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� Introduction

Over the last years� the hedging of random variables within an incomplete
�nancial framework is a crucial topic in Finance and Insurance� In Finance�
there are some famous papers devoted to the hedging of a risky position �see
e�g� the references� More recently in Insurance� a debate has been started
in France about the possible creation of pension funds and about the ways
to use the �nancial markets to hedge the risks associated with the retirement
problem� In this paper� we concentrate on the private values of the risks to
be hedged �which means the value that an agent is willing to pay in order to
remove the risk and we provide a theoretical contribution by showing how
to obtain bounds on them�

There are several ways to associate prices to random variables which are
not priced by the �nancial market� the more popular ones are quadratic
hedging and super�replication�

Quadratic hedging is introduced by F�llmer and Sondermann ����� and
extended by F�llmer and Schweizer ������ Schweizer ���������	 and Du�e
and Richardson ������ Under the quadratic hedging approach� the price of
any random variable is put equal to the L��projection on the space of the
random variables priced by the �nancial market� This approach is very prac�
tical since it provides a unique price which can be easily computed by using
the theory of square�integrable random variables� Nevertheless� this method
has an important weakness since the part of the random variable which is
orthogonal to the space of the random variables priced by the �nancial mar�
ket� is valorized by zero and this part �also called tracking error in literature
is precisely the risk that cannot be replicated by the �nancial markets�

Super�replication �see e�g� El Karoui and Quenez ���
 proposes an in�
terval of prices which contains the price of the random variable to be hedged�
This interval is determined by an upper and lower bound which are de�ned
as the in�mum �resp� supremum of the prices of the random variables priced
by the �nancial market that dominate �resp� are dominated by the random
variable to hedge almost surely� Unfortunately� this approach leads to very
large intervals �see e�g� Soner� Shreve and Cvitanic ���
�

Another method to determine prices in an incomplete framework is in�
troduced by Hodges and Neuberger ������ continued by Davis� Panas and
Zariphopoulou ������ Under this approach� the price of the random variable
to be hedged� is valorized as the private value of the agent� Therefore� the
proposed price depends on the characteristics of the agent and especially on

	



its utility function� which is very hard to model in practice�
In this paper� we show how to determine bounds on the private value of

any random variable which do not depend on the characteristics of the agents�
The bounds are only depending on the characteristics of the �nancial market
on one hand� and on the random variable to be hedged on the other hand�
We prove that our bounds are strictly improving the bounds provided by
super�replication�

We obtain those bounds by using a stochastic dominance approach� Stochas�
tic dominance has been used by Levy ����
 in order to �nd bounds on the
prices of European options� but he needed a strong restriction on the �nancial
portfolios of the agents� In our paper� we do not need such quite unrealistic
hypotheses� but our approach uses a slightly stronger criterion in comparison
with the second stochastic dominance criterion used by Levy ����
�

The paper is organized as follows� in section 	� we introduce the frame�
work and the general notion of hedging induced by conditional dominance�
Section � is devoted to the study of upper and lower bounds on the private
values of any random variable� and this by using conditional dominance� We
prove that the interval we obtain� is included in the interval given by the
super�replication approach� Some examples of the conditional dominance
upper bound are computed in section �� namely for the case of log�normal
and multinomial random variables� These bounds are compared with the
ones determined by super�replication� In section 
� we consider a dynamic
version of the conditional dominance� Section � concludes the paper�

� Framework and Notations

Throughout the paper� we work on a probability space ���F � P �� The infor�
mation structure is described by a �ltration F � �Ft�t�� satisfying the usual
conditions� It is assumed that F is generated by a d�dimensional Markovian
process G� The state of the world at date t is then characterized by Gt�

