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Abstract
In this paper, we observe the convergence of the long-term return,

using an extension of the Cox-Ingersoll-Ross (1985) stochastic model of
the short interest rate r. Using the theory of Bessel processes, we are
able to prove the convergence almost everywhere of 1

t

∫ t

0
Xsds with X a

generalized Besselsquare process with drift with stochastic reversion level.
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1 Introduction.

In this paper, we are interested in the long-term return 1
t

∫ t

0
rudu where (ru)u≥0

denotes the instantaneous interest rate. Insurance companies promise a certain
fixed percentage of interest on their insurance products such as bonds, life-
insurances, etcetera. We wonder how this percentage should be determined. It
has to be lower than the estimated random return in order to cover expenses
and to hold some reserves so that the company can get through difficult peri-
ods of economic crisis without bankruptcy. On the other hand, the competitive
struggle, strengthened by the open market of the European Community, forces
rival companies to take the wishes of the clientele into considerations. Naturally,
the costumer wants a return as high as possible.

In this light, we think it is interesting to study and to model the long-term return
in a mathematical way. We analyse the convergence of the long-term return,
using an extension of the Cox, Ingersoll and Ross (1985) stochastic model of
the short interest rate r. Cox, Ingersoll and Ross express the short interest rate
dynamics as

drt = κ(γ − rt)dt + σ
√

rtdBt.

with (Bt)t≥0 a Brownian motion and κ, γ and σ positive constants. It is a well-
known fact that this model has some empirically relevant properties. In this
model, r never becomes negative and for 2κγ ≥ σ2, r does not reach zero. For
κ > 0 and γ ≥ 0, the randomly moving interest rate is elastically pulled towards
the long-term constant value γ.

However, it is reasonable to conjecture that the market will constantly change
this level γ and the volatility σ. In the footsteps of Schaefer and Schwartz
(1984), Hull and White (1990) and Longstaff and Schwartz (1992), we extend
the CIR model in order to reflect the time-dependence caused by the cycli-
cal nature of the economy or by expectations concerning the future impacts of
monetary policies. We assume the reversion level to be stochastic and we also
generalize the volatility. In this situation, we examine the convergence of the
long-term return 1

t

∫ t

0
rudu and we propose some applications.

We consider a family of stochastic processes X, which contains the Bessel-
square processes with drift. The many results known about these processes,
e.g. Pitman-Yor (1982), Revuz-Yor (1991), convinced us that these processes
are very tractable. Using the theory of Bessel processes, we found the following
theorem, which is very useful for deducing the convergence almost everywhere
of the long-term return in quite general situations:

Theorem 1
Suppose that a probability space (Ω, (Ft)t≥0, IP ) is given and that a Brownian
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motion (Bt)t≥0 is defined on it. A stochastic process X : Ω × IR+ → IR+ is
assumed to satisfy the stochastic differential equation

dXs = (2βXs + δs)ds + g(Xs)dBs ∀s ∈ IR+

with β < 0 and g : IR → IR+ a function, vanishing at zero and such that there
is a constant b with |g(x)− g(y)| ≤ b

√
|x− y|.

The measurable and adapted process δ : Ω× IR+ → IR+ is assumed to satisfy:

1
s

∫ s

0

δudu
a.e.→ δ with δ : Ω → IR+.

Under these conditions, the following convergence almost everywhere holds

1
s

∫ s

0

Xudu
a.e.−→ −δ

2β
.

We will give a proof of this theorem in section 2.

In section 3, we show an immediate application of theorem 1. We consider the
long-term return in the two-factormodel:

drt = κ(γt − rt)dt + σ
√

rtdBt

dγt = κ̃(γ∗ − γt)dt + σ̃
√

γtdB̃t

with (Bt)t≥0 and (B̃t)t≥0 two Brownian Motions and with κ, κ̃, σ, σ̃ and γ∗

positive constants. The short interest rate process has a reversion level which
is a stochastic process itself. We do not need any assumptions about the cor-
relation between the Brownian motions of the instantaneous interest rate and
of the stochastic reversion level process. We stress this fact because it is not
trivial. Most authors of two-factormodels require, for technical reasons, that the
Wiener processes are uncorrelated or have a deterministic and fixed correlation.

