∞ := lim

t→∞
E[Xt] is given by the solution of

the following (Lyapunov) equation:

HX∞ +X∞H
> + βQ>Q = 0,
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and therefore is independent of the initial value.
Table 7 contains the fair values for the GAO (computed via formula (28) and (29))

and the indexed annuity (computed via formula (26)) derived according to the method
of Duffie et al. (2000). We observe that when the correlation between the mortality and
the interest rate grows, all prices increase, in line with Liu et al. (2014). Also in this
setting, the GAO prices computed by the formula based upon the change of measure
(formula (28)) are more precise than the once computed by formula (29), as can be
noticed by the standard deviations of the Monte Carlo estimations.

X12
0 ρ0 GAO with formula(28) GAO with formula (29) Indexed annuity

-0.002 0.4894936 0.2448621 (0.0003981) 0.2451137 (0.0002435) 5.7801950
-0.0015 0.3671202 0.2437137 (0.0004092) 0.2443471 (0.0002408) 5.7729164
-0.0005 0.1223734 0.2436714 (0.0004018) 0.2437706 (0.0002430) 5.7583871

0 0 0.2431196 (0.0004078) 0.2435689 (0.0002410) 5.7511364
0.0005 -0.1223734 0.2424844 (0.0004001) 0.2429534 (0.0002398) 5.7438950
0.0015 -0.3671202 0.2412104 (0.0004056) 0.2420545 (0.0002440) 5.7294398
0.002 -0.4894936 0.2411214 (0.0004041) 0.2417495 (0.0002440) 5.7222261

Table 7: Fair values for the GAO and the indexed annuity in the Wishart specification,
Example 1.

Figure 4: Monte Carlo estimate of the expectation of ρt for different values of X12
0 in

the Wishart specification.

Example 2
In this second experiment, we consider the following Wishart process :

H =

(
−0.5 0.4
0.007 −0.008

)
, Q =

(
0.06 0.0006
0.06 0.006

)
, X0 =

(
0.01 X12

0

X12
0 0.001

)
, β = 3.
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This time the off-diagonal components of the matrix Q are the opposite numbers
of those of Example 1. As previously, we perform the same stability test and in order
to check that the expectation of the rates remain relatively stable despite the changes
of X12

0 . The Monte Carlo estimate of ρt is presented in Figure 5. Table 8 contains the
fair values for the GAO (computed by formula (28) and (29)) and the indexed annuity
(computed by formula (26)).
Contrarily to Example 1, we observe from Table 8 that the price decreases when the
initial correlation between mortality and the interest rate increases; this in contrast of
the results of Liu et al. (2014) in the Gaussian setting. In the next subsection, we will
give evidence that even other behaviors are possible.

X12
0 ρ0 GAO with formula (28) GAO with formula (29) Indexed annuity

-0.002 -0.4894936 0.1994176 (0.0005877) 0.1993275 (0.0003667) 5.2104471
-0.0015 -0.3671202 0.1990714 (0.0005945) 0.1987619 (0.0003767) 5.2045963
-0.0005 -0.1223734 0.1988364 (0.0006011) 0.1986171 (0.0003681) 5.1929144

0 0 0.1984553 (0.0005948) 0.1977835 (0.0003701) 5.1870834
0.0005 0.1223734 0.1984125 (0.0005943) 0.1976614 (0.0003675) 5.1812590
0.0015 0.3671202 0.1982640 (0.0005990) 0.1969242 (0.0003690) 5.1696300
0.002 0.4894936 0.1979702 (0.0005998) 0.1964036 (0.0003824) 5.1638254

Table 8: Fair values for the GAO and the indexed annuity in the Wishart framework,
Example 2.

Figure 5: Monte Carlo estimate of the expectation of ρt for different values of X12
0 in

the Wishart specification.

The results from Table 7 and 8 can be explained in the following way. By looking
at the dynamics of the Wishart process, we see that the positive factors (i.e. X11 and
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X22) will be higher on average when the initial value X12
0 increases. Furthermore, since

rt = r̄ + Tr(RXt) = X11
t µt = µ̄+ Tr(MXt) = X22

t , t ≥ 0, (37)

the exponential terms (which involve the interest rate and the mortality rate) in formula
(28) and (29) decrease when X12

0 increases. Hence, as observed in Table 7 and 8, the
GAO value decreases when X12

0 increases. Similar arguments hold for the indexed
annuity.

