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Abstract

In this paper we propose some moment matching pricing metfadEuropean-style discrete arithmetic Asian basketogtin

a Black & Scholes framework. We generalize the approach]cdufd of [8] in several ways. We create a framework that allows
for a whole class of conditioning random variables whichramemally distributed. We moment match not only with a lognat
random variable but also with a log-extended-skew-normadlom variable. We also improve the bounds of [9]. Numeresilts

are included and on the basis of our numerical tests, we iexplaich method we recommend depending on moneyness and
time-to-maturity.

Key words: Asian basket option, sum of non-independent random vasalbhoment matching, log-extended-skew-normal
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1. Introduction

In this paper we propose pricing methods for European-digterete arithmetic Asian basket options in a Black &
Scholes framework.
We consider a basket consistingrofassets with prices;(¢), ¢ = 1,...,n, which are described, under the risk
neutral measur® and withr some risk-neutral interest rate, by
where{W;(t), t > 0} are standard Brownian motions associated with the pricessta Further, we assume that the
different asset prices are instantaneously correlatecdonatant way i.e.
Corr(dWi, de) = p”dt (1)

An Asian basket option is a path-dependent multi-assedbopthose payoff combines the payoff structure of an Asian
option with that of a basket option. The current titne 0 price of a discrete arithmetic Asian basket call option with
a fixed strikeK', maturityT andm averaging dates is determined by

ABC(n,m,K,T)=e ""E?[(S— K), | (2)
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with

n m-—1

S — Z agh; Sp(0)e"= 37 (T=9)+oeWe(T=j) 3)

=1 j=0

wherea, andb; are positive coefficients which both sum upltand wheréz); = max{z,0}. ForT < m — 1, the
Asian basket call option is said to be in progress andfor m — 1, we call it forward starting. Throughout the paper
we consider forward starting Asian basket call options batrhethods apply in general. The prices of Asian basket
put options follow from the call option prices by the calltgarity relation. Indeed, if the price of an Asian basket
put option with a fixed strikds<, maturityT andm averaging dates is denoted by ABPm, K, T'), static arbitrage
arguments lead to the following call-put parity relation:

n m-—1
ABC(n,m, K, T) = ABP(n,m, K, T) = > Y ab;Se(0)e 7 —e ""K.
/=1 j=0

Determining the price of the Asian basket option is not aatitask, because we do not have an explicit analytical
expression for the distribution of the weighted sum of theets Dahl and Benth value such options in [6] and [7]
by quasi-Monte Carlo techniques and singular value decaitipo. In [9] we derived lower and upper bounds based
on stop-loss premia for non-independent random variatgeis §12] or [10], [11] and on conditioning variables
as in [5], [16] or [14]. We also derived upper bounds for Astasket options applying techniques as in [17] and
[13]. A natural extension is to use approximation techngwéich are easier to treat mathematically, as discussed
in [4] and references therein. Indeed those working in firmestitutions prefer an approximate analytical solatio
above a more accurate solution involving lengthy numedaddulations. In the case of a basket option Deelstra et al.
[8] combine the conditioning approach as in [5] with some reatmatching methods to derive an approximation.
Zhou and Wang approximate in [20] the underlying portfolipdome log-extended-skew-normal variates, whose
parameters are determined by moment matching methods &nd delosed form approximation formulae for pricing
both Asian and basket options.

In this paper we focus on approximations for pricing Asiasket options. We review and extend approximation
methods of [8] and [20] to the Asian basket case. The mainviatian of this paper is to show how to extend the
approximation methods of [5] and [8] to a broad class of ndmoaditioning random variables and to improve the
upper bounds based on the Rogers and Shi approach repof®d in

The paper is organized as follows. In section 2 we use metbb@sirran [5] and we decompose the price of the
Asian basket option in two parts; one of which is computedttiyxaln section 3 we determine the class of normal
conditioning random variables and corresponding intégmdiound to split the integral in the expression of the Asian
basket option price. The remaining part of the integral iprapimated using moment matching methods with a
lognormal approximating random variable in section 4. Ictise 5 we generalize the approach of [20] based on a
moment matching log-extended-skew-normal approximataointher we adapt this approach to the extended Curran
methods of section 4. In section 6 we consider some numedsalts and discuss the qualitative behaviour of these
approximations.