Without further notice we assume that the filtration (Ft)t≥0 satisfies the usual
assumptions with respect to IP , a fixed probability on the sigma-algebra F∞ =∨

t≥0 Ft. Also B is a continuous process that is a Brownian motion with respect
to (Ft)t≥0.
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2 Convergence a.e. of the long-term return.

Using the theory of Bessel processes, see Pitman-Yor (1982), we found a the-
orem which is very useful for deducing the convergence almost everywhere of
the long-term return in quite general situations. In this section, we give a proof
of the convergence result, which relies on the theory of stochastic differential
equations and on Kronecker’s lemma.

First, we recall Kronecker’s lemma which is a standard lemma, even for stochas-
tic integrals [see Revuz-Yor (1991, p.175 exercise 1.16)]. For completeness, we
give a proof.

Kronecker’s lemma

Let us assume a continuous semimartingale Y and a strictly positive increasing
function f which tends to infinity.
If
∫∞
0

dYu

f(u) exists a.e., then Yt

f(t) −→ 0 a.e.
Proof

If we denote dZt = dYt

f(t) , then Yt = Y0 +
∫ t

0
f(u)dZu. By partial integration,

recall that the semimartingale Z is continuous, we find that:

Yt = Y0 + f(t)Zt − f(0)Z0 −
∫ t

0

Zudf(u)

= Y0 + f(0)Zt +
∫ t

0

(Zt − Zu)df(u)− f(0)Z0.

Consequently,

Yt

f(t)
=

Y0 + f(0)Zt − f(0)Z0

f(t)
+

1
f(t)

∫ t

0

(Zt − Zu)df(u).

Since Z∞ =
∫∞
0

dYu

f(u) exists a.e., (Zt)t≥0 converges to Z∞ a.e. and therefore
supZt < ∞ a.e.. Hence, the first term converges to zero a.e..
Let us look at the second term:

1
f(t)

∫ t

0

(Zt − Zu)df(u) =
1

f(t)

∫ s

0

(Zt − Zu)df(u) +
1

f(t)

∫ t

s

(Zt − Zu)df(u).

Since (Zt)t≥0 converges to Z∞ a.e., we can choose for a given ε > 0, a number
s large enough such that |Zt − Zu| < ε for all t, u ≥ s. For this fixed s, we can
choose t such that 2 maxu≥0 |Zu| f(s)

f(t) < ε.

q.e.d.

4



To study the convergence a.e. of the long-term return, we consider a family
of stochastic processes X, which contains the Besselsquare processes with drift.
We define the (continuous) adapted process X by the stochastic differential
equation

dXs = (2βXs + δs)ds + g(Xs)dBs ∀s ∈ IR+

with β strictly negative and g a function, vanishing at zero and satisfying a
Hölder condition of order one half. In order to have a unique solution of this
stochastic differential equation, we suppose that

∫ t

0
δsds < ∞ for all t. The

unique solution X is non-negative and satisfies

Xs = e2βs

(
X0 +

∫ s

0

δue−2βu du +
∫ s

0

e−2βu g(Xu) dBu

)
. (1)

In view of the applications, we think that the problem of existence and unique-
ness goes beyond the scope of this paper. The interested reader is referred to
Deelstra-Delbaen (1994).

For this family of stochastic processes, we first prove a technical lemma needed
in the proof of the main theorem.

Lemma 1

Suppose that a probability space (Ω, (Ft)t≥0, IP ) is given and that a stochastic
process X : Ω× IR+ → IR+ is defined by the stochastic differential equation

dXs = (2βXs + δs)ds + g(Xs)dBs ∀s ∈ IR+

with

• β ≤ 0,

• g : IR → IR+ is a function, vanishing at zero and such that there is a
constant b with |g(x)− g(y)| ≤ b

√
|x− y|,

• δ : Ω× IR+ → IR+ is an adapted and measurable process,

•
∫ t

0
δudu < ∞ a.s. for all t.

