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Abstract

In this paper we propose some moment matching pricing methods for European-style discrete arithmetic Asian basket options in
a Black & Scholes framework. We generalize the approach of [5] and of [8] in several ways. We create a framework that allows
for a whole class of conditioning random variables which arenormally distributed. We moment match not only with a lognormal
random variable but also with a log-extended-skew-normal random variable. We also improve the bounds of [9]. Numericalresults
are included and on the basis of our numerical tests, we explain which method we recommend depending on moneyness and
time-to-maturity.
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1. Introduction

In this paper we propose pricing methods for European-stylediscrete arithmetic Asian basket options in a Black &
Scholes framework.

We consider a basket consisting ofn assets with pricesSi(t), i = 1, . . . , n, which are described, under the risk
neutral measureQ and withr some risk-neutral interest rate, by

dSi(t) = rSi(t)dt + σiSi(t)dWi(t),

where{Wi(t), t > 0} are standard Brownian motions associated with the price of asseti. Further, we assume that the
different asset prices are instantaneously correlated in aconstant way i.e.

corr(dWi, dWj) = ρijdt. (1)

An Asian basket option is a path-dependent multi-asset option whose payoff combines the payoff structure of an Asian
option with that of a basket option. The current timet = 0 price of a discrete arithmetic Asian basket call option with
a fixed strikeK, maturityT andm averaging dates is determined by

ABC(n, m, K, T ) = e−rT EQ
[

(S − K)+
]

(2)
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with

S =

n
∑

ℓ=1

m−1
∑

j=0

aℓbjSℓ(0)e(r− 1
2σ2

ℓ )(T−j)+σℓWℓ(T−j) (3)

whereaℓ andbj are positive coefficients which both sum up to1, and where(x)+ = max{x, 0}. ForT ≤ m − 1, the
Asian basket call option is said to be in progress and forT > m− 1, we call it forward starting. Throughout the paper
we consider forward starting Asian basket call options but the methods apply in general. The prices of Asian basket
put options follow from the call option prices by the call-put parity relation. Indeed, if the price of an Asian basket
put option with a fixed strikeK, maturityT andm averaging dates is denoted by ABP(n, m, K, T ), static arbitrage
arguments lead to the following call-put parity relation:

ABC(n, m, K, T )− ABP(n, m, K, T ) =
n

∑

ℓ=1

m−1
∑

j=0

aℓbjSℓ(0)e−rj − e−rT K.

Determining the price of the Asian basket option is not a trivial task, because we do not have an explicit analytical
expression for the distribution of the weighted sum of the assets. Dahl and Benth value such options in [6] and [7]
by quasi-Monte Carlo techniques and singular value decomposition. In [9] we derived lower and upper bounds based
on stop-loss premia for non-independent random variables as in [12] or [10], [11] and on conditioning variables
as in [5], [16] or [14]. We also derived upper bounds for Asianbasket options applying techniques as in [17] and
[13]. A natural extension is to use approximation techniques which are easier to treat mathematically, as discussed
in [4] and references therein. Indeed those working in financial institutions prefer an approximate analytical solution
above a more accurate solution involving lengthy numericalcalculations. In the case of a basket option Deelstra et al.
[8] combine the conditioning approach as in [5] with some moment matching methods to derive an approximation.
Zhou and Wang approximate in [20] the underlying portfolio by some log-extended-skew-normal variates, whose
parameters are determined by moment matching methods and derive a closed form approximation formulae for pricing
both Asian and basket options.

In this paper we focus on approximations for pricing Asian basket options. We review and extend approximation
methods of [8] and [20] to the Asian basket case. The main innovation of this paper is to show how to extend the
approximation methods of [5] and [8] to a broad class of normal conditioning random variables and to improve the
upper bounds based on the Rogers and Shi approach reported in[9].

The paper is organized as follows. In section 2 we use methodsof Curran [5] and we decompose the price of the
Asian basket option in two parts; one of which is computed exactly. In section 3 we determine the class of normal
conditioning random variables and corresponding integration bound to split the integral in the expression of the Asian
basket option price. The remaining part of the integral is approximated using moment matching methods with a
lognormal approximating random variable in section 4. In section 5 we generalize the approach of [20] based on a
moment matching log-extended-skew-normal approximation. Further we adapt this approach to the extended Curran
methods of section 4. In section 6 we consider some numericalresults and discuss the qualitative behaviour of these
approximations.