5.2.2 Impact of a change in the volatility matrix Q

We now fix the initial value of the Wishart process (i.e. X0) and we vary the off-diagonal
elements of the volatility matrix Q which is chosen to be symmetric in this example.

Example 3
In this experiment, we consider the following parameters for the Wishart process:

H =

(
−0.5 0.4
0.007 −0.008

)
, Q =

(
0.06 Q12

Q12 0.006

)
, X0 =

(
0.01 0.001
0.001 0.001

)
, β = 3.

Table 9 shows that the values of the insurance products are not monotone with
respect to the linear correlation.

Q12 ρ0 GAO with formula (28) GAO with formula (29) Indexed annuity
-0.01 -0.2942210 0.2952542 (0.0008533) 0.2953898 (0.0007196) 6.6586982
-0.006 -0.2447468 0.3385183 (0.0006100) 0.3373131 (0.0005179) 7.0908734
-0.002 -0.1099389 0.3511130 (0.0005080) 0.3512829 (0.0003793) 7.1946104
0.002 0.1099389 0.3296504 (0.0006325) 0.3285171 (0.0004363) 6.9353738
0.006 0.2447468 0.2799801 (0.0008396) 0.2788112 (0.0006115) 6.3815167
0.01 0.2942210 0.2176668 (0.0010351) 0.2159984 (0.0007818) 5.6571110

Table 9: Fair values for the GAO and the indexed annuity in the Wishart specification,
Example 3.

An interpretation of the results of Table 9 can be given by looking at the matrix
Q>Q. We remark that the diagonal components of Q>Q increase with the absolute
value of Q12. Therefore, by looking at the dynamics of the Wishart process (see equa-
tion (22)), we observe that the drift (and in particular the long term value) of its
positive factors (and therefore the drift of the mortality and the interest rate process,
see equation (37)) is an increasing function of the absolute value of Q12. Hence the
positive factors will be higher on average when the absolute value of Q12 increases.
Consequently, we observe that the exponential terms (which involve the interest rate
and the mortality rate) in formula (28) and (29) will decrease when the value of Q12

is moving away from zero and therefore the GAO value will also decrease. A similar
argument holds for the indexed annuity.
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6 Conclusion

In this paper, we have investigated the influence on pricing of the dependence structure
between mortality and interest rates. Indeed, we have assumed that mortality and
interest rates are driven by systematic and idiosyncratic factors, modeled by affine
models which remain positive such as the multi-CIR and the Wishart models. In line
with Liu et al. (2014), we applied a change of probability measure with the SZCB as
numéraire to the valuation of a GAO and an indexed annuity. The interest of this change
of probability measure is that it leads to rather simple formulas for the prices of the
insurance products. We observed that for an advanced affine model (such as the Wishart
one) that allows to reproduce a non-trivial dependence between the mortality and the
interest rates, the values of a GAO or an indexed annuity cannot be explained only in
terms of the initial pairwise linear correlation. This fact has important consequences
on risk management in the presence of an unknown dependence.

It is clear that the dependence between mortality and interest rates has an impor-
tant implication on the pricing of insurance products and that several behaviors are
possible, depending on the model being used. The Wishart model seems to be the most
flexible model (amongs those considered) producing the richest structure of dependence.
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A Affine specification: a unified approach

In this section we recall some background on affine processes. We will follow the uni-
fied approach as presented in Keller-Ressel and Mayerhofer (2015). Consider a time-
homogeneous affine Markov process X taking values in a non-empty convex subset E
of Rd (d ≥ 1), endowed with the inner product 〈·, ·〉. The Markov process X is affine if
it is stochastically continuous and its characteristic function has exponential-affine de-
pendence on the initial state, i.e. there exist some deterministic functions φ̃u : R+ → C
and ψ̃u : R+ → Cd such that the semigroup P acts as follows:∫

E

e〈u,w〉Pt(x, dw) = eφ̃u(t)+〈ψ̃u(t),x〉
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for all t ≥ 0, x ∈ E and u ∈ iRd. It can be shown (see e.g. Cuchiero et al. (2011)) that
the process X is a semimartingale with characteristics