Then for all t ≥ 0 we have sup0≤u≤t Xu is finite and if
∫ t

0
IE[δu]du < ∞ we

have for all s ≤ t:

IE[Xs] = e2βsX0 +
∫ s

0

e2β(s−u)IE[δu]du .
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Proof

Let us first consider the case
∫ t

0
E[δu]du < ∞.

We define the sequence (Tn)n≥0 of stopping times by

Tn = inf{u | Xu ≥ n}.
From (1), we have that for all s ≤ t

e−2β(s∧Tn)Xs∧Tn = X0 +
∫ s∧Tn

0

δue−2βudu +
∫ s∧Tn

0

g(Xu)e−2βu dBu. (2)

Since X is bounded on the interval [[0, Tn]] and since |g(x)| is bounded by b
√

x,
we obtain that

(∫ s∧Tn

0
g(Xu)e−2βu dBu

)
0≤s≤t

is a martingale, bounded in L2.

Indeed, let us calculate the square of the L2 norm:

IE

[∫ t∧Tn

0

g2(Xu)e−4βu du

]

≤ e−4βtIE

[∫ t∧Tn

0

b2Xu du

]

≤ b2e−4βtIE

[∫ t∧Tn

0

Xu du

]
≤ b2e−4βtnt < ∞ .

Therefore, the expected value of
∫ s∧Tn

0
e−2βug(Xu) dBu is zero and equation (2)

reduces to

IE
[
e−2β(s∧Tn)Xs∧Tn

]
= X0 + IE

[∫ s∧Tn

0

δue−2βu du

]
.

Taking the limit for n going to infinity and applying Fatou’s lemma, we obtain
for all s ≤ t:

IE[Xs] ≤ e2βsX0 + e2βsIE

[∫ s

0

δue−2βudu

]
≤ e2βsX0 + IE

[∫ s

0

δudu

]
< ∞.

We now show that supt≥s≥0 Xs is integrable. From the solution of the stochastic
differential equation, it is known that

sup
s≤t

Xs ≤ sup
s≤t

(
e2βs

(
X0 +

∫ s

0

δue−2βudu +
∫ s

0

g(Xu)e−2βudBu

))
≤ X0 +

∫ t

0

δu du + sup
s≤t

∣∣∣∣∫ s

0

g(Xu)e−2βu dBu

∣∣∣∣ .
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Consequently,

IE

[
sup
s≤t

Xs

]
≤ X0 +

∫ t

0

IE[δu] du +
∥∥∥∥sup

s≤t

∫ s

0

g(Xu)e−2βu dBu

∥∥∥∥
2

.

Using Doob’s inequality, we remark that the last term is bounded.∥∥∥∥sup
s≤t

∫ s

0

g(Xu)e−2βudBu

∥∥∥∥2

2

≤ 4
∥∥∥∥∫ t

0

g(Xu)e−2βudBu

∥∥∥∥2

2

≤ 4e−4βtIE

[∫ t

0

g(Xu)2du

]
≤ 4e−4βtIE

[∫ t

0

b2Xu du

]
≤ 4e−4βtb2

∫ t

0

IE[Xu] du

< ∞.

This shows that (Xs∧Tn
)0≤s≤t,n≥1 is a uniformly integrable family and that we

are allowed to interchange limits and expectations in the expression

lim
n→∞

IE
[
e−2β(s∧Tn)Xs∧Tn

]
= lim

n→∞

(
X0 + IE

[∫ s∧Tn

0

e−2βuδu

])
.

We conclude that in the case of
∫ t

0
IE[δu]du < ∞, the result is obtained:

IE[Xs] = e2βsX0 +
∫ s

0

e2β(s−u)IE[δu]du.