2. Splitting the price by conditioning

In this section we follow the lines of [8] based on the method of conditioning as in [5] and [16]. The price of the
Asian basket option can be decomposed in two parts, one of which is computed exactly while the remaining part in the
decomposition is approximated using moment matching methods. We will show how to improve the exact part found
in [8]. At the same time we obtain an extension of the method of[5] to more general conditioning random variables
and an improvement of the upper bound based on the Rogers and Shi approach.

Apply the tower property with a conditioning random variableΛ and suppose that there exists adΛ ∈ R such that
Λ ≥ dΛ implies thatS ≥ K, then the option price (2) can be split in two parts:

ABC(n, m, K, T ) := I1 + I2

with
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I1 = e−rT

∫

∞

dΛ

(EQ [S | Λ = λ] − K) dFΛ(λ) = e−rT

∫

∞

dΛ

EQ [S | Λ = λ] dFΛ(λ) − e−rT K(1 − FΛ(dΛ)) (4)

I2 = e−rT

∫ dΛ

−∞

EQ
[

(S − K)+ | Λ = λ
]

dFΛ(λ). (5)

Theorem 1 The first termI1 (4) of the Asian basket option price ABC(n, m, K, T ) in (2) with S (3) as underlying
can be written explicitly if for allℓ andj, (Wℓ(T − j), Λ) is bivariate normally distributed withΛ ∼ N (EQ[Λ], σΛ):

I1 =

n
∑

ℓ=1

m−1
∑

j=0

aℓbjSℓ(0)e−rjΦ
[

rℓ,jσℓ

√

T − j − d∗Λ

]

− e−rT KΦ (−d∗Λ) (6)

whereΦ(·) is the standard normal cumulative distribution function ,d∗Λ = dΛ−EQ[Λ]
σΛ

and

rℓ,j =
cov(Wℓ(T − j), Λ)

σΛ

√
T − j

. (7)

Proof The conditional expectation in (6) is easily seen to be:

EQ[S | Λ = λ] =

n
∑

ℓ=1

m−1
∑

j=0

aℓbjSℓ(0)e
(r− 1

2 r2
ℓ,jσ2

ℓ )(T−j)+rℓ,jσℓ

√
T−j

λ−EQ[Λ]
σΛ . (8)

Elementary integral calculation and normalization of the random variableΛ lead to the required result.2
We will in the next section focus on the choice ofΛ and the integration bounddΛ.

3. Choice ofΛ and dΛ

In this section we treat the problem in a more general settingof sums of non-independent lognormal random
variables. Indeed, the double sum (3) is a special case of

S =
N

∑

i=1

wiαie
βi+γiYi , (9)

where the weightswi sum up to one, the coefficientsαi(> 0), βi, γi are deterministic and the normally distributed
random variablesYi have mean zero, varianceσ2

Yi
and are correlated withρij = corr(Yi, Yj).

In order to generalize the approach of [5] and of [8], we transform the sumS as follows:

S = F

N
∑

i=1

w̃ie
βi−ln δi+γiYi := FSF , (10)

where

w̃i =
wiαiδi

F
, F =

N
∑

i=1

wiαiδi, δi > 0, i = 1, . . . , N.

The coefficientsδi can be chosen arbitrarily. Different choices will be discussed below.
According to the approach of [8] we choose the conditioning random variableΛ as a linear combination of the random
variablesYi obtained as a linear transformation of a first order approximation ofS (10). Thus

S ≥ F

N
∑

i=1

w̃i(1 + βi − ln δi + γiYi) = F + F

N
∑

i=1

w̃i(βi − ln δi) + F

N
∑

i=1

w̃iγiYi ≥ K := FKF (11)

provides

Λ := FΛF = F

N
∑

i=1

w̃iγiYi (12)
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and the integration bound

dΛ = K − F − F

N
∑

i=1

w̃i(βi − ln δi) = F [KF − 1 −
N

∑

i=1

w̃i(βi − ln δi)] := FdΛF
. (13)

On the other hand applying the approach of [5] we approximatethe arithmetic averageSF by its corresponding
geometric averageGF :

S = FSF ≥ FGF = F

N
∏

i=1

(

eβi−ln δi+γiYi
)w̃i ≥ K = FKF . (14)

Taking the logarithm and noting that in view of (13)

ΛF = ln GF − EQ [ln GF ] , (15)

this reasoning leads to the integration bound

dΛ = FdΛF
= F [lnKF −

N
∑

i=1

w̃i(βi − ln δi)]. (16)

The two approaches lead to the same expression for the conditioning random variable but to two different integration
boundsdΛ.
Since the functionf(x) = lnx− (x− 1) reaches its maximum value zero forx = 1, it is negative in]0, +∞[ and the
expression (16) fordΛ will be smaller than the expression (13). Thus using (16) as integration bound when splitting
the integral in (4) and (5) will provide an improvement compared to the use of (13) fordΛ as was the case in [8].

