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1 Introduction

Over the last years, the hedging of random variables within an incomplete
financial framework is a crucial topic in Finance and Insurance. In Finance,
there are some famous papers devoted to the hedging of a risky position (see
e.g. the references). More recently in Insurance, a debate has been started
in France about the possible creation of pension funds and about the ways
to use the financial markets to hedge the risks associated with the retirement
problem. In this paper, we concentrate on the private values of the risks to
be hedged (which means the value that an agent is willing to pay in order to
remove the risk) and we provide a theoretical contribution by showing how
to obtain bounds on them.

There are several ways to associate prices to random variables which are
not priced by the financial market; the more popular ones are quadratic
hedging and super-replication.

Quadratic hedging is introduced by Follmer and Sondermann (1986) and
extended by Follmer and Schweizer (1991), Schweizer (1991,1992) and Duffie
and Richardson (1991). Under the quadratic hedging approach, the price of
any random variable is put equal to the L?-projection on the space of the
random variables priced by the financial market. This approach is very prac-
tical since it provides a unique price which can be easily computed by using
the theory of square-integrable random variables. Nevertheless, this method
has an important weakness since the part of the random variable which is
orthogonal to the space of the random variables priced by the financial mar-
ket, is valorized by zero and this part (also called tracking error in literature)
is precisely the risk that cannot be replicated by the financial markets.

Super-replication (see e.g. El Karoui and Quenez 1995) proposes an in-
terval of prices which contains the price of the random variable to be hedged.
This interval is determined by an upper and lower bound which are defined
as the infimum (resp. supremum) of the prices of the random variables priced
by the financial market that dominate (resp. are dominated by) the random
variable to hedge almost surely. Unfortunately, this approach leads to very
large intervals (see e.g. Soner, Shreve and Cvitanic 1995).

Another method to determine prices in an incomplete framework is in-
troduced by Hodges and Neuberger (1989), continued by Davis, Panas and
Zariphopoulou (1993). Under this approach, the price of the random variable
to be hedged, is valorized as the private value of the agent. Therefore, the
proposed price depends on the characteristics of the agent and especially on



its utility function, which is very hard to model in practice.

In this paper, we show how to determine bounds on the private value of
any random variable which do not depend on the characteristics of the agents.
The bounds are only depending on the characteristics of the financial market
on one hand, and on the random variable to be hedged on the other hand.
We prove that our bounds are strictly improving the bounds provided by
super-replication.

We obtain those bounds by using a stochastic dominance approach. Stochas-
tic dominance has been used by Levy (1985) in order to find bounds on the
prices of European options, but he needed a strong restriction on the financial
portfolios of the agents. In our paper, we do not need such quite unrealistic
hypotheses, but our approach uses a slightly stronger criterion in comparison
with the second stochastic dominance criterion used by Levy (1985).

The paper is organized as follows: in section 2, we introduce the frame-
work and the general notion of hedging induced by conditional dominance.
Section 3 is devoted to the study of upper and lower bounds on the private
values of any random variable, and this by using conditional dominance. We
prove that the interval we obtain, is included in the interval given by the
super-replication approach. Some examples of the conditional dominance
upper bound are computed in section 4, namely for the case of log-normal
and multinomial random variables. These bounds are compared with the
ones determined by super-replication. In section 5, we consider a dynamic
version of the conditional dominance. Section 6 concludes the paper.

2 Framework and Notations

Throughout the paper, we work on a probability space (2, F, P). The infor-
mation structure is described by a filtration F = (F;);>¢ satisfying the usual
conditions. It is assumed that F is generated by a d-dimensional Markovian
process GG. The state of the world at date ¢ is then characterized by G,.

2.1 The financial market

We assume the existence of a financial market with two assets: a riskless
asset, with a constant rate of return taken equal to zero for the ease of
exposition, and a risky asset whose price at time ¢ is denoted by S;, an F;
measurable random variable. In the following, we assume that the financial



market is able to supply any quantity of the two assets, that the price of
any portfolio is obtained linearly from the unitary prices and that there are
no transaction costs. We consider an agent who can trade at discrete dates
T =1{0,1,..,T — 1}, where T € N is his time-horizon. This agent is endowed
by an initial wealth € R and a Von Neumann-Morgenstern utility function
u which is strictly concave and strictly increasing. The problem of the agent
is to hedge and price the random variable Y € L'(Q, Fr, P).