Let us now look at the general case with the local assumption
∫ t

0
δudu < ∞ a.e.

for all t. We define the sequence (σn)n≥1 by σn = inf{t |
∫ t

0
δu ≥ n} and we

denote δu11[[0,σn]] by δ
(n)
u . The stochastic differential equation

dX(n)
s =

(
2βX(n)

s + δ(n)
s

)
ds + g(X(n)

s )dBs

has a unique solution and by the definition of σn, we have
∫ t

0
IE[δ(n)

u ]du ≤
n. Applying the first part of the proof, we obtain sup0≤s≤t X

(n)
s < ∞ a.e..

On [[0, σn]], all X(k), k ≥ n are equal by the uniqueness of the solution of the
stochastic differential equation. Since

⋃
[[0, σn]] ⊃ [[0, t]], the result holds under

the local assumption
∫ t

0
δudu < ∞ a.e. for all t.

q.e.d.
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Now, we are ready for the convergence theorem itself.

Theorem 1

Suppose that a probability space (Ω, (Ft)t≥0, IP ) is given and that a Brownian
motion (Bt)t≥0 is defined on it. A stochastic process X : Ω × IR+ → IR+ is
assumed to satisfy the stochastic differential equation

dXs = (2βXs + δs)ds + g(Xs)dBs ∀s ∈ IR+

with β < 0 and g : IR → IR+ a function, vanishing at zero and such that there
is a constant b with |g(x)− g(y)| ≤ b

√
|x− y|.

The measurable and adapted process δ : Ω× IR+ → IR+ is assumed to satisfy:

1
s

∫ s

0

δudu
a.e.→ δ with δ : Ω → IR+.

Under these conditions, the following convergence almost everywhere holds

1
s

∫ s

0

Xudu
a.e.−→ −δ

2β
.

Proof
Integrating the stochastic differential equation

dXs = (2βXs + δs)ds + g(Xs)dBs ∀s ∈ IR+

over the time-interval [0,t] and dividing this integral by 2β(t + 1), gives us the
equality:

1
t + 1

∫ t

0

(Xs +
δs

2β
)ds = −

∫ t

0

g(Xs)
2β(t + 1)

dBs +
Xt −X0

2β(t + 1)
. (3)

It remains to prove that both terms on the right hand side converge to zero
almost everywhere.

In order to show that
∫ t

0
g(Xs)

2β(t+1)dBs converges to zero a.e., we use Kronecker’s

lemma and check the existence a.e. of
∫∞
0

g(Xu)
u+1 dBu.

Let us introduce the sequence (Tn)n≥1 of stopping times:

Tn = inf
{

t |
∫ t

0

δu

(u + 1)2
du ≥ n

}
.

Since by hypothesis 1
s+1

∫ s

0
δudu

a.e.→ δ, we obtain that
∫ u

0
δsds ≤ K(u + 1) a.e.

for some constant K, depending on ω. Straightforward calculations show that
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∫∞
0

δu

(u+1)2 du < ∞ a.e.:∫ ∞

0

δu

(u + 1)2
du =

∫ u

0
δsds

(u + 1)2

∣∣∣∣∣
∞

0

+ 2
∫ ∞

0

(∫ u

0

δsds

)
du

(u + 1)3

≤ lim
u→∞

∫ u

0
δsds

(u + 1)2
− 0 + 2

∫ ∞

0

K(u + 1)
(u + 1)3

du

< ∞.

Hence, {Tn = ∞} ↑ Ω and consequently, we only need to prove the existence
a.e. of

∫∞
0

g(XTn
u )

u+1 dBu on {Tn = ∞}.

Moreover, since
∫∞
0

g(XTn
u )

u+1 dBu is a local martingale, it suffices to remark that∫ t

0
g(XTn

u )
u+1 dBu is a L2-bounded martingale:∥∥∥∥∫ t

0

g(XTn
u )

u + 1
dBu

∥∥∥∥2

2

=
∫ t

0

IE
[
g2(XTn

u )
] 1

(u + 1)2
du

≤
∫ t

0

IE
[
XTn

u

] b2

(u + 1)2
du.