This also implies that the upper bounds based on the Rogers and Shi approach, referred to UBRS in [9] calculated
with (16) will give better results than using (13). Indeed, from theorem 3 in [9] one can see that UBRSΛ is an
increasing function ofdΛ. From the numerical results in Table 4 in section 6, we can conclude that the so-called
partially/exact comonotonic upper bound denoted by PECUB is also considerably improved when determined by
(16).

For the Asian basket case (2)-(3), we list five conditioning random variablesΛ (12) with corresponding integration
bounddΛ (16) based on the choices forΛ that can be found in literature, see e.g. [18] and [19]:

FAk =

n
∑

ℓ=1

m−1
∑

j=0

aℓbjSℓ(0)δk(ℓ, j)σℓWℓ(T − j), (17)

k = 1, . . . , 5,

dFAk = F lnKF −
n

∑

ℓ=1

m−1
∑

j=0

aℓbjSℓ(0)δk(ℓ, j)[(r − 1

2
σ2

ℓ )(T − j) − ln δk(ℓ, j)], (18)

with

F =

n
∑

ℓ=1

m−1
∑

j=0

aℓbjSℓ(0)δk(ℓ, j), k = 1, . . . , 5, (19)

and with

δ1(ℓ, j) = e(r− 1
2σ2

ℓ )(T−j), δ2(ℓ, j) = 1, δ3(ℓ, j) = er(T−j), δ4(ℓ, j) = Sℓ(0)−1 (20)

δ5(ℓ, j) = er(T−j)− 1
2 (rFA3

ℓ,j σℓ

√
T−j−Φ−1(p))2 , (21)

whererFA3
ℓ,j is the correlation (7) forΛ = FA3 andp ∈]0, 1[ is the level of the conditional tail expectation used to

locally optimize the choice ofΛ (see [18]).
The integration bound of the form (13) equals the expressionin (18) but with the first termF lnKF replaced byK−F
and was used in [8] and [9].
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4. Moment matching lognormal approximation

In this section we discuss approximations of the second partI2 (5) based on the moment matching technique. First
we note that the following expressions for this partI2 are equivalent and can be used to start from for the moment
matching approximation:

I2 = e−rT

∫ dΛ

−∞

EQ[(S − K)+ | Λ = λ]dFΛ(λ)

= e−rT F

∫ dΛF

−∞

EQ[(SF − KF )+ | ΛF = λ]dFΛF
(λ)

= e−rT F

∫ KF

0

EQ[(SF − KF )+ | GF = g]dFGF
(g).

We will further work with the first expression and transform it into:

I2 = e−rT

∫ dΛ

−∞

EQ[((S − fs(Λ)) − (K − fs(Λ)))+ | Λ = λ]dFΛ(λ) (22)

and we will study three cases fors = 1, 2, 3:

f1(Λ) = 0, f2(Λ) = F (1 + ln GF ), f3(Λ) = FGF , (23)

where we recall that by relation (12) and (15) the dependenceon Λ is equivalent to the dependence onGF . These
choices forfs(Λ) are inspired by the approximations derived in (11) and in (14). These two cases were considered for
basket options in [8] but with an integration bounddΛ of the form (13) instead of (18) and only for the conditioning
random variables FA1 and FA2 for the cases = 2 and FA4 for the cases = 3. The present approach allows for a
broader class of conditioning random variables of the form (12).

We will approximate the conditioned random variableS − fs(Λ) | Λ = λ by a lognormal random variable with
parametersµs(λ) andσs(λ) and with the same first two moments asS − fs(Λ) | Λ = λ, s = 1, 2, 3. Then the
expression for the expectation in the integrand of (22) is well known and is similar to the Black-Scholes formula.
This reasoning leads to the following result:
Theorem 2 A moment matching lognormal approximation to the partI2 (22)-(23) of the Asian basket option price
ABC(n, m, K, T ) in (2) written onS is

e−rT

∫ dΛ

−∞

[eµs(λ)+ 1
2σ2

s(λ)Φ(d1(λ)) − (K − fs(λ))Φ(d2(λ))]dFΛ(λ), s = 1, 2, 3, (24)

with

d1(λ) =
µs(λ) + σ2

s(λ) − ln(K − fs(λ))

σs(λ)
, d2(λ) = d1(λ) − σs(λ),

fs(λ) defined in(23)and

µs(λ) +
1

2
σ2

s(λ) = ln(EQ[S | Λ = λ] − fs(λ))

µs(λ) + σ2
s(λ) =

1

2
ln(EQ[S2 | Λ = λ] − 2fs(λ)EQ[S | Λ = λ] + f2

s (λ)).

