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Abstract This paper studies a strategy that minimizes the Value-at-Risk (VaR)
of a position in a zero-coupon bond by buying a percentage of a put option,
subject to a fixed budget available for hedging. We elaborate a formula for
determining the optimal strike price for this put option in case of a Vasicek
stochastic interest rate model. We demonstrate the relevance of searching the
optimal strike price, since moving away from the optimum implies a loss, either
due to an increased VaR or due to an increased hedging expenditure. In this way,
we extend the results of [Ahn, Boudoukh, Richardson, and Whitelaw (1999).
Journal of Finance, 54, 359–375] who minimize VaR for a position in a share. In
addition, we look at the alternative risk measure Tail Value-at-Risk.
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1 Introduction

Many financial institutions and non-financial firms nowadays publicly report
Value-at-Risk (VaR), a risk measure for potential losses. Internal uses of
VaR and other sophisticated risk measures are on the rise in many financial
institutions, where, for example, a bank risk committee may set VaR limits,
both amounts and probabilities, for trading operations and fund management.
At the industrial level, supervisors use VaR as a standard summary of
market risk exposure. An advantage of the VaR measure, following from
extreme value theory, is that it can be computed without full knowledge of
the return distribution. Semi-parametric or fully non-parametric estimation
methods are available for downside risk estimation. Furthermore, at a suffi-
ciently low confidence level the VaR measure explicitly focuses risk managers
and regulators attention on infrequent but potentially catastrophic extreme
losses.

The VaR has become the standard criterion for assessing risk in the financial
industry. Given the widespread use of VaR, it becomes increasingly important
to study the effects of options on the VaR-based risk management.

The starting point of our analysis is the classical hedging example, where an
institution has an exposure to the price risk of an underlying asset. This may be
currency exchange rates in the case of a multinational corporation, oil prices
in the case of an energy provider, gold prices in the case of a mining company,
etc. The corporation chooses VaR as its measure of market risk. Faced with the
unhedged VaR of the position, we assume that the institution chooses to use
options and in particular put options to hedge a long position in the underlying.

Ahn, Boudoukh, Richardson, and Whitelaw (1999) consider the problem of
hedging the VaR of a position in a single share by investing a fixed amount C
in a put option. The principal purpose of our study is to extend these results to
the situation of a bond. We consider the well-known continuous-time stochastic
interest rate model of Vasicek (1977) to investigate the optimal speculative and
hedging strategy based on this framework by minimizing the VaR of the bond,
subject to the fixed amount C which is spent on put options. In addition, we
consider an alternative risk measure Tail Value-at-Risk (TVaR), for which we
solve the minimization problem and obtain the optimal hedging policy.

The discussion is divided as follows: Sect. 2 presents the general risk
management model, introduces the Vasicek model and considers hedging with
bond put options. Afterwards, Sect. 3 discusses the optimal hedging policy
for VaR, considers the closely related risk measure TVaR and introduces
comparative statics. Section 4 consists of a numerical illustration. Finally, Sect. 5
summarizes the paper, concludes and introduces further research possibilities.

2 The mathematical framework

Consider a portfolio with value Wt at time t. The VaR of this portfolio is defined
as the (1−α)-quantile of the loss distribution depending on a time interval with
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length T. The usual holding periods are one day or one month, but institutions
can also operate on longer holding periods (e.g. one quarter or even 1 year)
(see Dowd, 1998). A formal definition for the VaRα,T is

Pr(W0 − Wd
T ≥ VaRα,T) = α

with Wd
T the value of the portfolio at time T, discounted back until time zero

by means of a zero-coupon with maturity T.
In other words VaRα,T is the loss of the worst case scenario on the investment

at a 1 − α confidence level during the period [0, T]. It is possible to define the
VaRα,T in a more general way

VaRα,T = inf
{

Y | Pr(W0 − Wd
T > Y) ≤ α

}
.

In this study, we focus on the hedging problem of a zero-coupon bond. There-
fore, we need to define a process that describes the evolution of the instanta-
neous interest rate, and enables us to value the zero-coupon bond. As term
structure model, we consider the Vasicek model, which is a typical example of
an affine term structure model.