2. Splitting the price by conditioning

In this section we follow the lines of [8] based on the methbdanditioning as in [5] and [16]. The price of the
Asian basket option can be decomposed in two parts, one afvisicomputed exactly while the remaining partin the
decomposition is approximated using moment matching nusthd&/e will show how to improve the exact part found
in [8]. At the same time we obtain an extension of the methof@pfo more general conditioning random variables
and an improvement of the upper bound based on the RogershaagiBoach.

Apply the tower property with a conditioning random var@hl and suppose that there existd,ac R such that
A > d, implies thatS > K, then the option price (2) can be split in two parts:

ABC(n,m,K,T):=1, + I,
with



L =eT /OO(E@ [S|A=)\—-K)dFx(\) =e "7 /OO EQ[S|A=AdFA(\) —e"TK(1— Fr(dy))  (4)
da da

da
I = e—"T/ E?[(S—K), | A=A dFx(N). (5)

Theorem 1 The first terml; (4) of the Asian basket option price ABCm, K,T) in (2) with S (3) as underlying
can be written explicitly if for alt andj, (W, (T — 5), A) is bivariate normally distributed witih ~ A (EQ[A], o5 ):

n m-—1
=3 3" abSu(0)e D [rosoe /T = - di| — T K® (~dy) (6)
(=1 j=0
where®(.) is the standard normal cumulative distribution functiatt,, = % and
COMW(T — j), A)
rej = . 7
Proof The conditional expectation in (6) is easily seen to be
n m-—1 Q
EQ[S |A =)= Z aébjsz(o)e("‘—%7‘5,;‘‘75)(T—j)+'r‘e,j<7£\/T—J—A : [A]' (8)
(=1 j=0

Elementary integral calculation and normalization of thedom variablé\ lead to the required result.0
We will in the next section focus on the choice/ofand the integration bount}, .

3. Choice of A and dx

In this section we treat the problem in a more general setiingums of non-independent lognormal random
variables. Indeed, the double sum (3) is a special case of

N
S = Zwiozieﬁi"'"”y*, (9)

i=1

where the weights; sum up to one, the coefficients(> 0), §;, v; are deterministic and the normally distributed
random variable§’; have mean zero, varianeg. and are correlated with;; = corr(Y;, Y;).
In order to generalize the approach of [5] and of [8], we tfamms the sunt as foIIows

S = szieﬁi_lnéi"r’)’iyi := FSp, (10)
i=1

where

i;0; -
@i:%, j_t?:z:wioéi(si7 6;>0, i=1,...,N.

The coefficient®; can be chosen arbitrarily. Different choices will be disadbelow.
According to the approach of [8] we choose the conditionargliom variable\ as a linear combination of the random
variablesY; obtained as a linear transformation of a first order apprasion ofS (10). Thus

N N N
S>FY w148~ +7Y:) =F+FY @8 —Iné)+F» w7Y; > K:=FKp  (11)

i=1 =1 =1
provides

N
A:=FAp=F> Y, (12)

i=1



and the integration bound

N
dy=K—F—F>» @(Bi —Ing) = F Ff1fzwzz Ind;)] := Fdy,. (13)

=1

On the other hand applying the approach of [5] we approxirtieearithmetic averag®y by its corresponding
geometric averag€ :

N ~
S=FSp > FGp =F[] (™)™ > K = FKp. (14)

Taking the logarithm and noting that in view of (13)
Ar=InGr —E¢[InGy], (15)

this reasoning leads to the integration bound
dy = Fdp, = FInKp — Zw ; — Ind;)] (16)

The two approaches lead to the same expression for the monidg random variable but to two different integration
boundsd,.

Since the functiorf () = Inz — (= — 1) reaches its maximum value zero for= 1, it is negative in0, +oo[ and the
expression (16) fod, will be smaller than the expression (13). Thus using (16n&gration bound when splitting
the integral in (4) and (5) will provide an improvement comgzhto the use of (13) fat, as was the case in [8].