We define a financial strategy as a random process {6;},.,._,, where the
F; measurable random variable 6, denotes the number of units of the risky
asset chosen at date t. We denote by © the set of the financial strategies. A
random variable X € L'(Q, Fr, P) is attainable at date T if there exist a
real number x and a financial strategy {6;},.,. , such that

X=2+) 0,(Sit1—5). (1)

Remark that x in this notation is the initial amount to invest and by no-
arbitrage arguments, this is exactly the price of X. In the sequel, we need to
consider the function which maps the attainable contingent claims into the
line of real numbers, by associating its price to the random variable. This
function is denoted by V(.) and using the notations of (1): V(X) = z. We
denote by Ar C L'(Q, Fr, P) the subset of the random variables attainable
at date T'.

The optimization program of the agent is then

max Eu (X +Y) (2)

under the constraint that the price of X equals a fixed amount . We denote
by J (z,Y) the optimal value of Eu (X + Y) when the initial wealth is equal
to .

The hedging price of the random variable Y is the real number 7 (Y) such
that J (z,Y) =J (z+7(Y),0)

The meaning of this definition is that —7 (V) is the amount of money that
the agent is willing to pay in order to remove the risk Y. It is adapted from
the notion of certainty equivalent of one risk in the presence of others risks
(see Pratt (1988)). This definition is not easy to manage, because it depends
on the characteristics of the agent, and especially on the utility function «
which cannot be estimated easily in practice. However, if Y € Ap, it is well-
known that 7 (V) =V (Y), see e.g. Davis, Panas and Zariphopoulou (1993).
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In this way, the hedging price is an extension (depending on the agent) of V'
to the set L'(Q, Fr, P).

2.2 Conditional dominance

In this subsection, we define conditional dominance and link this concept to

first and second stochastic dominances and to P — a.e. dominance.
Let (X,Y) € LY(Q, F, P) x L'(Q, F, P). We say that

e X dominates Y in the sense of conditional dominance, and we denote

X »cp Y, if and only if there exists a random variable ¢ such that
Y=X+4+ecP—-aeand E(e | X)<0P—a.e.

e X dominates Y in the sense of first stochastic dominance, and we de-
note X =pgp Y, if and only if there exists X’ € L'(Q, F, P) such that
X and X' are identically distributed and X' > Y P — a.e.

e X dominates Y in the sense of second stochastic dominance, and we
denote X =gsp Y, if and only if there exists Y’ € L'(Q, F, P) such
that Y and Y are identically distributed and X >¢p Y.

First and second stochastic dominances are defined and discussed for in-
stance in Huang and Litzenberger (1988) or Levy (1992), while their use
in insurance is shown e.g. in Goovaerts et al. (1990). By definition, condi-
tional dominance is a reinforcement of the second stochastic dominance. The
following Lemma is obvious and the proof is omitted.

For any (X,Y) € LY(Q, F, P) x L'(Q, F, P),

(i) X >Y P —a.e implies X »=psp YV

(ii)) X > Y P —a.eimplies X =¢cp YV

(111) X EFSD Y 1rnphes X ESS’D Y

(IV) X EC’D Y implies X ESS'D Y

(v) X =psp Y does not imply necessarily X =cp YV

(vi) X =¢p Y does not imply necessarily X »=pgsp YV

The next Lemma provides an equivalent characterization of the CD-
dominance:

Let (X,Y) € L'(, F, P) x L(Q, F, P). Then
X =cp Y ifandonlyif EY | X)< X P —a.e. (3)



"If” part. Let us define ¢ :== Y — X. Then Y = X +¢ P — a.e and
Ec | X)=EY - X |X)=EY |X) - X <0P—ae.

"Only If” part. ¥ = X +e P —a.e and E(e | X) < 0 P — a.e; then
E | X)=EY - X | X)=EY | X)- X <0P—ae.

3 Static pricing

In section 3 and 4, we consider only two dates: the initial date 0 and the
time-horizon 1" = 1. Transactions are allowed at date 0 only and the number
of units of the risky asset chosen at date 0 is denoted by . A contingent
claim attainable at date 1 is then a random variable X € L'(Q, F, P) such
that:

3(1‘,90) € R xR, X:IL'—FGO(Sl—So). (4)

Our aim is to use conditional dominance in order to obtain an upper bound
for the hedging price of any variable Y € L'(Q, Fy, P), which should be more
accurate than the one obtained by the P —a.e. dominance, namely the usual
super-replication cost.