2.1 The Vasicek model

Vasicek (1977) assumes that the instantaneous interest rate follows a mean
reverting process also known as an Ornstein–Uhlenbeck process:

dr(t) = κ(θ − r(t))dt + σ dZ(t) (1)

for a standard Brownian motion Z(t) under the risk-neutral measure Q, and
with constants κ , θ and σ . The parameter κ controls the mean-reversion speed,
θ is the long-term average level of the spot interest rate around which r(t) moves
and σ is the volatility measure. The reason of the Vasicek model’s popularity
is its analytical and mathematical tractability. An often cited critique is that
applying the model sometimes results in a negative interest rate.

It can be shown that the expectation and variance of the stochastic variable
r(t) are:

EQ [r(t)] = m = θ + (r(0) − θ)e−κt, (2)

VarQ [r(t)] = s2 = σ 2

2κ
(1 − e−2κt). (3)

Based on these results, Vasicek develops an analytical expression for the price
of a zero-coupon bond which has value 1 on maturity date S

Y(t, S) = exp[A(t, S) − B(t, S)r(t)], (4)



Comput Econ

where

B(t, S) = 1 − e−κ(S−t)

κ
, (5)

A(t, S) = (B(t, S) − (S − t))(θ − σ 2

2κ2 ) − σ 2

4κ
B(t, S)2. (6)

Since A(t, S) and B(t, S) are independent of r(t), the distribution of a bond price
at any given time must be lognormal with parameters � and �2:

�(t, S) = A(t, S) − B(t, S)m, �(t, S)2 = B(t, S)2s2 (7)

with m and s2 given by (2) and (3).
From formulae (4)–(7), we can see that for S ≥ T the present value (using a

zero-coupon bond for discounting) of the loss of the (unhedged) portfolio can
be expressed as function of z

L0 = W0 − Wd
T

d= Y(0, S) − Y(0, T)e�(T,S)+�(T,S)z := f (z), (8)

where f is a strictly decreasing function, z is a stochastic variable with a standard

normal distribution and d= means equality in distributional sense. Therefore, the
VaRα,T of such a portfolio is determined by the formula

VaRα,T(L0) = f (c(α)), (9)

where c(α) is the cut off point for the standard normal distribution at a certain
percent level, i.e. Pr(z ≤ c(α)) = α.

Since the distribution of the unhedged position in the zero-coupon bond is
lognormal in the Vasicek model, from formulae (8) and (9) we observe that the
VaR measure for the zero-coupon bond can be expressed as

VaRα,T(L0) = Y(0, S) − Y(0, T)e�(T,S)+�(T,S)c(α),

where c(·) is the percentile of the standard normal distribution.

2.2 Put options and hedging

We recall from Ahn et al. (1999) the classical hedging example, where an insti-
tution has an exposure to the price risk of an underlying asset ST . The hedged
future value of this portfolio at time T is given by

HT = max(hX + (1 − h)ST , ST), (10)

where 0 ≤ h ≤ 1, represents the hedge ratio, that is the percentage of put option
P used in the hedge and X is the strike price of the option.
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In our setup, the underlying security is a bond and the hedging tool is a bond
put option, the price of which will be worked out hereafter.
We recall that the price of a European call option with the zero-coupon bond
which matures at time S as the underlying security and with strike price X and
exercise date T (with T ≤ S) is at date t given by:

C(t, T, S, X) = Y(t, S)�(d1) − XY(t, T)�(d2), (11)

where

d1 = 1
σp

log

(
Y(t, S)

XY(t, T)

)
+ σp

2
, d2 = d1 − σp,

σp = σ

κ
(1 − e−κ(S−T))

√
1 − e−2κ(T−t)

2κ

and �(·) is the cumulative distribution function of a standard normal random
variable. The Put-Call parity model is designed to determine the value of a put
option from a corresponding call option and provides in this case the following
European put option price corresponding to (11):

P(t, T, S, X) = −Y(t, S)�(−d1) + XY(t, T)�(−d2). (12)

3 The bond hedging problem

3.1 VaR minimization

Analogously to Ahn et al. (1999), we assume that we have one bond and we
use only a percentage of a put option on the bond to hedge. We will find the
optimal strike price which minimizes VaR for a given hedging cost.