This also implies that the upper bounds based on the RogérSlarapproach, referred to UBRS in [9] calculated
with (16) will give better results than using (13). Indeedchnfi theorem 3 in [9] one can see that UBR& an
increasing function ofl,. From the numerical results in Table 4 in section 6, we carclcaie that the so-called
partially/exact comonotonic upper bound denoted by PEC&BIso considerably improved when determined by
(16).

For the Asian basket case (2)-(3), we list five conditionisgdom variabled (12) with corresponding integration
boundd, (16) based on the choices farthat can be found in literature, see e.g. [18] and [19]:

n m-—1

FAR =577 by Se(0)6 (¢, 1)oe We(T — ), (17)
(=1 j=0
J S . k=1,...,5,
deak = FInKp = agh;Se(0)d (L, 5)[(r — 50?)(T—j)—1n5k(€,j)], (18)
(=1 j=0
with
n m-—1
F= azbj54(0>5k(£,]), k=1,...,5, (19)
£=1 j=0
and with
01(0,5) = " ETDT=D by (0,5) =1, 85(0,5) = €T, 64(L,5) = Se(0) 7" (20)
85(C,7) = erT=N=3(riFPoey/T—j=27" (2)* (1)

Wherer/A3 is the correlation (7) fo\ = FA3 andp €]0, 1] is the level of the conditional tail expectation used to
locally optimize the choice ok (see [18]).

The integration bound of the form (13) equals the expredgsi¢t8) but with the first tern¥ In K replaced by — F
and was used in [8] and [9].



4. Moment matching lognormal approximation

In this section we discuss approximations of the secondipd®) based on the moment matching technique. First
we note that the following expressions for this partare equivalent and can be used to start from for the moment
matching approximation:

da
I = 6_7'T/ EQ[(S — K), | A = NJdFy(\)

— 00

dap
= e—"TF/ EQ[(Sp — Kr)y | Ar = NJdFy,. ()

—00

Kp
e [ 0 e 6 =i )
0

We will further work with the first expression and transfortimio:

da
B=e " [ TEA(S - £.00) - (K - L)) | A= NdFA(Y) (22)

— 00

and we will study three cases fer= 1, 2, 3:
fl(A) :0, fQ(A) :F(1+1DGF), f3(A) :F‘(GF7 (23)

where we recall that by relation (12) and (15) the dependenck is equivalent to the dependence @Gi. These
choices forf,(A) are inspired by the approximations derived in (11) and ir).(TAese two cases were considered for
basket options in [8] but with an integration boudd of the form (13) instead of (18) and only for the conditioning
random variables FAand FA for the cases = 2 and FAL for the cases = 3. The present approach allows for a
broader class of conditioning random variables of the fdt®).(

We will approximate the conditioned random variaBle- f;(A) | A = A by a lognormal random variable with
parametergis(A) andos(A) and with the same first two moments &s- fs(A) | A = A\, s = 1,2,3. Then the
expression for the expectation in the integrand of (22) i6 kveown and is similar to the Black-Scholes formula.
This reasoning leads to the following result:

Theorem 2 A moment matching lognormal approximation to the plar{22)-(23) of the Asian basket option price
ABC(n,m, K, T) in (2) written onS is

— /‘“ et M F3 XN D (dy (N)) — (K — f,(\)®(d2(N)]dFA(N), s=1,2,3, (24)

with

ps(\) + 02 (N) — In(K — fs(N))
os(A)

di(N) =
fs(\) defined in(23)and

v (N =di(A) - os(V),

pa) + 502() = W(EYS | A= 2] ~ £,(V)

a0+ 02 = 5 (EYS? | A= A~ 2£,(WEYS | A =]+ 2(00).