For the Asian basket case with the underlyingS given by (3), the conditional expectations above can be written out
explicitly. EQ[S | Λ = λ] was given in (8) while forEQ[S2 | Λ = λ] we find:

EQ[S2 | Λ = λ]

=

n
∑

ℓ,u=1

m−1
∑

j,p=0

aℓaubjbpSℓ(0)Su(0)e
(r− 1

2σ2
ℓ )(T−j)+(r− 1

2 σ2
u)(T−p)+ 1

2 (1−r2
ℓj,up)σ2

ℓj,up+rℓj,upσℓj,up
λ−EQ[Λ]

σΛ (25)

with

σ2
ℓj,up = σ2

ℓ (T − j) + σ2
u(T − p) + 2σℓσuρℓu min(T − j, T − p)

rℓj,upσℓj,up = rℓ,jσℓ

√

T − j + ru,pσu

√

T − p,
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and the correlationsρℓu andrℓ,j , ru,p defined in (1) and (7). WhenΛ is one of the FAk (17) then we moreover have
for k = 1, . . . , 5:

σ2
Λ =

n
∑

ℓ,u=1

m−1
∑

j,p=0

aℓaubjbpSℓ(0)Su(0)δk(ℓ, j)δk(u, p)σℓσuρℓu min(T − j, T − p) (26)

rℓ,j =
1

σΛ

√
T − j

n
∑

u=1

m−1
∑

p=0

aubpSu(0)δk(u, p)σuρℓu min(T − j, T − p). (27)

5. Moment matching log-extended-skew-normal approximation

In the case of an Asian option and a basket option Zhou and Wangapproximate in [20] the underlying portfolio by
some log-extended-skew-normal (LESN) variates whose parameters are determined by the moment matching method,
and derive certain closed form approximation formulae related to the standard extended-skew-normal distributions. In
this section we first follow their idea and generalize this method to the Asian basket case (2). Second we extend their
idea to the conditioning approach as in the previous sectionby following the idea of [5] and [8].

5.1. Log-extended-skew-normal random variable

The univariate skew normal distribution was introduced by Azzalini in [2]. In conjunction with coauthors, he ex-
tended this class to include the multivariate analog of the skew-normal. A survey of such models is given by Arnold
and Beaver in [1]. For a recent discussion and applications of the skew-normal distribution see for example [3] or
[15].
Definition 3 A random variableZ is said to be standard extended-skew-normal distributed with the skewness pa-
rametersα andτ , denoted byZ ∼ ESN(α, τ), if Z has the distribution function

Ψ (x, α, τ) =

∫ x

−∞

φ (z)
Φ

(

τ
√

1 + α2 + αz
)

Φ(τ)
dz, x ∈ R,

whereφ(·) denotes the density function andΦ(·) the standard normal cumulative distribution function. Ifτ = 0, then
we say thatZ has a standard skew-normal distribution with the skewness parameterα, denoted byZ ∼ SN(α). The
standard extended-skew-normal distribution has the following property

1 − Ψ (x, α, τ) = Ψ (−x,−α, τ) , ∀x, α, τ ∈ R.

A more general form of a skew normal distribution is obtainedby introducing a location parameterµ and a positive
scale parameterσ:
Definition 4 A random variable,Y , defined byY = µ + σZ with Z ∼ ESN(α, τ), is said to be extended-skew-
normally distributed and denoted byY ∼ ESN(µ, σ, α, τ). The random variable,X , defined byX := eY is then said
to be log-extended-skew-normally distributed and we denoteX ∼ LESN(µ, σ, α, τ).
Proposition 5 The moment generating function of a random variableY ∼ ESN(µ, σ, α, τ) is given by

E[eY t] =
Φ (τ + γt)

Φ (τ)
exp

[

µt +
1

2
σ2t2

]

, with γ =
σα√

1 + α2
,

and provides the moments of the corresponding random variable X = eY ∼ LESN(µ, σ, α, τ).