At =

∫ t

0

a(Xs−)ds,

Bt =

∫ t

0

b(Xs−)ds,

ν(ω, dt, dξ) = K(Xt−(ω), dξ)dt,

with a(x), b(x), K(x, dξ) affine functions:

a(x) = a+ x1α
1 + ...+ xdα

d,

b(x) = b+ x1β
1 + ...+ xdβ

d, (38)

K(x, dξ) = m(dξ) + x1µ
1(dξ) + ...+ xdµ

d(dξ),

where a(x) (the diffusion coefficient) is a positive semidefinite d × d matrix, a and αi

are d × d matrices, b(x) (the vector of the drift), b and βi are Rd-vectors, K(x, dξ),
m(dξ) and µi(dξ) are Radon measures on Rd and K(x, dξ) is associated to the affine
jump part and it is such that∫

Rd

(
‖ξ‖2 ∧ 1

)
K(x, dξ) <∞

The deterministic functions φ̃u(t), ψ̃u(t) solve the generalized Riccati equations

∂

∂t
φ̃u(t) =

1

2
〈ψ̃u(t), aψ̃u(t)〉+ 〈b, ψ̃u(t)〉+

∫
Rd\{0}

(
e−〈ξ,ψ̃u(t)〉 − 1− 〈h(ξ), ψ̃u(t)〉

)
m(dξ),

φ̃u(0) = 0,

and for all i = 1, ..., d :

∂

∂t
ψ̃iu(t) =

1

2
〈ψ̃u(t), αiψ̃u(t)〉+ 〈βi, ψ̃u(t)〉+

∫
Rd\{0}

(
e−〈ξ,ψ̃u(t)〉 − 1− 〈h(ξ), ψ̃u(t)〉

)
µi(dξ),

ψ̃u(0) = u,

where h(ξ) = 1{‖ξ‖≤1}ξ is a truncation function.

It is useful to consider the process (X, Y γ) := (X,
∫ ·

0
〈γ,Xu〉du) which is an affine

process with state space E × R starting from (X0, 0). We now recall an interesting
lemma.

Lemma 1. Let P̃ γ be the semigroup of the process (X, Y γ). Then we have for every
u ∈ iRd and v ∈ iR∫

E×R
e〈u,w〉+vzP̃ γ

t ((x, y), (dw, dz)) = eΦ(u,v)(t,γ)+〈Ψ(u,v)(t,γ),x〉+vy,
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where the functions Φ(u,v)(·, γ) and Ψ(u,v)(·, γ) satisfy the following system of generalized
Riccati ODEs

∂

∂t
Φ(u,v)(t, γ) =

1

2
〈Ψ(u,v)(t, γ), aΨ(u,v)(t, γ)〉+ 〈b,Ψ(u,v)(t, γ)〉

+

∫
Rd\{0}

(
e−〈ξ,Ψ(u,v)(t,γ)〉 − 1− 〈h(ξ),Ψ(u,v)(t, γ)〉

)
m(dξ), (39)

Φ(u,v)(0, γ) = 0,

and for i = 1, ..., d

∂

∂t
Ψi

(u,v)(t, γ) = vγi +
1

2
〈Ψ(u,v)(t, γ), αiΨ(u,v)(t, γ)〉+ 〈βi,Ψ(u,v)(t, γ)〉

+

∫
Rd\{0}

(
e−〈ξ,Ψ(u,v)(t,γ)〉 − 1− 〈h(ξ),Ψ(u,v)(t, γ)〉

)
µi(dξ), (40)

Ψ(u,v)(0, γ) = u.

Proof. Standard, see e.g. Grasselli and Miglietta (2016).

B Noncentral Wishart distribution

Here we recall a result on noncentral Wishart distributions.

Theorem 1 (Theorem 3.5.1 in Gupta and Nagar (1999)). Let X ∼ Np,n(M,Σ ⊗ In),
n ≥ p, then S = XX> is said to have a noncentral Wishart distribution with parameters
p, n, Σ > 0 and Θ, written as S ∼ Wp(n,Σ,Θ), where Θ = Σ−1MM>.

The matrix Θ is called the noncentrality parameter matrix. According to Gupta
and Nagar (1999) [Theorem 3.5.7], the expectation of S is given by

E[S] = nΣ +MM>.
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