For the Asian basket case with the underlyihgiven by (3), the conditional expectations above can baewribut
explicitly. E2[S | A = A] was given in (8) while fo2?[S? | A = \] we find:

EQ[S? | A = )]
n  m-—1 o
= Z Z awubjbpsg(O)Su(o)e(rf%Uf)(T*J’H(T*%03)(T*p)+%(1*Tfj,up)ff?j,up“ej,upffej,upAf:;fw (25)
L,u=1 j,p=0
with

o-l?j,up = O'?(T - ]) + O—i(T - p) + 20—40’71/)[71 Il’llIl(T - jv T - p)

T0jupTljup = 10,500\ T 7]. + Tu,pOuy/ T— D,
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and the correlationg,,, andry ;, r, , defined in (1) and (7). When is one of the FA (17) then we moreover have
fork=1,...,5:

n m—1

ox = > Y araub;bySe(0)S.(0)5k(¢, §)Sk (u, p)oecupr min(T — §,T — p) (26)
lyu=1 j,p=0
1 n m—1
T = ——— a0y Sy (0)0k (U, p)oype min(T — 5, T — p). (27)
vy DIP IR (

5. Moment matching log-extended-skew-normal approximation

In the case of an Asian option and a basket option Zhou and \Appigpximate in [20] the underlying portfolio by
some log-extended-skew-normal (LESN) variates whosenpetiers are determined by the moment matching method,
and derive certain closed form approximation formulaeteel@o the standard extended-skew-normal distributions. |
this section we first follow their idea and generalize thighod to the Asian basket case (2). Second we extend their
idea to the conditioning approach as in the previous sebiydiollowing the idea of [5] and [8].

5.1. Log-extended-skew-normal random variable

The univariate skew normal distribution was introduced kaga&lini in [2]. In conjunction with coauthors, he ex-
tended this class to include the multivariate analog of Kesvsnormal. A survey of such models is given by Arnold
and Beaver in [1]. For a recent discussion and applicatidriseoskew-normal distribution see for example [3] or
[15].

Definition 3 A random variableZ is said to be standard extended-skew-normal distributed thie skewness pa-
rameterse andr, denoted by ~ ESN«, 7), if Z has the distribution function
’ ¢ (rvV1I+a?+
Vo) = [ o) 4 50 =)
where¢(-) denotes the density function afd-) the standard normal cumulative distribution functionr I 0, then
we say thatZ has a standard skew-normal distribution with the skewnesametera, denoted by ~ SN«). The
standard extended-skew-normal distribution has the fahg property

1-9 (z,a,7) =¥ (—z,—a,T), YV, o, € R.

A more general form of a skew normal distribution is obtaibgdntroducing a location parameterand a positive
scale parameter:
Definition 4 A random variableY’, defined byy" = p + 0Z with Z ~ ESN«, 7), is said to be extended-skew-
normally distributed and denoted by ~ ESNy, o, «, 7). The random variableX, defined byX := ¥ is then said
to be log-extended-skew-normally distributed and we deNot- LESNu, o, o, 7).
Proposition 5 The moment generating function of a random variabler ESN i, o, «, 7) is given by

dz, © €R,

P t 1 .
E[eYt] = % exp [ut + 50%2} ,  withy = \/%,

and provides the moments of the corresponding random Merigib= ¥ ~ LESNy, o, a, 7).
5.2. Log-extended-skew-normal approximation of the undeglpiortfolio

As suggested by Zhou and Wang in [20] we rew§i{@) asF'Sr cfr. (10) and approximate the su$w by some log-
extended-skew-normal random variable, since the LESNiloligion is not only close to the lognormal distribution,
but also has the capability to capture the skew and kurtosgdes the mean and variance.

Thus we approximate the suf- by assuming that it is log-extended-skew-normally distiglol with parameters,
o, o andr, and having the same four moments as the sum itself:

6



Theorem 6 A moment matching LESN approximation to the Asian bask&iroptice ABGn, m, K, T') (2) written
on the underlyiné given by (3) is

Fe " "M ()W (dy, —a, 7 +7) — Ke "0 (da, —a, 7) (28)

with
K
:u—i-aQ—lnF

y=—————, da=di—o0, (29)
g

and F' defined in(19), (20)and (21), and where the parameters o, v andr are solutions to the following system of
equations