Let Y € L'(Q, Fy, P). We define:

Poe(Y) =inf{V(X), X € Ajand X > Y P —a.e.}

PCD(Y) = 1nf{V(X), XeA and X ~CcD Y}

with the convention inf {(} = +o0.

The quantity P,.(Y’) is known in the literature as the super-replication
cost of Y. Thanks to Lemma 3, we get easily P,.(Y) > Pep(Y).

Note that one could define Prgp and Pssp in an analoguous way. How-
ever, it is very easy to construct an equilibrium where V' (X) > Prgp(X)
(and consequently V' (X) > Pssp(X)) for some X € A;. This is not in con-
tradiction with the definition of the stochastic dominance. It implies only
that it is not optimal for all the agents present on the market to buy X only.
Then, it is hopeless to use Prgp and Psgp in order to obtain upper bounds
on the hedging price.

In order to give an example of an equilibrium with V (X) > Prgp(X),
let us consider the simple case that () is finite and that all possible states
of the world have the same probability: Q = {wy,..,w,}, P(w;) = 1/n for
i =1,..,n. Let for all i = 1,...,n, X; denote the Arrow-Debreu contingent
claim associated to the state w, (which means that X; pays 1 unit if the state
of the world tomorrow is w, and 0 elsewhere).



Assume that for all i = 1,...,n, X; € A; and that the price at date 0 of
X, equals z;. An immediate computation shows that for all i = 1,...,n

1nf{V(X), X € Al,X > FSD Xz} =1<:< mnf{xl},

which is a quantity independent of i. Let us now consider when V(X) <
inf{V(Y),Y € A,Y =psp X} for all X. Since V(X;) = z;, we must have
in any case that V(X;) = x; < 1 < i <ninf {z;}. The fact that all states
have the same probability implies then that all z; should be equal.

In conlusion, in order to have V(X) < inf{V(Y),Y € A,Y =psp X}
for all X, all Arrow-Debreu state prices should be equal, which is of course
not satisfied in all equilibria.

The following Proposition establishes the relationship between condi-
tional dominance and the hedging price.

Let X = x4+ 60y(S1 — Sp) € A; such that 6y # 0 and X >¢p Y. Then
V(X)>n(Y).

Suppose V(X) < 7 (V). Let X* be the optimal contingent claim chosen
by the agent a in the presence of the risk Y and X the optimal contingent
claim chosen by the agent @ when the risk Y is not present. By the definition
of m (Y'), we must have

Eu ()?) = Eu (X* +Y)andV ()?) =V (X*) + 7 (Y)

Since X = z+6,(S1—Sy), 6o # 0, we get E(X*+Y | X*+X) = E(X*+Y | X)
(because that the o-algebra generated by X* + X coincides with the one
generated by X for 6y # 0). Therefore, X >cp Y leads to X* + X =¢p
X*+Y. This implies X* + X »ggp X* 4+ Y which provides Eu (X* + X) >
Eu(X*+Y). But V(X*+X) =V X4+ V(X)) < VX)+7n() =
V ()? ) This contradicts the optimality of X.

The last Proposition leads us to the construction of our upper bound.
Since it requires that X = x + 6y(S; — Sp) with 6y # 0, we must introduce
another pricing functional P/, which is a slight modification of the natural
candidate Pgp. First we exclude

{X =+ 90(51 - Sg), 90 = OandX ECD Y}

from the set on which the infimum is taken. Afterwards, since it is easily
checked that X € A; and X > Y P — a.e. implies V (X) > 7 (Y), we can
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improve the accuracy of the upper bound by adding
{X =+ 90(51 - S()), 90 = OandX Z YP — a.e.}

Finally, we propose the following definition.
Let Y € L'(Q, Fy, P). We define:

Pio(Y) = inf{V(X), X =uz+0(S; — So)and
if0o #0,X =cp YV
if0p=0X >YP—a.e.}

As an immediate consequence of the last Proposition, we get:
forallY € L'(Q, F1, P),Po. (Y) > Pip(Y) > m(Y).

This result yields to an upper bound for the hedging price 7 (Y") which de-
pends only on Y and not on the other characteristics of the agent a. More-
over, it is lower than the super-replication cost. Before comparing the two
bounds on some examples in the next section, we deal with the obtention of
a lower bound.