Indeed, let us assume that the institution has an exposure to a bond, Y(0, S),
which matures at time S, and that the company has decided to hedge the bond
value by using a percentage of one put option P(0, T, X) with strike price X
and exercise date T (with T ≤ S). Then we can look at the future value of
the hedged portfolio (which is composed of the bond Y and the put option
P(0, T, X)) at time T as a function, analogously to (10), of the form

HT = max(hX + (1 − h)Y(T, S), Y(T, S)).

If the put option finishes in-the-money (a case which is of interest to us), then
the discounted value of the future value of the portfolio is

Hd
T = ((1 − h)Y(T, S) + hX)Y(0, T).

Taking into account the cost of setting up our hedged portfolio, which is given
by the sum of the bond price Y(0, S) and the cost C of the position in the put
option, we get for the present value of the loss
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L0 = Y(0, S) + C − ((1 − h)Y(T, S) + hX)Y(0, T)

and this under the assumption that the put option finishes in-the-money.
We recall that Y(T, S) has a lognormal distribution with parameters � and �2,
given by (7). Therefore the loss function equals in distributional sense

Y(0, S) + C − ((1 − h)e�(T,S)+�(T,S)z + hX)Y(0, T), (13)

where z again denotes a stochastic variable with a standard normal distribution.
The VaR at an α percent level of a position H = {Y, h, P} consisting of a bond
Y and h put options P (which are assumed to be in-the-money) with a strike
price X and an expiry date T is equal to

VaRα,T(L0) = Y(0, S) + C − ((1 − h)e�(T,S)+�(T,S)c(α) + hX)Y(0, T), (14)

where we recall that c(α) is the percentile of the standard normal distribution.
Similar to the Ahn et al. problem, we would like to minimize the risk of the

future value of the hedged bond HT , given a maximum hedging expenditure C.
More precisely,

min
X,h

Y(0, S) + C − ((1 − h)e�(T,S)+�(T,S)c(α) + hX)Y(0, T),

subject to the restrictions C = hP(0, T, S, X) and h ∈ (0, 1).
Solving this constrained optimization problem, we find that the optimal strike

price X∗ satisfies the following equation

P(0, T, S, X∗) − (X∗ − e�(T,S)+�(T,S)c(α))
∂P(0, T, S, X∗)

∂X
= 0 (15)

or equivalently, when taking (12) into account,

e�(T,S)+�(T,S)c(α) = Y(0, S)�(−d1(X∗))
Y(0, T)�(−d2(X∗))

. (16)

We note that the optimal strike price is independent of the hedging cost. Also,
the optimal strike price is higher than e�(T,S)+�(T,S)c(α). This has to be the case
since P(0, T, S, X) is always positive and the change in the price of a put option
due to an increase in the strike is also positive. This result is also quite intuitive
since there is no point in taking a strike price which is situated below the bond
price you expect in a worst case scenario.

3.2 Tail VaR minimization

In this section, we introduce the concept of TVaR, also known as mean excess
loss, mean shortfall or Conditional VaR. We further demonstrate the ease of
extending our analysis to this alternative risk measure.
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A drawback of the traditional VaR measure is that it does not care about the
tail behaviour of the losses. In other words, by focusing on the VaR at, let’s say a
5% level, we ignore the potential severity of the losses below that 5% threshold.
In other words, we have no information on how bad things can become in a real
stress situation. Therefore, the important question of ‘how bad is bad’ is left
unanswered. TVaR is trying to capture this problem by considering the possible
losses, once the VaR threshold is crossed.

Formally,

TVaRα,T = 1
α

∫ 1

1−α

VaR1−β,T dβ.

This formula boils down to taking the arithmetic average of the quantiles of our
loss, from 1 − α to 1 on, where we recall that VaR1−β,T stands for the quantile
at the confidence level β.