In order to evaluate this last integral, we remark that

IE
[
XTn

u

]
= IE

[
Xu11(u≤Tn)

]
≤ e2βuIE

[
e−2βuXu11(u≤Tn)

]
≤ e2βuIE

[
e−2β(u∧Tn)Xu∧Tn

]
.

In lemma 1, we obtained the equality

IE[e−2β(s∧Tn)Xs∧Tn
] = X0 + IE

[∫ s∧Tn

0

e−2βuδudu

]
.

Consequently:

IE
[
XTn

u

]
≤ e2βu

(
X0 + IE

[∫ u∧Tn

0

e−2βsδsds

])

≤ e2βuX0 + e2βu

∫ u

0

e−2βsIE
[
δs11(s≤Tn)

]
ds.

Using this result, we obtain∫ t

0

IE
[
XTn

u

] 1
(u + 1)2

du
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≤
∫ t

0

X0
e2βu

(u + 1)2
du

+
∫ t

0

e2βu

(u + 1)2
du

∫ u

0

e−2βsIE
[
δs11(s≤Tn)

]
ds.

Obviously, the first term is uniformly bounded in t.
It remains to look at the second term. We apply Fubini’s theorem to find a
bound which is not depending on t:∫ t

0

e2βu

(u + 1)2
du

∫ u

0

e−2βsIE
[
δs11(s≤Tn)

]
ds

=
∫ t

0

e−2βsIE
[
δs11(s≤Tn)

]
ds

∫ t

s

e2βu

(u + 1)2
du

≤
∫ t

0

IE
[
δs11(s≤Tn)

] 1
(s + 1)2

(
−1
2β

)
ds

≤ −1
2β

IE

[∫ Tn

0

δs

(s + 1)2
ds

]
≤ −n

2β
.

In order to show that the second term of (3), namely Xt−X0
2β(t+1) , converges to zero

a.e., we divide the solution of the stochastic differential equation (1) by t + 1:

Xt

t + 1
=

e2βtX0

t + 1
+
∫ t

0

e2β(t−u)

t + 1
δudu +

∫ t

0

e2β(t−u)

t + 1
g(Xu)dBu. (4)

Under the hypothesis 1
s+1

∫ s

0
δudu

a.e.→ δ, the second term in (4) can be made
arbitrarily small, since for all ω ∈ Ω and for all ε > 0 :

1
t + 1

∫ t

0

e2β(t−u)δ(ω, u)du

≤ 1
t + 1

∫ t−
√

t

0

e2β
√

tδ(ω, u)du +
1

t + 1

∫ t

t−
√

t

δ(ω, u)du.

Given ε > 0, the first term can be rewritten

1
t + 1

∫ t−
√

t

0

e2β
√

tδ(ω, u)du

≤ 1
t + 1−

√
t

∫ t−
√

t

0

e2β
√

tδ(ω, u)du

≤ δ(1 + ε)e2β
√

t.
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Consequently, the first term converges to zero for t going to infinity.
The second term also tends to zero since

lim
t→∞

1
t + 1

∫ t

t−
√

t

δ(ω, u)du

= lim
t→∞

(
1

t + 1

∫ t

0

δ(ω, u)du− 1
t + 1−

√
t

∫ t−
√

t

0

δ(ω, u)du

)

+ lim
t→∞

(
−1

t + 1
+

1
t + 1−

√
t

)∫ t−
√

t

0

δ(ω, u)du

= δ − δ + lim
t→∞

√
t

t + 1
1

t + 1−
√

t

∫ t−
√

t

0

δ(ω, u)du

= 0.

In order to check the convergence a.e. of e2βt

t+1

∫ t

0
e−2βug(Xu)dBu to zero, we

again use Kronecker’s lemma and we look at the existence of
∫∞
0

e−2βtg(Xt)
(t+1)e−2βt dBt.

However, since this integral is equal to
∫∞
0

g(Xt)
t+1 dBt, the result follows from the

calculations above.
q.e.d.