Following the literature on pricing functionals, it would be natural to
define the lower bound as the supremum of the contingent claims’ values
dominated by Y in the C'D sense. However, this notion is not suited here
because for a non attainable Y, Y =¢cp X does not imply X'+Y =¢cp X'+ X
for any X' € Ay, since the o-algebra generated by Y does not necessarly
equal the one generated by X’ 4+ Y. This point shows that the lines of the
proof of Proposition 6 cannot be followed in case of the lower bound.

When the hedging price is sublinear, we can nevertheless propose a lower
bound. Sublinearity of the pricing functionals is often assumed in the liter-
ature as an axiom, see e.g. the discussion in Jouini (1997).

Assume that VYY" € L'(Q, F, P), 7 (Y +Y") <7 (Y) + 7 (Y'). Define
Qip (Y) = =P5p (=Y), and Q.. (V) = sup{V(X), X € A and Y > X
P —a.e}. Then 7 (Y) > Qtp (V) > Q,.(Y).

From the definition of the hedging price, we obviously have 7 (0) =
0. Then, sublinearity implies VY € LY(Q, F,P), 7 (Y) > —w (=Y, and
7(Y) > Q¢p (V) holds, thanks to Proposition 6. The second part of the
inequality comes again from Proposition 6, since Q,,(Y) = —P,. (=Y.



4 Examples

4.1 The log-normal case

In this subsection we investigate the special case where S; = Sy exp(cW') and
Y = Yy exp(nZ) with S, Yy, o and i in R* and (W, Z) ~ Ny (( 8 ) : ( [1) f
This example will be useful in the dynamic case, where we will illustrate our
general results by studying the hedging in discrete time of a geometric Brow-
nian motion when the hedging variable is a geometric Brownian motion too.
The following Proposition compares the values of the upper bounds P,.(Y)
and PS5, (Y).
Ifp=0orif(p>0and 2 >1),

then Php(Y) = Yyexp <M and else P}, (Y) = +oc.

If (p=1and o =17), then P,(Y) =Y, and else P,.(Y) = +oo.

The bound given by the super-replication approach is thus strictly im-
proved when the hedging variable is positively correlated with and more
volatile than the random variable to hedge.

e First, it is easily checked that P,.(Y) =Y for (p = 1 and 0 = 1) and
that P,.(Y) = +oo elsewhere since the support of a log-normal random
variable is [0, +00). For the same reason, it is not possible to find a
constant = such that x > Y P — a.e., and therefore

PC*’D(Y) = 1£1f{x eR: 390 S R\{O}SUOhth&tl’ + 90(51 — 50) ~cD Y}

e [t is well-known that if X and YV are two random variables such that

(lnX,lnY)~N2<<m1 (o )),then:
mg p 02

572 1 ~
EY | X]= X"= exp{§a§(1 —p%) +mgy — pml?} P—a.e.
1

Let us now take X of the form X = x+6y(S; —Sp), with 6y # 0. Then:

w—x 1 w—x

_1q
o =30t o

EY | X =w] =E]Y | S, = Sy +

)t

)



2(1 .2
with % = Yyexp M > 0. From Lemma 4 we have that X >p

Y if and only if E[Y | X] < X P — a.e. This provides:

w—x

Sobo

XrepY o (1+ )7 < wh, Yw € Imx(Q). (5)

Let us first study the case that p = 0. Then

2

X =ep Y & Yyexp (%) <z +6p(S1 —Sy) P—ae. (6)

Therefore, we determine #y such that the infimum of

2

{z € R: 30, € R*suchthatY;exp <%> < x4+ 60y(Sy — So) P —a.e.}

is obtained. It is clear that we can exclude the case #;, < 0 since the
support of S is [0, +00). Thus, we look for the infimum of z such that

there exists a 6y > 0 such that x > Yjexp (%) + 6ySo. Therefore, in
this case

2
Pep(Y) = Yoesp (%) | 7)
Let us now turn to the general case of p # 0. In order to find 6, that
minimizes {z € R : 30y € R* such that  + 0,(S, — So) =cp Y}, we
exclude again the case y < 0. Indeed, if 6y < 0, then Imx(2) = {w :

1+ 55 > 0} = (—o0,2 — Sobl), and the inequality (5) becomes:

n

— P
Vw € (—oo, z — Spby), R < wA
Sobo

The left-hand side of the inequality term is always positive, and the
right-hand side is negative for w < 0, so there are no solutions.