If the cumulative distribution function of the loss is continuous, which is the
case in our problem, TVaR is equal to the Conditional Tail Expectation (CTE)
which for the loss L0 is calculated as:

CTEα,T(L0) = E[L0 | L0 > VaRα,T(L0)].

A closely related risk measure concerns Expected Shortfall (ESF). It is
defined as:

ESF(L0) = E
[
(L0 − VaRα,T(L0))+

]

In order to determine TVaRα,T(L0), we can make use of the following equal-
ity:

TVaRα,T(L0) = VaRα,T(L0) + 1
α

ESF(L0)

= VaRα,T(L0) + 1
α

E
[
(L0 − VaRα,T(L0))+

]
.

This formula already makes clear that TVaRα,T(L0) will always be larger than
VaRα,T(L0).

In our case, the loss has a lognormal distribution under the risk-neutral mea-
sure Q, because of the lognormality of our bond prices. This allows us, after
noting that in view of (13) and (14) the ESF for the loss L0 can be simplified to

ESF(L0) = (1 − h)Y(0, T)e�(T,S)EQ[(e�(T,S)c(α) − e�(T,S)z)+]

to write the ESF as

ESF(L0) = (1 − h)Y(0, T)e�(T,S)
[
αe�(T,S)c(α) − e

1
2 �2(T,S)�(c(α) − �(T, S))

]
.
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This reduces the TVaRα,T(L0) to:

TVaRα,T(L0) = Y(0, S) + C − hXY(0, T)

− 1
α

(1 − h)e�(T,S)+ 1
2 �2(T,S)�(c(α) − �(T, S))Y(0, T).

We again seek to minimize this TVaR, in order to minimize potential losses.
The procedure for minimizing this TVaR is analogue to the VaR minimization
procedure. The resulting optimal strike price X∗ can thus be determined from
the formula below:

1
α

e�(T,S)+ 1
2 �2(T,S)�(c(α) − �(T, S)) = Y(0, S)�(−d1(X∗))

Y(0, T)�(−d2(X∗))
.

3.3 Comparative statics

We examine how changes in the parameters of the Vasicek model influence the
optimal strike price, by means of the derivatives of the optimal strike price with
respect to these parameters.

For both VaRα,T and TVaRα,T , the optimal strike price is implicitly defined
by

F(X, β) = FAC · Y(0, T)�(−d2) − Y(0, S)�(−d1) = 0

with β the vector including the Vasicek parameters, that is θ , κ and the volatility
σ (see Sect. 2.1), and with FAC representing e�(T,S)+�(T,S)c(α) in the case of
VaRα,T and 1

α
e�(T,S)+ 1

2 �2(T,S)�(c(α) − �(T, S)) in the case of TVaRα,T .
Taking into account the implicit function theorem, we obtain the required

derivatives as follows:

∂F
∂X

dX + ∂F
∂β

dβ = 0 ⇐⇒ dX
dβ

= −
∂F
∂β

∂F
∂X

. (17)

The denominator of (17) is equal for the different derivatives, and is given by

∂F
∂X

= FAC · Y(0, T)ϕ(d2) − Y(0, S)ϕ(d1)

Xσp
(18)

with ϕ being the density function of a standard normal random variable, while
the numerator of (17) can be obtained by applying the following formula,

∂F
∂β

= ∂FAC
∂β

Y(0, T)�(−d2) + FAC · ∂Y(0, T)

∂β
�(−d2) (19)

−FAC · Y(0, T)ϕ(d2)
∂d2

∂β
− ∂Y(0, S)

∂β
�(−d1) + Y(0, S)ϕ(d1)

∂d1

∂β
.
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These derivatives are rather involved and do not lead to a straightforward
interpretation of their sign and magnitude. Therefore, we will describe the
derivatives in the next paragraph using a numerical illustration.

Further relevant derivatives are dX
dS

and dX
dT

to study the response of the
optimal strike price to a change in the maturity of both the underlying bond
and the maturity of the bond option used to hedge the exposure. They follow
from formulae (17) to (19), after having replaced β by S and T, respectively, and
taking into account the simplification due to the fact that Y(0, T) is independent
of S, and Y(0, S) is independent of T. Again, we leave the interpretation of these
derivatives to the next section.