5.2. Log-extended-skew-normal approximation of the underlying portfolio

As suggested by Zhou and Wang in [20] we rewriteS (3) asFSF cfr. (10) and approximate the sumSF by some log-
extended-skew-normal random variable, since the LESN distribution is not only close to the lognormal distribution,
but also has the capability to capture the skew and kurtosis,besides the mean and variance.
Thus we approximate the sumSF by assuming that it is log-extended-skew-normally distributed with parametersµ,
σ, α andτ , and having the same four moments as the sum itself:
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Theorem 6 A moment matching LESN approximation to the Asian basket option price ABC(n, m, K, T ) (2) written
on the underlyingS given by (3) is

Fe−rT M(1)Ψ (d1,−α, τ + γ) − Ke−rT Ψ (d2,−α, τ) (28)

with

d1 =
µ + σ2 − ln K

F

σ
, d2 = d1 − σ, (29)

andF defined in(19), (20)and(21), and where the parametersµ, σ, γ andτ are solutions to the following system of
equations











































ln
Φ(τ + 4γ)

M(4)
− 6 ln

Φ(τ + 2γ)

M(2)
+ 8 ln

Φ(τ + γ)

M(1)
− 3 ln Φ(τ) = 0

ln
Φ(τ + 3γ)

M(3)
− 3 ln

Φ(τ + 2γ)

M(2)
+ 3 ln

Φ(τ + γ)

M(1)
− ln Φ(τ) = 0

µ =
1

2
ln

Φ(τ + 2γ)

M(2)
− 2 ln

Φ(τ + γ)

M(1)
+

3

2
ln Φ(τ)

σ2 = − ln
Φ(τ + 2γ)

M(2)
+ 2 ln

Φ(τ + γ)

M(1)
− ln Φ(τ)

, (30)

with M(i), t = i, . . . , 4 the first four moments ofS/F .
Proof Analogous to the proof given by Zhou and Wang [20].2

For pricing Asian options and basket options, Zhou and Wang only considered the case thatF in (19) is determined
by δ3(ℓ, j) = er(T−j) from (20).
In fact any choice ofF will provide the same result, since relation (28) for the approximate Asian basket option price
is independent ofF . Indeed the termslnF disappear in the last relation of (30) providingσ2. Also the termsln F
cancel out in the first two equations of (30) which determine the parametersτ andγ, and therefore alsoα = γ√

σ2
−γ2

.

Only in the expression forµ remains a term− lnF which however cancels out with the+ lnF from − ln K
F

in d1

(29). Henced1 andd2 are also independent of the factorF . Finally noting thatFM(1) = EQ[S] proves our claim.

5.3. Log-extended-skew-normal approximation after splittingand conditioning

We return to the case that we have split the option price in an exact partI1 (4) and a partI2 (22) that we approximate
by a moment matching technique but now using a log-extended-skew-normal random variable with parametersµ, σ,
α andτ that will depend on the conditioning random variable and onfs, s = 1, 2, 3. We will not write this dependence
explicitly in the notations of these parameters.
Theorem 7 A moment matching LESN approximation to the partI2 (22)-(23) of the Asian basket option price
ABC(n, m, K, T ) in (2) written onS given by (3) is

e−rT

∫ dΛ

−∞

[

EQ[S − fs(Λ) | Λ = λ]Ψ(d1(λ),−α, γ + τ) − (K − fs(λ))Ψ(d2(λ),−α, τ)
]

dFΛ(λ), s = 1, 2, 3,

(31)
with

d1(λ) =
µ + σ2 − ln K−fs(λ)

F

σ
, d2(λ) = d1(λ) − σ,

andF defined in(19), (20)and(21). The parametersµ, σ, γ andτ are solutions to the system(30)of equations where
the momentsM(i), i = 1, . . . , 4, are the first four moments of1

F
(S − fs(Λ)) | Λ = λ.

Proof Analogous to the proof of Theorem 6 but starting from (22).2

In numerical experiments we setτ equal to zero to simplify and speed up the calculations of theparameters. The
system (30) of equations reduces in that case to the last three equations. The three momentsM(i), i = 1, 2, 3, are
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initial weight volatility dividend yield

stock stock price (in %) (in %) (in %)

BASF 42.55 25 33.34 2.59

Bayer 48.21 20 31.13 2.63

Degussa-Hüls 34.30 30 33.27 3.32

FMC 100.00 10 35.12 0.69

Schering 66.19 15 36.36 1.24

Table 1
Stock characteristics

M(1) =
1

F
(EQ[S | Λ = λ] − fs(λ))

M(2) =
1

F 2
(EQ[S2 | Λ = λ] − 2fs(λ)EQ[S | Λ = λ] + f2

s (λ))

M(3) =
1

F 3
(EQ[S3 | Λ = λ] − 3fs(λ)EQ[S2 | Λ = λ] + 3f2

s (λ)EQ[S | Λ = λ] − f3
s (λ)),

with EQ[S | Λ = λ] andEQ[S2 | Λ = λ] given by (8) and (25) and

EQ[S3 | Λ = λ] =
n

∑

ℓ,u,i=1

m−1
∑

j,p,h=0

aℓauaibjbpbhSℓ(0)Su(0)Si(0)e(r− 1
2σ2

ℓ )(T−j)+(r− 1
2σ2

u)(T−p)+(r− 1
2σ2

i )(T−h)