We further concentrate on the case 6y > 0. Then Imx(Q2) = {w such

that 1+ g% > 0} = (2 — Sobp, +00). Notice that for 0 such that

x — Spby < 0, the inequality (5) becomes:

w—1x\""
Yw € (1‘ — Sobo, +OO), 1+ < wA
Sobo
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But the left-hand side of this inequality is positive for w > x — Syf,,
whereas the right-hand side is negative for w € (x — Sy, 0). Therefore
we just need to consider 6y such that x — Syfy > 0, i.e. 6y must lie in

memmWM(Qéﬂ.LausmmMeér—— k= (\) and 0 := Syfp.

I/
We first consider the case where p is negative.

Case p < 0: X =¢p Y is equivalent to 1 + “5* > w’k. The left-hand
side of the inequality tends to zero when w tends to (z —#), whereas the
right-hand side tends to a positive value. Then, there are no solutions
in that case.

Case p > 0: X =¢p Y is equivalent to Yw € (x — 0, +00), p(w) > 0,
where the function ¢ (.) is defined as follows: ¢ (w) := 0kw® —w+z—0.

— If 0 < 1, there are no solutions as p(+00) = —o0.

—Ifo=1,Vw € (x—0,+00), p(w) > 0 on (z—0,+00) is equivalent
to p(r — @) > 0 and #k — 1 > 0. We have then two conditions:

0 > + and 0 € (0,z], so the infimum of z is obtained at + and

Pep(Y) = L = Yyexp (M)

— If 6 > 1, we need to study more precisely the behaviour of the
function ¢(.) on (z — 6, 4+00). It is easily checked that:

p(+00) = +o0
oz —0) = 0k(x —0)° >0

(@) =0 & = (5)7

Then o(w) > 0 Vw € (x — §,+00) if and only if w > x — 6

and ¢(w) > 0. But ¢(w) > 0 is equivalent to x -0 > wit,

Qq

Therefore, our requirements are equivalent to w2 < z — 0 < w.
Setting f = 2 (5116)61 >Oand7—ﬁ>0, we get p(W) =

—0B077" +x — 9 We consider this last expression as a function
of : f(#) := —pO" + x — 0. Since we have: f(0) = —oo and
f(x) = —=B2™7 < 0, there exists a 6 € (0, ] such that f(#) > 0
only if there exists a § € (0,x) such that f'(f) =0 and f(6) >0
As f'(0) =0 at § = ()77, it turns out that

1

fO)=2— (-

1 1
Tl 4+ -1 >0
M) [+%Z
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if and only if
i)*%[l + l]
By v

And then, the minimal z such that f(#) remains positive is the
upper bound given by:

x>

* -y 1 1
Pep(Y)=(1+9)y 1w =+
which provides the announced result.

The proof of this proposition tells us that in order to hedge a risk Y in a
static way, we have to invest

7= (o = e () )

in the risky asset if < > 1, thus if there is a positive correlation between the
risk Y and the risky asset Siand if o > 7. In the non-correlated case, the
total investment should be done in the riskless asset, i.e. 8 = 0.

4.2 The finite state case

The aim of this section is to show that the C'D criterion may strictly improve
the upper bound given by the super-replication approach in a case where (2
is finite. As a simple example, let us consider the case where there are n > 3
possible future states of the world, but where the risky financial asset can
take only two values: u and d.

Formally, let n > 3, Q = {wy,..,wn}, pi = P(w;) > 0 and consider the
risky asset with Sy =1, Sj(w;)) =u>1,i=1,..,n; <n,and S;(w;) =d < 1,
i =n;+1,..,n. Let Y be the risky to be hedged, with Y (w;) # Y (w,),V i # j.

In order to compute the super-replication upper bound P,.(Y) we can
find the set IT of equivalent martingale measures and notice that P,.(Y") is
also given (see e.g. El Karoui and Quenez 1995) by

Pe(Y) = esssup E™ (V). 9)

mell

By no arbitrage arguments it is easy to check that the set II is character-
ized by the following conditions:

12



II={re (1) Zm—lzm— Z”z— _d (10)

i=ni+1
so that P,.(Y") is given by

1—-d u—1
P.Y)= — max{y, .., Yn, | + p— Max{ Y, 11, - Yn - (11)

where y; =Y (w;), i =1,..,n.

Let us now turn our attention to the upper bound given by the C'D
criterion.