In (I)(j%‘:)m) 61n @(1%2?”; 81n @5{48)’”) 3Ind(r) =0
O(1 + 3y O(7 + 2y O(7+ 7 B
In B —3In M) +3lnwfln®(7)f0 30
_11 O(1 + 27) 5] O(1+7) §1 o ’
u—2n7]\(4(2) )— ni]\/{(l) ;—211 T)
2 D(17+ 2y d(r+ v
o ——1DT(2)+QIHT(1)—1D<I>(T)

with M (i), t =1, ..., 4 the first four moments &/ F.
Proof Analogous to the proof given by Zhou and Wang [20[

For pricing Asian options and basket options, Zhou and Wamrgaonsidered the case th@tin (19) is determined
by 3(¢, j) = e"(T=7) from (20).
In fact any choice of" will provide the same result, since relation (28) for therappmate Asian basket option price
is independent of". Indeed the termi F disappear in the last relation of (30) providing. Also the termdn F
cancel out in the first two equations of (30) which determieegarameters and~, and therefore als@ = ——

Only in the expression for remains a term- In F' which however cancels out with theln F' from — In % in dy
(29). Hencel, andd, are also independent of the fact®r Finally noting that"M/ (1) = E[S] proves our claim.

5.3. Log-extended-skew-normal approximation after splitémgl conditioning

We return to the case that we have split the option price irxantgart/; (4) and a parf, (22) that we approximate
by a moment matching technique but now using a log-exterséted~normal random variable with parametgrs,
« andr that will depend on the conditioning random variable ang'grs = 1, 2, 3. We will not write this dependence
explicitly in the notations of these parameters.
Theorem 7 A moment matching LESN approximation to the p&rt(22)(23) of the Asian basket option price
ABC(n,m, K,T) in (2) written onS given by (3) is

da
e—"T/ [EQS — f5(A) | A = NU(di(N), —c, v + 7) — (K — fs(A\)¥(d2(N), —a, 7)] dFA(N), s=1,2,3,

- (31)
with
w+o?—1In K=fs(N)
d1(>\) = pu Ll , dg()\) = d1(>\) — 0,

and F' defined in(19), (20)and(21). The parameters, o, v andr are solutions to the systef80) of equations where
the momentd/ (i), i = 1,...,4, are the first four moments gf(S — f,(A)) | A = A.
Proof Analogous to the proof of Theorem 6 but starting from (22Q

In numerical experiments we setequal to zero to simplify and speed up the calculations optrameters. The
system (30) of equations reduces in that case to the lagt #oyeations. The three moment&i), : = 1,2, 3, are
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initial  weight volatility dividend yield

stock stock price (in %)  (in %) (in %)
BASF 42.55 25 33.34 2.59
Bayer 48.21 20 31.13 2.63
Degussa-Huls 34.30 30 33.27 3.32
FMC 100.00 10 35.12 0.69
Schering 66.19 15 36.36 1.24

Table 1
Stock characteristics

M(1) = (B8 | A =X - ,(\)
M(2) = 75 (B9[S | A =\ - 21, (VB[S | A = A + £2(V)
M(3) = 75898 | A =\ - 3,(VEY[S? | A = \] + 3200ES[S | A = A] - F20V)

with EQ[S | A = )] andE?[S? | A = A] given by (8) and (25) and

n m—1
EQ[S3 | A = )] = Z Z aéauaibjbpbhgz(O)Su(O)SZ.(O)G(T*%U?)(T*j)ﬂr*%Ui)(T*pH(T*%Uf)(T*h)

lou,i=1 j,p,h=0

1 2 2 A—EQ[A]
X65(1*Tej,up,7,h)”z;,u,p,ihJFWJ\up,ihUej,up,q,h e

whereo? is given by (26) and

a-l?j,up,ih = af(T — i)+ ai(T —p)+ O',L-Q(T —h) + 200y pe min(T — j, T — p)
+ 2040, pp; min(T — j, T — h) 4 20,04 pi, min(T — h, T — p),

T0jup,ih0tj,up,ih =700\ T — 7 +Tupou/T —p+1inoi VI —h,

with the correlationgy.,, piu, pe; defined in (1) andy ;, ry p, 75, defined in (27).
Further, we only consider the case that 3 but for all conditioning random variables RA17),k =1,...,5. When
testing the two other cases fewe end up with non-real values far