× e
1
2 (1−r2

ℓj,up,ih)σ2
ℓj,up,ih+rℓj,up,ihσℓj,up,ih

λ−EQ[Λ]
σΛ ,

whereσ2
Λ is given by (26) and

σ2
ℓj,up,ih = σ2

ℓ (T − j) + σ2
k(T − p) + σ2

i (T − h) + 2σℓσuρℓu min(T − j, T − p)

+ 2σℓσiρℓi min(T − j, T − h) + 2σiσuρiu min(T − h, T − p),

rℓj,up,ihσℓj,up,ih = rℓ,jσℓ

√

T − j + ru,pσu

√

T − p + ri,hσi

√
T − h ,

with the correlationsρℓu, ρiu, ρℓi defined in (1) andrℓ,j , ru,p, ri,h defined in (27).
Further, we only consider the case thats = 3 but for all conditioning random variables FAk (17),k = 1, . . . , 5. When
testing the two other cases fors we end up with non-real values forα.

Another possibility to deal with the cumbersome calculations in solving the system (30) of the four equations is
to fix λ in the parameters instead of puttingτ = 0. Following the suggestion of [5] we make the moments constant
by fixing λ on dΛ which is equivalent to fixing the value ofGF on KF . However in this way the quality of the
approximation is much worse than the approach with puttingτ = 0 and keeping the parameters dependent onλ.

6. Numerical results

In this section we consider a numerical example for an Asian basket option in the Black & Scholes setting. In
order to compare the approximations and upper bounds for theAsian basket option prices, we take a set of input
data from [4] which are also used in [9]. The Asian basket option with monthly averaging is written on a fictitious
chemistry-pharma basket that consists of the five German DAXstocks listed in Tables 1 and 2.

The annual risk-free interest rater is equal to6% and we compute approximations for options with three different
maturity dates (half a year, one year and five years). The exercise prices are chosen in such a way that Tables 3 and 4
show results for in-the-money, at-the-money and out-of-the money options. The moneyness of the option is defined as

K
∑n

ℓ=1

∑m−1
j=0 aℓbjSℓ(0)er(T−j)

− 1. (32)

The averaging period of all options is five months and starts five months before maturity.
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BASF Bayer Degussa-Hüls FMC Schering

BASF 1.00 0.84 −0.07 0.45 0.43

Bayer 0.84 1.00 0.08 0.62 0.57

Degussa-Hüls−0.07 0.08 1.00 −0.54 −0.59

FMC 0.45 0.62 −0.54 1.00 0.86

Schering 0.43 0.57 −0.59 0.86 1.00

Table 2
Correlation structure

In Table 3 we list moment matching approximated option prices composed as the sum of (6) and (24) for the three
cases (23) and for all five conditioning random variables FAk (17), where for FA5 we putp = 0.95. For the log-
extended-skew-normal approximations based on Theorem 6 weonly report one result since (28) is independent of the
choice ofF . The LESN approximations composed as the sum of (6) and (31) are computed for the casef3(λ) (23) —
the other cases lead to complex values forα — but for all five conditioning random variables FAk. We reduced the
computations by putting eitherτ = 0 or by fixingλ in the moments.

From Table 3 we conclude that for short maturities the results are very similar for lognormal and for LESN approx-
imations for the first three conditioning random variables.The results for FA4 are much worse while those for FA5 are
slightly worse. It is also clear that the LESN approach with constant moments is not recommended for any maturity or
moneyness. For long maturities the LESN approximations with τ = 0 and with conditioning random variables FA1,
FA2 and FA3 outperform all other approximations.

The values for the upper bounds UBRSΛ and PECUBΛ in Table 4 are clearly better when using the integration
boundsdFAk (18) than when using the corresponding integration bounds with F lnKF replaced byK − F , cfr. (13),
of [9]. We also added the column of the lower bound LBΛ (as explained in [9]) to show that the lower bound is a
very precise bound, but that the approximations of Table 3 are much closer to the Monte Carlo simulations than the
bounds.

In Fig. 1 - Fig. 3 we plot the pricing error of an approximationwith respect to the moneyness (32) for different
maturitiesT , by choosing in each figure the conditioning variable which leads to the best results. The pricing error
expressed in basis points (bp) is defined as

approximation− MC value
∑n

ℓ=1 aℓSℓ(0)
10 000,

where the denominator equals here50.498 according to the data in Table 1. The log-extended-skew-normal approxi-
mations forf3 are only given forτ = 0 since fixingλ = dΛ in the moments does not lead to good results.