From (3) and the definition of S; and Y we obtain

PP RBP4 Oy (u — 1)
T+ 00(S1 —So) mep Y = { YnpiOms ety
; pn1+11+..+pn <2+ 0p(d—1)
x>7, —0(u—1)
T =Yg+ bo(1 —d),

where 7, = Z?ll(zyzp:pj) and 7, = > n1+1(EJy;7fZ+1PJ)

Now, by definition, Pop(Y) = inf{x € R : 30, € R* such that +6,(S; —
So) =cp Y} Amax{y,...,y,} and the infimum is obtained with

* 1 — —
0y = m(yu_yd)a (12)

P.Y) = 2 =—7 .
cn(Y) T u_dyu+u_dyd

since max{yy, .., Yn, } = EEKW) >y | () =7, and anal-
' 221 Pj j=1 Pj v

ogously max{yn,+1, -, Yn} > Y-
This leads also to the conclusion that Pp,(Y) is strictly lower than

P(Y).

Notice that the crucial point in our example is that the number of all
possible values that can be obtained by S; is smaller than the number of
all possible values obtained by Y, otherwise the C'D upper bound coincides
with the super-replication one.
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5 Dynamic pricing

5.1 The general result

In this section we come back to the general dynamic model presented in
section 2. We show how to use the C'D criterion in order to obtain an
upper bound for the hedging price when dynamic strategies are allowed.
This upper bound is constructed by using recursively the reasoning made
in the static framework. For intuition, let us consider the case that  is
finite, in which we can describe the informational structure by a tree. We
then introduce repeatly a static price functional between dates ¢t and ¢ + 1
which is a straightforward generalization of the static price functional Py, of
definition 7, but started from the node which is attained at date ¢t. Thus we
apply the functionals conditional to the information until then. In a general
markovian setting we describe the history until time ¢ by the state variable
G (see section 2), and we introduce the following notations.

For k € R?, we denote by ; (k) := {w € QsuchthatG; (w) = k}. Let L,
be the space of the integrable random variables which are measurable w.r.t.
Fi. For A € L; and k € Im (G,), we denote by Ao, the restriction of A
to Q (k).

For any t € T, U € Ly, we define the static price functional between
dates ¢ and t + 1 Py (U) € Ly as follows:

Pét,’th(U) (w) = inf{ =z € R:30, € Rsuchthat

if0 # 0,z + 0:(Si41 — Sl (cew)) =ep Ulnycuw)
1f0, =00 > Uiu(cew) P — a.e.}

Notice that Pi7i™"(-) maps Ly, into L,. Using the static price function-

als, we now turn to a dynamical quantity by backward reasoning.
Let Y € Ly and define P;2Y"(Y) € R as follows:

P (V) = Pl (PG (- Pop 2 (Pop M (Y)-w0). (13)
In the following proposition, we prove that the dynamical conditional
dominance quantity P5;?"(Y) is an upper bound of the hedging price of

Y € Ly. Moreover, it is easy to check that P52?"(Y) is lower than the upper
bound given by the super-replication approach. The proof of this result is
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left to the reader; the arguments are similar to the ones used in the static
case.

VY € Ly, PP (V) > 7 (V).

First, for any t € 7 and U € L4 let us define 7,41 (U) € L, as follows:

r T—1
max E u<x+29t(5t+1—5t)+U> | F
i =0

eta9t+17"70T—1

= max E|u (x + 29t(5t+1 - S;) + 7rt7t+1(U)> |ft] (14)

0t,0t41,..,07-1 o
Notice that 7,11 (-) maps L4y into L. Thanks to Proposition 6, we get:
YU € Ly, PE5TNU) > mpysy (U) P — ace.

Using this inequality recursively yields:

Pep"(Y) = Pop (Pep (. Pep "~ (Pep 7 (Y).)

Py (P (- Popy ' (mroap(Y))-00)

>
> To,1 (---7TT72,T71 (7TT71,T(Y)) )

By the dynamic programming principle, we obtain for X = x+zf;01 0,(Sp41—
St)I

max Eu(X+Y) = max E[maxE[u (X +Y) | Fr 1]

00,01,..,07_1 00,01,..,07_2 Or_1

= max E[maxE[u (X + 717 (Y)) | Fr_i]]

00,01,.,07 2 Or_1

= max E max Eu(X +mp or 1(mr17(Y))) | Fr-ol

00,01,...07—3 072,071
== maXx Eu (X +7T0,1(---’/TT72,T71(7TT71,T(Y))---)) .