A last derivative of interest is the one with respect to α, formally dX
dα

:

dX
dα

= − 1
∂F
∂X

· ∂FAC
∂α

Y(0, T)�(−d2),

where ∂FAC
∂α

is, respectively, given by

e�(T,S)+�(T,S)c(α)�(T, S)

ϕ(c(α))
, (VaR)

e�(T,S)+ 1
2 �2(T,S)

α2

[
αϕ(c(α) − �(T, S))

ϕ(c(α))
− �(c(α) − �(T, S))

]
(TVaR).

4 Numerical results

We illustrate the usefulness of the above results for the VaR case (TVaR case is
ongoing research). In order to provide a credible numerical illustration, we take
the parameter estimates for the Vasicek model from Chan, Karolyi, Longstaff,
and Sanders (1992), who compare a variety of continuous-time models of the
short term interest rate with respect to their ability to fit the US Treasury
bill yield. This results in the following parameter values: σ = 0.02, θ = 0.0866,
κ = 0.1779 and r(0) = 0.06715. We assume that the market price of risk parame-
ter equals zero such that the risk neutral probability coincides with the historical
one. Next, we should consider the budget the financial institution is willing to
spend on the hedging. Standardising the nominal value of the bond at issuance
to 1, we start with a hedging budget of 0.05, so C = 0.05. We also assume the
bank is considering the VaR at the 5% level, meaning that α = 5%.

We considered two situations, one in which the bank wishes to hedge a bond
with a maturity of 1 year (S = 1), and one for a bond with a maturity of 10 years
(S = 10).

We observe that our strategy is successful in decreasing the risk, while, since
we use options, still providing us with upward potential. In the 1 year bond case,
the mean reduction in VaR (calculated as the difference between the VaR of the
hedged position and the VaR of the unhedged position, divided by VaR of the
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unhedged position) over the holding period amounts to 6.25%. The maximal
reduction is 26.23%, whereas the lowest reduction is 3.25%. In the 10 year bond
case, the mean VaR reduction over the holding period is 5.36%. The maximal
reduction that can be achieved amounts to 26.15%. The minimal reduction is
2.59%.

As already mentioned above, we are also interested in the effect of changes
in the parameter estimates of the Vasicek model on the optimal strike price.
We examine these effects using the first example, in which the bond matures
in 1 year. An increase in one of these parameters always leads to a lower opti-
mal strike price. The influence of a 1% increase in κ only marginally effects the
strike price. Changes in θ also have a moderate impact on the optimal strike. The
most influential parameter of the Vasicek model undoubtedly is the volatility.
Whereas for κ and θ the impact constantly decreases as the holding period
comes closer to the maturity of the bond, we find a non-monotonic relation-
ship between the derivative (with respect to the volatility) and the difference
between the holding period T and the maturity S of the bond.

Increasing the maturity of the bond decreases the strike price, while increas-
ing the holding period (meaning that the holding period moves closer to the
maturity of the bond) increases the strike price. Reducing the certainty with
which a bank wishes to know the value it can lose, or in other words, increasing
α leads to an increased strike price. This increase again depends on the holding
period in a non-monotonic way.

5 Conclusion

In this paper, we studied the optimal risk control for one bond using a percent-
age of a put option by means of VaR and TVaR, widespread concepts in the
financial world. The interest model we use for valuation, is the Vasicek model.
The optimal strategy corresponds to buying a put option with optimal strike
price in order to have a minimal VaR or TVaR given a fixed hedging cost. We
did not obtain an explicit result, but numerical methods can be easily imple-
mented to solve for the optimal strategy. For the VaR case, we demonstrate the
relevance of searching for this optimal strike price, since moving away from this
optimum implies a loss, either because of an increased VaR, or an increased
hedging expenditure. For TVaR, the numerical illustration is part of ongoing
research.

Further analysis has been oriented towards more general interest rate mod-
els with an affine term structure such as the Hull–White model and towards
coupon bonds (see Heyman, Annaert, Deelstra, & Vanmaele 2006a, b).
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