From the Fig. 1 - Fig. 3, we see that the approximations sometimes overestimate and sometimes underestimate the
price. The log-extended-skew-normalapproximations are less fluctuating, certainly for long-term maturities. However,
notice that the pricing-error scale is different in the different figures. The log-extended-skew-normal approximations
based onf3 clearly outperform the other approximations.

7. Conclusions

We derived moment matching pricing approximation methods for the price of European-style discrete arithmetic
Asian basket call options by decomposing the option price into an exact and an approximating part. We generalized
the results of [5], [8] and [20] in several ways: by considering a quite large class of normally distributed conditioning
variables, by looking at better integration bounds, by moment matching several conditioned random variables not only
by using the lognormal law, but also the log-extended-skew-normal law. These techniques can be applied to evaluating
other instruments based on a sum of dependent random variables.

Based on our numerical tests, we recommend the reader to use the log-extended-skew-normalapproximations based
onf3, especially for long-term maturities.
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lognormal LESN
K MC & SE S − fs(Λ) | Λ = λ S S − f3(Λ) | Λ = λ FAk

T (moneyness) To compare s = 1 s = 2 s = 3 τ = 0 λ = dΛ k
1

2
40 MC:10.8462 10.8464 10.8463 10.8462 10.8466 10.8462 10.8457 1

(−0.2181) SE:0.0007 10.8464 10.8463 10.8462 10.8462 10.8458 2
10.8462 10.8460 10.8466 10.8462 10.8457 3
10.8478 10.8478 10.8460 10.8463 10.8496 4
10.8467 10.8467 10.8461 10.8462 10.8440 5

50 MC:2.7865 2.7861 2.7863 2.7864 2.7854 2.7864 2.7864 1
(−0.0227) SE:0.0005 2.7862 2.7862 2.7864 2.7864 2.7865 2

2.7861 2.7862 2.7864 2.7864 2.7864 3
2.7923 2.7922 2.7811 2.7863 2.8823 4
2.7856 2.7857 2.7865 2.7864 2.7831 5

60 MC:0.2342 0.2338 0.2341 0.2341 0.2347 0.2341 0.2360 1
(0.1728) SE:0.0001 0.2338 0.2341 0.2341 0.2341 0.2361 2

0.2338 0.2341 0.2344 0.2341 0.2359 3
0.2269 0.2270 0.2375 0.2340 0.3211 4
0.2339 0.2339 0.2341 0.2341 0.2342 5

1 40 MC:11.7167 11.7177 11.7171 11.7158 11.7177 11.7166 11.7123 1
(−0.2332) SE:0.0008 11.7177 11.7172 11.7158 11.7166 11.7125 2

11.7178 11.7174 11.7147 11.7166 11.7122 3
11.7307 11.7306 11.7132 11.7174 11.7433 4
11.7214 11.7216 11.7151 11.7167 11.6983 5

50 MC:4.7362 4.7345 4.7348 4.7364 4.7341 4.7365 4.7371 1
(−0.0415) SE:0.0006 4.7347 4.7346 4.7363 4.7365 4.7375 2

4.7344 4.7344 4.7366 4.7365 4.7368 3
4.7529 4.7528 4.7193 4.7364 4.8874 4
4.7318 4.7334 4.7366 4.7363 4.7229 5

60 MC:1.4118 1.4099 1.4126 1.4113 1.4113 1.4113 1.4214 1
(0.1502) SE:0.0003 1.4099 1.4125 1.4113 1.4113 1.4222 2

1.4099 1.4121 1.4126 1.4113 1.4210 3
1.3978 1.3982 1.4035 1.4102 1.6530 4
1.4078 1.4080 1.4121 1.4113 1.4093 5

5 40 MC:17.3142 17.3192 17.3191 17.2935 17.3208 17.3166 17.2876 1
(−0.3346) SE:0.0010 17.3949 17.3304 17.2946 17.3162 17.3104 2

17.4026 17.3602 17.2787 17.3170 17.2735 3
17.4937 17.4896 17.2782 17.3249 17.7599 4
17.4562 17.3018 17.2934 17.3190 17.0853 5

50 MC:12.6063 12.6250 12.5672 12.5846 12.6065 12.6035 12.6700 1
(−0.1807) SE:0.0009 12.6287 12.5676 12.5843 12.6041 12.7088 2