��� The �nancial market

We assume the existence of a �nancial market with two assets� a riskless
asset� with a constant rate of return taken equal to zero for the ease of
exposition� and a risky asset whose price at time t is denoted by St� an Ft

measurable random variable� In the following� we assume that the �nancial
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market is able to supply any quantity of the two assets� that the price of
any portfolio is obtained linearly from the unitary prices and that there are
no transaction costs� We consider an agent who can trade at discrete dates
T � f�� �� ��� T � �g� where T � N is his time�horizon� This agent is endowed
by an initial wealth x � R and a Von Neumann�Morgenstern utility function
u which is strictly concave and strictly increasing� The problem of the agent
is to hedge and price the random variable Y � L����FT � P ��

We de�ne a �nancial strategy as a random process f�tg��t�T��� where the
Ft measurable random variable �t denotes the number of units of the risky
asset chosen at date t� We denote by � the set of the �nancial strategies� A
random variable X � L����FT � P � is attainable at date T if there exist a
real number x and a �nancial strategy f�tg��t�T�� such that

X � x �

T��X
t��

�t�St�� � St�� ��

Remark that x in this notation is the initial amount to invest and by no�
arbitrage arguments� this is exactly the price of X� In the sequel� we need to
consider the function which maps the attainable contingent claims into the
line of real numbers� by associating its price to the random variable� This
function is denoted by V ��� and using the notations of ��� V �X� � x� We
denote by AT � L����FT � P � the subset of the random variables attainable
at date T �

The optimization program of the agent is then

max
X�AT

Eu �X � Y � �	

under the constraint that the price of X equals a �xed amount x� We denote
by J �x� Y � the optimal value of Eu �X � Y � when the initial wealth is equal
to x�

The hedging price of the random variable Y is the real number � �Y � such
that J �x� Y � � J �x � � �Y � � ��

The meaning of this de�nition is that �� �Y � is the amount of money that
the agent is willing to pay in order to remove the risk Y � It is adapted from
the notion of certainty equivalent of one risk in the presence of others risks
�see Pratt ������ This de�nition is not easy to manage� because it depends
on the characteristics of the agent� and especially on the utility function u
which cannot be estimated easily in practice� However� if Y � AT � it is well�
known that � �Y � � V �Y �� see e�g� Davis� Panas and Zariphopoulou ������
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In this way� the hedging price is an extension �depending on the agent of V
to the set L����FT � P ��

��� Conditional dominance

In this subsection� we de�ne conditional dominance and link this concept to
�rst and second stochastic dominances and to P � a�e� dominance�

Let �X� Y � � L����F � P �� L����F � P �� We say that

� X dominates Y in the sense of conditional dominance� and we denote
X �CD Y � if and only if there exists a random variable � such that
Y � X � � P � a�e and E �� j X� � � P � a�e�

� X dominates Y in the sense of �rst stochastic dominance� and we de�
note X �FSD Y � if and only if there exists X � � L����F � P � such that
X and X � are identically distributed and X � � Y P � a�e�

� X dominates Y in the sense of second stochastic dominance� and we
denote X �SSD Y � if and only if there exists Y � � L����F � P � such
that Y and Y � are identically distributed and X �CD Y ��

First and second stochastic dominances are de�ned and discussed for in�
stance in Huang and Litzenberger ����� or Levy ����	� while their use
in insurance is shown e�g� in Goovaerts et al� ������ By de�nition� condi�
tional dominance is a reinforcement of the second stochastic dominance� The
following Lemma is obvious and the proof is omitted�

For any �X� Y � � L����F � P �� L����F � P ��
�i X � Y P � a�e implies X �FSD Y
�ii X � Y P � a�e implies X �CD Y
�iii X �FSD Y implies X �SSD Y
�iv X �CD Y implies X �SSD Y
�v X �FSD Y does not imply necessarily X �CD Y
�vi X �CD Y does not imply necessarily X �FSD Y
The next Lemma provides an equivalent characterization of the CD�

dominance�
Let �X� Y � � L����F � P �� L����F � P �� Then

X �CD Y ifandonlyif E �Y j X� � X P � a�e� ��






�If� part� Let us de�ne � 	� Y � X� Then Y � X � � P � a�e and
E �� j X� � E �Y �X j X� � E �Y j X��X � � P � a�e�

�Only If� part� Y � X � � P � a�e and E �� j X� � � P � a�e� then
E �� j X� � E �Y �X j X� � E �Y j X��X � � P � a�e�

� Static pricing

In section � and �� we consider only two dates� the initial date � and the
time�horizon T � �� Transactions are allowed at date � only and the number
of units of the risky asset chosen at date � is denoted by ��� A contingent
claim attainable at date � is then a random variable X � L����F�� P � such
that�

	 �x� ��� � R � R� X � x � ���S� � S��� ��

Our aim is to use conditional dominance in order to obtain an upper bound
for the hedging price of any variable Y � L����F�� P �� which should be more
accurate than the one obtained by the P �a�e� dominance� namely the usual
super�replication cost�

Let Y � L����F�� P �� We de�ne�
Pae�Y � 	� inffV �X�� X � A� and X � Y P � a�e�g
PCD�Y � 	� inffV �X�� X � A� and X �CD Y g
with the convention inf f
g � ���
The quantity Pae�Y � is known in the literature as the super�replication

cost of Y � Thanks to Lemma �� we get easily Pae�Y � � PCD�Y ��
Note that one could de�ne PFSD and PSSD in an analoguous way� How�

ever� it is very easy to construct an equilibrium where V �X� � PFSD�X�
�and consequently V �X� � PSSD�X� for some X � A�� This is not in con�
tradiction with the de�nition of the stochastic dominance� It implies only
that it is not optimal for all the agents present on the market to buy X only�
Then� it is hopeless to use PFSD and PSSD in order to obtain upper bounds
on the hedging price�

In order to give an example of an equilibrium with V �X� � PFSD�X��
let us consider the simple case that � is �nite and that all possible states
of the world have the same probability� � � f��� ��� �ng� P ��i� � ��n for
i � �� ���� n� Let for all i � �� ���� n� Xi denote the Arrow�Debreu contingent
claim associated to the state �

i
�which means that Xi pays � unit if the state

of the world tomorrow is �
i
and � elsewhere�
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Assume that for all i � �� ���� n� Xi � A� and that the price at date � of
Xi equals xi� An immediate computation shows that for all i � �� ���� n

inffV �X�� X � A�� X �FSD Xig � � � i � ninf fxig �

which is a quantity independent of i� Let us now consider when V �X� �
inffV �Y �� Y � A�� Y �FSD Xg for all X� Since V �Xi� � xi� we must have
in any case that V �Xi� � xi � � � i � ninf fxig� The fact that all states
have the same probability implies then that all xi should be equal�

In conlusion� in order to have V �X� � inffV �Y �� Y � A�� Y �FSD Xg
for all X� all Arrow�Debreu state prices should be equal� which is of course
not satis�ed in all equilibria�

The following Proposition establishes the relationship between condi�
tional dominance and the hedging price�

Let X � x � ���S� � S�� � A� such that �� �� � and X �CD Y � Then
V �X� � � �Y ��

Suppose V �X� 	 � �Y �� Let X� be the optimal contingent claim chosen

by the agent a in the presence of the risk Y and bX the optimal contingent
claim chosen by the agent a when the risk Y is not present� By the de�nition
of � �Y �� we must have

Eu
� bX� � Eu �X� � Y � andV

� bX� � V �X�� � � �Y �

SinceX � x����S��S��� �� �� �� we get E �X��Y j X��X� � E �X��Y j X�
�because that the 
�algebra generated by X� � X coincides with the one
generated by X for �� �� �� Therefore� X �CD Y leads to X� � X �CD

X� � Y � This implies X� �X �SSD X� � Y which provides Eu �X� �X� �
Eu �X� � Y �� But V �X� �X� � V �X�� � V �X� 	 V �X�� � � �Y � �

V
� bX�� This contradicts the optimality of bX�

The last Proposition leads us to the construction of our upper bound�
Since it requires that X � x � ���S� � S�� with �� �� �� we must introduce
another pricing functional P �

CD� which is a slight modi�cation of the natural
candidate PCD� First we exclude

fX � x � ���S� � S��� �� � �andX �CD Y g

from the set on which the in�mum is taken� Afterwards� since it is easily
checked that X � A� and X � Y P � a�e� implies V �X� � � �Y �� we can
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improve the accuracy of the upper bound by adding

fX � x� ���S� � S��� �� � �andX � Y P � a�e�g

Finally� we propose the following de�nition�
Let Y � L����F�� P �� We de�ne�

P �
CD�Y � 	� inffV �X�� X � x � ���S� � S��and

if�� �� ��X �CD Y
if�� � ��X � Y P � a�e�g

As an immediate consequence of the last Proposition� we get�

forallY � L����F�� P ��Pae �Y � � P �
CD�Y � � � �Y � �

This result yields to an upper bound for the hedging price � �Y � which de�
pends only on Y and not on the other characteristics of the agent a� More�
over� it is lower than the super�replication cost� Before comparing the two
bounds on some examples in the next section� we deal with the obtention of
a lower bound�

Following the literature on pricing functionals� it would be natural to
de�ne the lower bound as the supremum of the contingent claims� values
dominated by Y in the CD sense� However� this notion is not suited here
because for a non attainable Y � Y �CD X does not implyX ��Y �CD X ��X
for any X � � AT � since the 
�algebra generated by Y does not necessarly
equal the one generated by X � � Y � This point shows that the lines of the
proof of Proposition � cannot be followed in case of the lower bound�

When the hedging price is sublinear� we can nevertheless propose a lower
bound� Sublinearity of the pricing functionals is often assumed in the liter�
ature as an axiom� see e�g� the discussion in Jouini ������

Assume that Y� Y � � L����F�� P �� � �Y � Y �� � � �Y � � � �Y ��� De�ne
Q�
CD �Y � � �P �

CD ��Y �� and Qae�Y � � supfV �X�� X � A� and Y � X
P � a�eg� Then � �Y � � Q�

CD �Y � � Qae�Y ��
From the de�nition of the hedging price� we obviously have � ��� �

�� Then� sublinearity implies Y � L����F�� P �� � �Y � � �� ��Y �� and
� �Y � � Q�

CD �Y � holds� thanks to Proposition �� The second part of the
inequality comes again from Proposition �� since Qae�Y � � �Pae ��Y ��
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� Examples

��� The log�normal case

In this subsection we investigate the special case where S� � S� exp�
W � and

Y � Y� exp��Z� with S�� Y�� 
 and � in R
� and �W�Z� � N�

��
�
�

�
�

�
� �
� �

��
�

This example will be useful in the dynamic case� where we will illustrate our
general results by studying the hedging in discrete time of a geometric Brow�
nian motion when the hedging variable is a geometric Brownian motion too�
The following Proposition compares the values of the upper bounds Pae�Y �
and P �

CD�Y ��
If � � � or if �� � � and �

��
� ���

then P �
CD�Y � � Y� exp

�
��������

�

�
and else P �

CD�Y � � ���

If �� � � and 
 � ��� then Pae�Y � � Y� and else Pae�Y � � ���
The bound given by the super�replication approach is thus strictly im�

proved when the hedging variable is positively correlated with and more
volatile than the random variable to hedge�

� First� it is easily checked that Pae�Y � � Y� for �� � � and 
 � �� and
that Pae�Y � � �� elsewhere since the support of a log�normal random
variable is 
������ For the same reason� it is not possible to �nd a
constant x such that x � Y P � a�e�� and therefore