Another possibility to deal with the cumbersome calculasiin solving the system (30) of the four equations is
to fix A in the parameters instead of putting= 0. Following the suggestion of [5] we make the moments coitistan
by fixing A on d, which is equivalent to fixing the value d&» on K. However in this way the quality of the
approximation is much worse than the approach with puttirg0 and keeping the parameters dependent.on

6. Numerical results

In this section we consider a numerical example for an Asiaskét option in the Black & Scholes setting. In
order to compare the approximations and upper bounds foAsien basket option prices, we take a set of input
data from [4] which are also used in [9]. The Asian basketaptiith monthly averaging is written on a fictitious
chemistry-pharma basket that consists of the five German Btagks listed in Tables 1 and 2.

The annual risk-free interest ratés equal to6% and we compute approximations for options with three déffer
maturity dates (half a year, one year and five years). Themsegprices are chosen in such a way that Tables 3 and 4
show results for in-the-money, at-the-money and out-efationey options. The moneyness of the option is defined as

K
- — — 1.
2=t Z;nzol aeh;Se(0)er(T—=17)
The averaging period of all options is five months and starésrfionths before maturity.

(32)
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BASF Bayer Degussa-Hils FMC Schering

BASF 1.00 0.84 —0.07 0.45 0.43
Bayer 0.84 1.00 0.08 0.62 0.57
Degussa-Hiils —0.07 0.08 1.00 —0.54 -0.59
FMC 0.45 0.62 —0.54 1.00 0.86
Schering 0.43 0.57 —0.59 0.86 1.00

Table 2
Correlation structure

In Table 3 we list moment matching approximated option ric@mposed as the sum of (6) and (24) for the three
cases (23) and for all five conditioning random variable& FA7), where for FA we putp = 0.95. For the log-
extended-skew-normal approximations based on Theoremdhiyeeport one result since (28) is independent of the
choice ofF'. The LESN approximations composed as the sum of (6) and (8 bamputed for the cagg(\) (23) —
the other cases lead to complex valuesdor but for all five conditioning random variables EAWe reduced the
computations by putting either= 0 or by fixing A in the moments.

From Table 3 we conclude that for short maturities the resark very similar for lognormal and for LESN approx-
imations for the first three conditioning random variablése results for FA are much worse while those for BAare
slightly worse. It is also clear that the LESN approach withgtant moments is not recommended for any maturity or
moneyness. For long maturities the LESN approximations wit= 0 and with conditioning random variables FA
FA2 and FA3 outperform all other approximations.

The values for the upper bounds UBR&nd PECUB\ in Table 4 are clearly better when using the integration
boundsdga; (18) than when using the corresponding integration bouritfs #in K - replaced by — F, cfr. (13),
of [9]. We also added the column of the lower boundA_Bas explained in [9]) to show that the lower bound is a
very precise bound, but that the approximations of Tableevauch closer to the Monte Carlo simulations than the
bounds.

In Fig. 1 - Fig. 3 we plot the pricing error of an approximatiwith respect to the moneyness (32) for different
maturitiesT’, by choosing in each figure the conditioning variable whiedds to the best results. The pricing error
expressed in basis points (bp) is defined as

approximation- MC value
> i1 aeSe(0)

where the denominator equals héfe498 according to the data in Table 1. The log-extended-skewnaabapproxi-
mations forfs are only given forr = 0 since fixingA = d, in the moments does not lead to good results.

From the Fig. 1 - Fig. 3, we see that the approximations senastioverestimate and sometimes underestimate the
price. The log-extended-skew-normal approximationsesgfluctuating, certainly for long-term maturities. Hoeev
notice that the pricing-error scale is different in the elifint figures. The log-extended-skew-normal approximatio
based ory; clearly outperform the other approximations.