00,01,..,07_1

Since by definition

max Eu(X+Y)= max Eu(X+7(Y)),

00,01,..,07_1 00,01,..,07_1

we conclude that mo(...mp—or—1(mr_17(Y))...) = 7(Y) and the proof is
complete.
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5.2 Discrete-time hedging of a geometric Brownian mo-
tion

In this subsection we apply the dynamic pricing rule given by (13) to the
case where (S;);>0 and Y = (Y};);>0 are two correlated geometric Brownian
motions. The problem is to use the financial market in order to hedge Y7.

For an economic interpretation, let us consider a model with two agents:
the employer and the employee. The employee works between dates 0 and
T for the employer and receives a wage process (Y;)o<;<r. This process is
adapted w.r.t. the filtration F, but cannot be expressed in general as a linear
combination of the financial assets. At his retirement date 7', the employee
receives also a fixed amount Y7 which is in fact a defined pension paid out
at once at the date T'. As the pension usually depends on the wage history
at a fixed percentage (3, the problem of the employer, who has the charge of
paying the contributions, is to hedge Y = Y7 by using the financial market.

Therefore, we consider a continuous time framework, where the filtration
F = (Fi)i>o0 is assumed to be generated by the two-dimensional standard
brownian motion (Gy),, = (Wi, W)i>0, and where transactions are allowed
only at discrete dates T = {0,1,..,7 — 1},T € N. The processes (S;);>o
and (Y});>o are assumed to evolve stochastically according to the following
stochastic differential equations:

dSt = OéStdt + O'Stth, (].5)
dY, = pYydt +nY,(pdW, + /1 — p?dW,) = pY,dt + nY,dZ,,
with (o, o), (1, 7) € RxR" and where (Z;),, is a standard brownian motion

with < Wt, Zt >= pt -
If o > nand p > 0, then P2V (Yy) = Pip(Yr) = Yoexp[T(u — T2 —

2
0.2
p2(a— %))
From (15) it results that for any ¢t € 7, S, and Y; are distributed as:

2 2
St £ Si—1 exp(o — % +oWi) and Y, 4 Yi 1 exp(p— % +nZy)

with (WI,Z1)~N2<<8>,<; 'f))

Applying Proposition 9 to the case of the F;—measurable random variable
Y;, we obtain
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2 9 2
it n’p U 4
PP (Yy) = Vi explu — 5 p;(a — 5)], (16)

which, by a recursive argument, gives the result.

The assumption ¢ > 7 is equivalent to say that the process (St)tz[] of the
financial market is more volatile than the process (Y;);>o to be hedged, a very
natural requirement. Notice that, if 0 < pn or p < 0 from Proposition 9 we

*Dyn _ . . . .
get P (Yr) = +o00, and our approach is equivalent to the super-replication
one. The hedging strategy {et}ogthfl obtained in the last Proposition
depends on the process (Y;);>o. Indeed, we have:

0= i explp — = — pt(a - )] (17)

At last, it is very simple to generalize our approach to the case where one
wants to hedge a discrete random process (Yt)te{lyn;p} instead of a single
amount Yr. This case is analogous: it is enough to replace (13) by:

Pep™ (Veq.ry) = Py M+ Pep (- Yrok Pop 0 (Yeoa+Pep 7 (Yr)).).

6 Conclusion

In an incomplete market setting, the pricing and hedging of risky positions
is a difficult problem. Using super-replication, one obtains intervals for the
hedging price of a risk, but these intervals turn out to be too large in general
to be used in practice.

In order to determine tighter intervals, we have defined conditional domi-
nance, which can be related with first and second order stochastic dominance.
We have proved that we indeed obtain upper and lower bounds for the hedg-
ing price which are compatible with the equilibrium.

In some cases the use of conditional dominance improves the super-
replication approach in a significant way. For example, in the case of log-
normal random variables (which is an interesting case for pension funds),
the super-replication yields 400 on upper bound, whereas our calculations
result in explicit formulae. We have also provided an example in case of
multinomial variables.

In the first part of this paper we have concentrated on a static situation
with only two dates of interest: an initial date and a time horizon. Af-
terwards, we turned our attention to a generalization of this approach to a

17



dynamic model by backward optimization. In case of geometric Brownian
motion, the dynamical upper bound has been derived. This example has
been motivated by an economical interpretation in pension funds.
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