This theorem can be generalized to stochastic processes X with a time-dependent
strictly negative drift rate β. Let us define the process X by the stochastic dif-
ferential equation

dXs = (2βsXs + δs)ds + g(Xs)dBs for all s ∈ IR+

where the function g and the process δ satisfy the hypothesis of theorem 1; and

where sups βs < 0 and
∫∞
0

dvIE[δv]e−
∫ v

0
2βsds ∫∞

v
e

∫ u

0
2βsds

(u+1)2 du < ∞. Then, the
following convergence almost everywhere holds:

1
s

∫ s

0

(
Xu +

δu

2βu

)
du

a.e.−→ 0.
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3 A two-factor CIR model.

In this section, we give an example of theorem 1. We study the two-factormodel

drt = κ(γt − rt)dt + σ
√

rtdBt

dγt = κ̃(γ∗ − γt)dt + σ̃
√

γtdB̃t

with κ, κ̃ > 0; γ∗, σ and σ̃ positive constants and (Bt)t≥0 and (B̃t)t≥0 two Brow-
nian motions. The short interest rate r follows an extended Cox, Ingersoll and
Ross square root process with reversion level (γt)t≥0, which follows a square root
process itself. We know that the time-dependent reversion level (γt)t≥0 is itself
elastically pulled towards the long-term constant value γ∗. We are interested in
the convergence of the long term return 1

t

∫ t

0
rudu.

Remark that we do not make any assumption about the way the two Wiener
processes are correlated. In contrast with most authors, we do not demand
the Brownian motions to be independent, they may have an arbitrary random
correlation.

Before looking at the convergence almost everywhere of the long-term return
1
s

∫ s

0
rudu itself, we first use theorem 1 to check that indeed

1
s

∫ s

0

γudu
a.e.→ γ∗.

If we define Yu = 4
σ̃2 γu, then Yu satisfies the stochastic differential equation :

dYu =
(

4κ̃γ∗

σ̃2
+ 2

(
−κ̃

2

)
Yu

)
du + 2

√
YudB̃u.

Thus, (Yu)u≥0 is a Besselsquare process with drift, namely in the notation of
Pitman-Yor :

Y ∼ −κ̃/2IQ
4κ̃γ∗

σ̃2
4γ0
σ̃2

.

In general, dYu =
(
δu + 2β̃Yu

)
du + g̃ (Yu) dB̃u

with

• β̃ = −κ̃
2 < 0

• δu = 4κ̃γ∗

σ̃2 ∀u ∈ IR+

• g̃ (Yu) = 2
√

Yu.

Trivially, the conditions of theorem 1 are satisfied and it follows that

1
s

∫ s

0

Yudu
a.e.→ 4γ∗

σ̃2
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and consequently:
1
s

∫ s

0

γudu
a.e.→ γ∗.

Analogously, we consider the instantaneous interest rate ru itself. The transfor-
mation Xu = 4

σ2 ru satisfies the stochastic differential equation

dXu =
(

4κγu

σ2
+ 2

(
−κ

2

)
Xu

)
du + 2

√
XudBu.

In terms of theorem 1:

dXu = (δu + 2βXu) du + g (Xu) dBu

with

• β = −κ
2 < 0

• δu = 4κγu

σ2 ∀u ∈ IR+

• g (Xu) = 2
√

Xu.

Since δ is a transformation of the continuous, adapted process γ, δ itself is
measurable and adapted. Because 1

s

∫ s

0
γudu

a.e.→ γ∗, we know that

1
s

∫ s

0

δudu =
(

1
s

∫ s

0

γudu

)
4κ

σ2

a.e.−→ γ∗
4κ

σ2
.

Therefore, the conditions of theorem 1 are fulfilled and we find that

1
s

∫ s

0

Xudu
a.e.→ 4γ∗

σ2

and finally that
1
s

∫ s

0

rudu
a.e.→ γ∗.

We conclude that the long-term return converges a.e. to γ∗, the long-term
constant value towards which the drift rate is pulled in this two-factormodel.
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