10000,

7. Conclusions

We derived moment matching pricing approximation methadgte price of European-style discrete arithmetic
Asian basket call options by decomposing the option pritee &m exact and an approximating part. We generalized
the results of [5], [8] and [20] in several ways: by considgra quite large class of normally distributed conditioning
variables, by looking at better integration bounds, by meimeatching several conditioned random variables not only
by using the lognormal law, but also the log-extended-skhewnal law. These techniques can be applied to evaluating
other instruments based on a sum of dependent random \ewiabl

Based on our numerical tests, we recommend the reader theikgtextended-skew-normal approximations based
on f3, especially for long-term maturities.



lognormal LESN
K MC & SE S—Ff(A) A=) S S—fa(A) A=A FAk
T (moneyness) To compare s=1 s=2 s=3 T=0 A=dp k
% 40 MC:10.8462 10.8464 10.8463 10.8462 10.8466 10.8462 450.8 1
(—0.2181) SE:0.0007 10.8464 10.8463 10.8462 10.8462 10.8458 2
10.8462 10.8460 10.8466 10.8462 10.8457
10.8478 10.8478 10.8460 10.8463 10.8496
10.8467 10.8467 10.8461 10.8462 10.8440
50 MC:2.7865 2.7861 2.7863 2.7864 2.7854 2.7864 2.7864
(—0.0227) SE:0.0005 2.7862 2.7862 2.7864 2.7864 2.7865
2.7861 2.7862 2.7864 2.7864 2.7864
2.7923 2.7922 2.7811 2.7863 2.8823
2.7856 2.7857 2.7865 2.7864 2.7831
60 MC:0.2342 0.2338 0.2341 0.2341 0.2347 0.2341 0.2360
(0.1728) SE:0.0001 0.2338 0.2341 0.2341 0.2341 0.2361
0.2338 0.2341 0.2344 0.2341 0.2359
0.2269 0.2270 0.2375 0.2340 0.3211
0.2339 0.2339 0.2341 0.2341 0.2342
1 40 MC:11.7167 11.7177 11.7171 11.7158 11.7177 11.7166 123.7 1
(—0.2332) SE:0.0008 11.7177 11.7172 11.7158 11.7166 11.7125 2
11.7178 11.7174 11.7147 11.7166 11.7122
11.7307 11.7306 11.7132 11.7174 11.7433
11.7214 11.7216 11.7151 11.7167 11.6983
50 MC:4.7362 4.7345 4.7348 4.7364 4.7341 4.7365 47371
(—0.0415) SE:0.0006 4.7347 4.7346 4.7363 4.7365 4.7375
4.7344 4.7344 4.7366 4.7365 4.7368
4.7529 4.7528 4.7193 4.7364 4.8874
4.7318 4.7334 4.7366 4.7363 4.7229
60 MC:1.4118 1.4099 1.4126 1.4113 1.4113 1.4113 1.4214
(0.1502) SE:0.0003 1.4099 1.4125 1.4113 1.4113 1.4222
1.4099 1.4121 1.4126 1.4113 1.4210
1.3978 1.3982 1.4035 1.4102 1.6530
1.4078 1.4080 1.4121 1.4113 1.4093
5 40 MC:17.3142 17.3192 17.3191 17.2935 17.3208 17.3166 818.2 1
(—0.3346) SE:0.0010 17.3949 17.3304 17.2946 17.3162 17.3104 2
17.4026 17.3602 17.2787 17.3170 17.2735
17.4937 17.4896 17.2782 17.3249 17.7599
17.4562 17.3018 17.2934 17.3190 17.0853
50 MC:12.6063 12.6250 12.5672 12.5846 12.6065 12.6035 700.6 1
(—0.1807) SE:0.0009 12.6287 12.5676 12.5843 12.6041 12.7088 2
12.6232 12.5785 12.5890 12.6033 12.6490
12.5347 12.8179 12.8205 12.6161 13.5507
12.6449 12.6046 12.5848 12.6039 12.4303
60 MC:9.1438 9.1228 9.1117 9.1284 9.1420 9.1431 9.3520
(—0.0168) SE:0.0008 9.1325 9.0989 9.1269 9.1440 9.4135
9.1168 9.0851 9.1513 9.1426 9.3230
9.0517 9.3349 9.3351 9.1520 10.6943
9.1310 9.1656 9.0927 9.1407 9.0478
70 MC:6.6678 6.6347 6.6567 6.6549 6.6617 6.6656 7.0425
(0.1470) SE:0.0008 6.6447 6.6404 6.6530 6.6662 7.1321
6.6282 6.6121 6.6913 6.6652 7.0048
6.7980 6.7999 6.5679 6.6684 8.8520
6.5807 6.6867 6.6596 6.6625 6.6399
Table 3