P �
CD�Y � � inf

��
fx � R 	 	�� � Rnf�gsuchthatx� ���S� � S�� �CD Y g�

� It is well�known that if X and Y are two random variables such that

�lnX� lnY � � N�

��
m�

m�

�
�

�

� e�e� 
�

��
� then�

E 
Y j X� � X
e���
�� expf

�

�

����� e��� �m� � e�m�


�

�
g P�a�e�

Let us now take X of the form X � x����S��S��� with �� �� �� Then�

E 
Y j X � w� � E 
Y j S� � S� �
w � x

��
� �

�


�� �

w � x

S���
��

�
�

�



with �
�
� Y� exp

�
��������

�

�
� �� From Lemma � we have that X �CD

Y if and only if E 
Y j X� � X P � a�e� This provides�

X �CD Y � �� �
w � x

S���
��

�
� � w� w � ImX���� �


� Let us �rst study the case that � � �� Then

X �CD Y � Y� exp

�
��

�

�
� x� ���S� � S�� P � a�e� ��

Therefore� we determine �� such that the in�mum of

fx � R 	 	�� � R
�suchthatY� exp

�
��

�

�
� x � ���S� � S�� P � a�e�g

is obtained� It is clear that we can exclude the case �� 	 � since the
support of S� is 
������ Thus� we look for the in�mum of x such that

there exists a �� � � such that x � Y� exp
�
��

�

�
� ��S�� Therefore� in

this case

P �
CD�Y � � Y� exp

�
��

�

�
� ��

� Let us now turn to the general case of � �� �� In order to �nd �� that
minimizes fx � R 	 	�� � R

� such that x � ���S� � S�� �CD Y g� we
exclude again the case �� 	 �� Indeed� if �� 	 �� then ImX��� � fw 	
� � w�x

S���
� �g � ���� x� S����� and the inequality �
 becomes�

w � ���� x� S�����

�
� �

w � x

S���

��
�
�

� w

The left�hand side of the inequality term is always positive� and the
right�hand side is negative for w � �� so there are no solutions�

We further concentrate on the case �� � �� Then ImX��� � fw such
that � � w�x

S���
� �g � �x � S�������� Notice that for �� such that

x� S��� 	 �� the inequality �
 becomes�

w � �x� S��������

�
� �

w � x

S���

��
�
�

� w

��



But the left�hand side of this inequality is positive for w � x � S����
whereas the right�hand side is negative for w � �x�S���� ��� Therefore
we just need to consider �� such that x � S��� � �� i�e� �� must lie in

the interval
�
�� x

S�

i
� Let us denote � 	� �

��
� k 	� ��� and � 	� S����

We �rst consider the case where � is negative�

� Case � 	 �� X �CD Y is equivalent to � � w�x
�
� w�k� The left�hand

side of the inequality tends to zero when w tends to �x���� whereas the
right�hand side tends to a positive value� Then� there are no solutions
in that case�

� Case � � �� X �CD Y is equivalent to w � �x � ������ ��w� � ��
where the function � ��� is de�ned as follows� � �w� 	� �kw��w�x���

� If � 	 �� there are no solutions as ����� � ���

� If � � �� w � �x������� ��w� � � on �x������ is equivalent
to ��x � �� � � and �k � � � �� We have then two conditions�
� � �

k
and � � ��� x�� so the in�mum of x is obtained at �

k
and

P �
CD�Y � � �

k
� Y� exp

�
��������

�

�
�

� If � � �� we need to study more precisely the behaviour of the
function ���� on �x� ������ It is easily checked that�

����� � ��
��x� �� � �k�x� ��� � �

���w� � �� w � � �
�k�

�
�

���

Then ��w� � � w � �x � ����� if and only if w � x � �
and ��w� � �� But ��w� � � is equivalent to x � � � w ���

�
�

Therefore� our requirements are equivalent to w ���
�
� x� � � w�

Setting � � ���
�
� �
�k
�

�

��� � � and � � �
���

� �� we get ��w� �
����� � x � �� We consider this last expression as a function
of �� f��� 	� ����� � x � �� Since we have� f��� � �� and
f�x� � ��x�� 	 �� there exists a � � ��� x� such that f��� � �
only if there exists a � � ��� x� such that f ���� � � and f��� � ��

As f ���� � � at � � � �
��
��

�

��� � it turns out that

f��� � x� �
�

��
��

�

��� 
� �
�

�
� � �

��



if and only if

x � �
�

��
��

�

��� 
� �
�

�
��

And then� the minimal x such that f��� remains positive is the
upper bound given by�

P �
CD�Y � � �� � ����

�
����

�

��� �
�



which provides the announced result�

The proof of this proposition tells us that in order to hedge a risk Y in a
static way� we have to invest

� � �
�

��
��

�

��� �
��



Y� exp

�
�� ��� ���

�

�
��

in the risky asset if �
��
� �� thus if there is a positive correlation between the

risk Y and the risky asset S�and if 
 � �� In the non�correlated case� the
total investment should be done in the riskless asset� i�e� � � ��

��� The �nite state case

The aim of this section is to show that the CD criterion may strictly improve
the upper bound given by the super�replication approach in a case where �
is �nite� As a simple example� let us consider the case where there are n � 
possible future states of the world� but where the risky �nancial asset can
take only two values� u and d�

Formally� let n � � � � f��� ��� �ng� pi � P ��i� � � and consider the
risky asset with S� � �� S���i� � u � �� i � �� ��� n� 	 n� and S���i� � d 	 ��
i � n���� ��� n� Let Y be the risky to be hedged� with Y ��i� �� Y ��j��  i �� j�

In order to compute the super�replication upper bound Pae�Y � we can
�nd the set � of equivalent martingale measures and notice that Pae�Y � is
also given �see e�g� El Karoui and Quenez ���
 by

Pae�Y � � ess sup
	��

E
	 �Y �� ��

By no arbitrage arguments it is easy to check that the set � is character�
ized by the following conditions�

�	



� � f� � ��� ��n 	
nX
i��

�i � ��
n�X
i��

�i �
�� d

u� d
�

nX
i�n���

�i �
u� �

u� d
g� ���

so that Pae�Y � is given by

Pae�Y � �
�� d

u� d
maxfy�� ��� yn�g�

u� �

u� d
maxfyn���� ��� yng� ���

where yi � Y ��i�� i � �� ��� n�
Let us now turn our attention to the upper bound given by the CD

criterion�
From �� and the de�nition of St and Y we obtain

x� ���S� � S�� �CD Y ��

�
y�p��

�yn�pn�

p��

�pn�
� x� ���u� ��

yn���pn����

�ynyn
pn����

�pn

� x� ���d� ��

��

�
x � yu � ���u� ��
x � yd � ����� d��

where yu �
Pn�

i���
yipiPn�
j�� pj

� and yd �
Pn

i�n���
� yipiPn

j�n���
pj
��

Now� by de�nition� PCD�Y � � inffx � R 	 	�� � R
� such that x����S��

S�� �CD Y g �maxfy�� ���� yng and the in�mum is obtained with

��� �
�

u� d
�yu � yd�� ��	

P �
CD�Y � � x� �

�� d

u� d
yu �

u� �

u� d
yd�

since maxfy�� ��� yn�g �
Pn�

i���
maxfy��

�yn�gpiPn�

j�� pj
� �

Pn�
i���

yipiPn�
j�� pj

� � yu and anal�

ogously maxfyn���� ��� yng � yd�
This leads also to the conclusion that P �

CD�Y � is strictly lower than
Pae�Y ��

Notice that the crucial point in our example is that the number of all
possible values that can be obtained by S� is smaller than the number of
all possible values obtained by Y � otherwise the CD upper bound coincides
with the super�replication one�

��



� Dynamic pricing

��� The general result

In this section we come back to the general dynamic model presented in
section 	� We show how to use the CD criterion in order to obtain an
upper bound for the hedging price when dynamic strategies are allowed�
This upper bound is constructed by using recursively the reasoning made
in the static framework� For intuition� let us consider the case that � is
�nite� in which we can describe the informational structure by a tree� We
then introduce repeatly a static price functional between dates t and t � �
which is a straightforward generalization of the static price functional P �

CD of
de�nition �� but started from the node which is attained at date t� Thus we
apply the functionals conditional to the information until then� In a general
markovian setting we describe the history until time t by the state variable
Gt �see section 	� and we introduce the following notations�

For k � R
d � we denote by �t �k� 	� f� � �suchthatGt ��� � kg� Let Lt

be the space of the integrable random variables which are measurable w�r�t�
Ft� For A � Lt and k � Im �Gt�� we denote by Aj�t�k	 the restriction of A
to �t �k��

For any t � T � U � Lt��� we de�ne the static price functional between
dates t and t � � P �t�t��

CD �U� � Lt as follows�

P �t�t��
CD �U� ��� � inff x � R		�t � Rsuchthat

if�t �� ��
x � �t�St�� � St��j�t�Gt��		 �CD Uj�t�Gt��		

if�t � ��x � Uj�t�Gt��		P � a�e�g

Notice that P �t�t��
CD ��� maps Lt�� into Lt� Using the static price function�

als� we now turn to a dynamical quantity by backward reasoning�
Let Y � LT and de�ne P �Dyn

CD �Y � � R as follows�

P �Dyn
CD �Y � 	� P ����

CD �P ����
CD ����P �T���T��

CD �P �T���T
CD �Y ������� ���

In the following proposition� we prove that the dynamical conditional
dominance quantity P �Dyn

CD �Y � is an upper bound of the hedging price of
Y � LT � Moreover� it is easy to check that P �Dyn

CD �Y � is lower than the upper
bound given by the super�replication approach� The proof of this result is

��



left to the reader� the arguments are similar to the ones used in the static
case�

 Y � LT � P
�Dyn
CD �Y � � � �Y ��

First� for any t � T and U � Lt�� let us de�ne �t�t���U� � Lt as follows�

max
�t��t���

��T��

E

�
u

�
x �

T��X
t��

�t�St�� � St� � U

	
jFt




� max
�t��t���

��T��

E

�
u

�
x �

T��X
t��

�t�St�� � St� � �t�t���U�

	
jFt



����

Notice that �t�t�� ��� maps Lt�� into Lt� Thanks to Proposition �� we get�

U � Lt���P
�t�t��
CD �U� � �t�t�� �U� P � a�e�

Using this inequality recursively yields�

P �Dyn
CD �Y � � P ����

CD �P ����
CD ����P �T���T��

CD �P �T���T
CD �Y ������

� P ����
CD �P ����

CD ����P �T���T��
CD ��T���T �Y ������

� ���������T���T����T���T �Y �������

By the dynamic programming principle� we obtain forX � x�
PT��

t�� �t�St���
St��

max
������

��T��

Eu �X � Y � � max
������

��T��

E 
 max
�T��

E 
u �X � Y � j FT����

� max
������

��T��

E 
 max
�T��

E 
u �X � �T���T �Y �� j FT����

� max
������

��T��

E max
�T�� ��T��

E 
u �X � �T���T����T���T �Y ��� j FT���

� max
������

��T��

Eu �X � ���������T���T����T���T �Y ������� �

Since by de�nition

max
������

��T��

Eu �X � Y � � max
������

��T��

Eu �X � ��Y �� �

we conclude that ���������T���T����T���T �Y ������ � � �Y � and the proof is
complete�

�




��� Discrete�time hedging of a geometric Brownian mo�

tion

In this subsection we apply the dynamic pricing rule given by ��� to the
case where �St�t�� and Y � �Yt�t�� are two correlated geometric Brownian
motions� The problem is to use the �nancial market in order to hedge YT �

For an economic interpretation� let us consider a model with two agents�
the employer and the employee� The employee works between dates � and
T for the employer and receives a wage process �eYt���t�T � This process is
adapted w�r�t� the �ltration F � but cannot be expressed in general as a linear
combination of the �nancial assets� At his retirement date T � the employee
receives also a �xed amount YT which is in fact a de�ned pension paid out
at once at the date T � As the pension usually depends on the wage history
at a �xed percentage �� the problem of the employer� who has the charge of
paying the contributions� is to hedge YT � � eYT by using the �nancial market�

Therefore� we consider a continuous time framework� where the �ltration
F � �Ft�t�� is assumed to be generated by the two�dimensional standard
brownian motion �Gt�t�� � �Wt�W t�t��� and where transactions are allowed
only at discrete dates T � f�� �� ��� T � �g� T � N � The processes �St�t��
and �Yt�t�� are assumed to evolve stochastically according to the following
stochastic di�erential equations�

dSt � �Stdt� 
StdWt� ��


dYt � �Ytdt� �Yt��dWt �
p

�� ��dW t� � �Ytdt� �YtdZt�

with ��� 
�� ��� �� � R�R
� and where �Zt�t�� is a standard brownian motion

with 	 Wt� Zt �� �t�
If 
 � � and � � �� then P �Dyn

CD �YT � � P �
CD�YT � � Y� exp
T �� �

����

�
�

� �
�
��� ��

�
����

From ��
 it results that for any t � T � St and Yt are distributed as	

St
d
� St�� exp���


�

�
� 
W�� and Yt

d
� Yt�� exp���

��

�
� �Z��

with �W�� Z�� � N�

��
�
�

�
�

�
� �
� �

��
�

Applying Proposition � to the case of the Ft�measurable random variable
Yt� we obtain

��



P �t���t
CD �Yt� � Yt�� exp
��

����

�
� �

�



���


�

�
��� ���

which� by a recursive argument� gives the result�
The assumption 
 � � is equivalent to say that the process �St�t�� of the

�nancial market is more volatile than the process �Yt�t�� to be hedged� a very
natural requirement� Notice that� if 
 	 �� or � 	 � from Proposition � we
get P �Dyn

CD �YT � � ��� and our approach is equivalent to the super�replication
one� The hedging strategy

�
�t
�
��t�T��

obtained in the last Proposition

depends on the process �Yt�t��� Indeed� we have�

�t �
��



Yt exp
��

����

�
� �

�



���


�

�
��� ���

At last� it is very simple to generalize our approach to the case where one
wants to hedge a discrete random process �Yt�t�f��

�Tg instead of a single
amount YT � This case is analogous� it is enough to replace ��� by�

P �Dyn
CD ��Yt�t�f��

�Tg� 	� P ����

CD �Y��P
����
CD ����YT���P

�T���T��
CD �YT���P

�T���T
CD �YT �������

� Conclusion

In an incomplete market setting� the pricing and hedging of risky positions
is a di�cult problem� Using super�replication� one obtains intervals for the
hedging price of a risk� but these intervals turn out to be too large in general
to be used in practice�

In order to determine tighter intervals� we have de�ned conditional domi�
nance� which can be related with �rst and second order stochastic dominance�
We have proved that we indeed obtain upper and lower bounds for the hedg�
ing price which are compatible with the equilibrium�

In some cases the use of conditional dominance improves the super�
replication approach in a signi�cant way� For example� in the case of log�
normal random variables �which is an interesting case for pension funds�
the super�replication yields �� on upper bound� whereas our calculations
result in explicit formulae� We have also provided an example in case of
multinomial variables�

In the �rst part of this paper we have concentrated on a static situation
with only two dates of interest� an initial date and a time horizon� Af�
terwards� we turned our attention to a generalization of this approach to a

��



dynamic model by backward optimization� In case of geometric Brownian
motion� the dynamical upper bound has been derived� This example has
been motivated by an economical interpretation in pension funds�
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