12.6232 12.5785 12.5890 12.6033 12.6490 3
12.5347 12.8179 12.8205 12.6161 13.5507 4
12.6449 12.6046 12.5848 12.6039 12.4303 5

60 MC:9.1438 9.1228 9.1117 9.1284 9.1420 9.1431 9.3520 1
(−0.0168) SE:0.0008 9.1325 9.0989 9.1269 9.1440 9.4135 2

9.1168 9.0851 9.1513 9.1426 9.3230 3
9.0517 9.3349 9.3351 9.1520 10.6943 4
9.1310 9.1656 9.0927 9.1407 9.0478 5

70 MC:6.6678 6.6347 6.6567 6.6549 6.6617 6.6656 7.0425 1
(0.1470) SE:0.0008 6.6447 6.6404 6.6530 6.6662 7.1321 2

6.6282 6.6121 6.6913 6.6652 7.0048 3
6.7980 6.7999 6.5679 6.6684 8.8520 4
6.5807 6.6867 6.6596 6.6625 6.6399 5

Table 3
Comparing Approximations for Asian basket call option prices
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K MC & SE UBRSΛ with dΛ PECUBΛ with dΛ FAk

T (moneyness) To compare LBΛ (18) [9] (18) [9] k
1

2
40 MC:10.8462 10.8448 10.8517 10.8556 10.8821 10.9042 1

(−0.2181) SE:0.0007 10.8448 10.8516 10.8558 10.8820 10.9054 2
10.8448 10.8518 10.8566 10.8824 10.9087 3
10.8433 10.8578 11.1429 10.8974 11.1100 5

50 MC:2.7865 2.7801 2.8939 2.8939 3.4911 3.4912 1
(−0.0227) SE:0.0005 2.7801 2.8932 2.8932 3.4915 3.4919 2

2.7800 2.8947 2.8949 3.4911 3.4934 3
2.7737 2.9488 3.0736 3.5180 4.0501 5

60 MC:0.2342 0.2299 0.4556 0.4617 0.8908 0.9288 1
(0.1728) SE:0.0001 0.2299 0.4557 0.4613 0.8915 0.9272 2

0.2300 0.4555 0.4599 0.8897 0.9212 3
0.2320 0.5163 0.5319 0.8533 0.9626 5

1 40 MC:11.7167 11.6984 11.7857 11.8013 11.9971 12.0623 1
(−0.2332) SE:0.0008 11.6989 11.7846 11.8025 11.9964 12.0710 2

11.6980 11.7864 11.8103 11.9973 12.0927 3
11.6783 11.8340 12.3240 12.0563 12.5306 5

50 MC:4.7362 4.7094 5.0154 5.0155 5.7643 5.7644 1
(−0.0415) SE:0.0006 4.7095 5.0127 5.0127 5.7661 5.7664 2

4.7093 5.0175 5.0186 5.7636 5.7700 3
4.6873 5.1353 5.4376 5.7811 6.4161 5

60 MC:1.4118 1.3882 1.8935 1.9106 2.6327 2.7179 1
(0.1502) SE:0.0003 1.3875 1.8927 1.9080 2.6366 2.7092 2

1.3887 1.8945 1.9038 2.6311 2.6800 3
1.3911 2.0334 2.1417 2.5516 2.9013 5

5 40 MC:17.3142 16.9863 18.1377 18.1608 18.5559 18.5893 1
(−0.3346) SE:0.0010 17.0031 18.1194 18.1698 18.5676 18.6527 2

16.9727 18.1508 18.3305 18.5464 18.7903 3
16.7462 18.4094 18.4818 18.5481 18.6231 5

50 MC:12.6063 12.2353 13.9176 13.9249 14.5404 14.5541 1
(−0.1807) SE:0.0009 12.2421 13.9031 13.9032 14.5676 14.5678 2

12.2283 13.9336 13.9787 14.5276 14.6051 3
12.0441 14.2167 14.4801 14.4048 14.7463 5

60 MC:9.1438 8.7834 10.9200 11.0153 11.5385 11.6879 1
(−0.0168) SE:0.0008 8.7775 10.9175 10.9485 11.5779 11.6439 2

8.7854 10.9327 10.9330 11.5237 11.5243 3
8.6873 11.2343 11.6669 11.2745 11.8449 5

70 MC:6.6678 6.3285 8.8451 9.0801 9.2663 9.5618 1
(0.1470) SE:0.0008 6.3127 8.8601 9.0051 9.3117 9.5048 2

6.3376 8.8493 8.8720 9.2508 9.2873 3
6.3166 9.1348 9.6583 8.9129 9.5241 5

Table 4
Comparing lower and upper bounds for Asian basket call option prices
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