Comparing Approximations for Asian basket call option psic
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K MC & SE UBRSA with dp PECUBA with dx FAk

T (moneyness) To compare B (18) [9] (18) [9] k
% 40 MC:10.8462 10.8448 10.8517 10.8556 10.8821 10.9042 1
(—0.2181) SE:0.0007 10.8448 10.8516 10.8558 10.8820 10.9054 2
10.8448 10.8518 10.8566 10.8824 10.9087 3
10.8433 10.8578 11.1429 10.8974 11.1100 5
50 MC:2.7865 2.7801 2.8939 2.8939 3.4911 3.4912
(—0.0227) SE:0.0005 2.7801 2.8932 2.8932 3.4915 3.4919 2
2.7800 2.8947 2.8949 3.4911 3.4934 3
2.7737 2.9488 3.0736 3.5180 4.0501 5
60 MC:0.2342 0.2299 0.4556 0.4617 0.8908 0.9288 1
(0.1728) SE:0.0001 0.2299 0.4557 0.4613 0.8915 0.9272 2
0.2300 0.4555 0.4599 0.8897 0.9212 3
0.2320 0.5163 0.5319 0.8533 0.9626 5
1 40 MC:11.7167 11.6984 11.7857 11.8013 11.9971 12.0623 1
(—0.2332) SE:0.0008 11.6989 11.7846 11.8025 11.9964 12.0710 2
11.6980 11.7864 11.8103 11.9973 12.0927 3
11.6783 11.8340 12.3240 12.0563 12.5306 5
50 MC:4.7362 4.7094 5.0154 5.0155 5.7643 5.7644
(—0.0415) SE:0.0006 4.7095 5.0127 5.0127 5.7661 5.7664 2
4.7093 5.0175 5.0186 5.7636 5.7700 3
4.6873 5.1353 5.4376 5.7811 6.4161 5
60 MC:1.4118 1.3882 1.8935 1.9106 2.6327 2.7179 1
(0.1502) SE:0.0003 1.3875 1.8927 1.9080 2.6366 2.7092 2
1.3887 1.8945 1.9038 2.6311 2.6800 3
1.3911 2.0334 2.1417 2.5516 2.9013 5
5 40 MC:17.3142 16.9863 18.1377 18.1608 18.5559 18.5893 1
(—0.3346) SE:0.0010 17.0031 18.1194 18.1698 18.5676 18.6527 2
16.9727 18.1508 18.3305 18.5464 18.7903 3
16.7462 18.4094 18.4818 18.5481 18.6231 5
50 MC:12.6063 12.2353 13.9176 13.9249 14.5404 14.5541 1
(—0.1807) SE:0.0009 12.2421 13.9031 13.9032 14.5676 14.5678 2
12.2283 13.9336 13.9787 14.5276 14.6051 3
12.0441 14.2167 14.4801 14.4048 14.7463 5
60 MC:9.1438 8.7834 10.9200 11.0153 11.5385 11.6879 1
(—0.0168) SE:0.0008 8.7775 10.9175 10.9485 11.5779 11.6439
8.7854 10.9327 10.9330 11.5237 11.5243 3
8.6873 11.2343 11.6669 11.2745 11.8449 5
70 MC:6.6678 6.3285 8.8451 9.0801 9.2663 9.5618 1
(0.1470) SE:0.0008 6.3127 8.8601 9.0051 9.3117 9.5048 2
6.3376 8.8493 8.8720 9.2508 9.2873 3
6.3166 9.1348 9.6583 8.9129 9.5241 5
Table 4

Comparing lower and upper bounds for Asian basket call opiiices
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