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Abstract

In this paper, we investigate an optimization problem related to super-replicating strate-

gies for European-type call options written on a weighted sum of asset prices, following the

initial approach in Chen et al. (2008). Three issues are investigated. The first issue is the

(non-)uniqueness of the optimal solution. The second issue is the generalization to an op-

timization problem where the weights may be random. This theory is then applied to static

super-replication strategies for some exotic options in a stochastic interest rate setting. The

third issue is the study of the co-existence of the comonotonicity property and the martingale

property.
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1 Introduction

Self-financing portfolios play an important role in hedging, trading and valuation. When a self-

financing portfolio dominates an exotic option in terms of its pay-off, it is a super-replicating

portfolio. In addition, when the weights of the elements in a super-replicating portfolio are fixed

from the starting time, it is a static super-replicating portfolio, and the corresponding strategy is

called a static super-replicating strategy.

For a given exotic option, in general, several strategies will exist which super-replicate its

pay-off. One of the aims of this paper is to investigate the problem of finding the cheapest

strategy in a well-defined class of admissable super-replicating strategies for the exotic option

under consideration.

1.1 Static super-replicating strategies

For i = 1, 2, . . . , n, the random variable Xi, defined on the probability space (Ω,F ,P) denotes

the price of an asset at some future date Ti, 0 ≤ Ti ≤ T. Hereafter, we always assume that all Xi

are positive r.v.’s1. The current time-0 price of a European call option with pay-off (Xi −K)+ at

maturity Ti is denoted by Ci [K]. We assume that these options are traded on an options exchange

and we can observe the market prices for these options.

Chen et al. (2008) consider a class of European call type exotic options written on S =
∑n

i=1 wiXi for some deterministic weights wi > 0, which have a pay-off at expiration time T

equal to (S −K)+ . The inequality

(S −K)+ =

(

n
∑

i=1

wiXi −K

)

+

≤
n
∑

i=1

wi(Xi −Ki)+, P-a.s., (1)

always holds for all (K1, K2, . . . , Kn) satisfying
∑n

i=1 wiKi ≤ K and Ki ≥ 0, i = 1, . . . , n.

Static super-replicating strategies with pay-off
∑n

i=1 wi(Xi−Ki)+,
∑n

i=1 wiKi ≤ K, are studied

1Throughout this paper, all random variables are assumed to have finite expectations.
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in Chen et al. (2008) in a deterministic interest rate setting.

It has been proven that one can obtain an ‘optimal’ decomposition K =
∑n

i=1 wiK
∗
i with an

explicit expression for the optimal K∗
i , i = 1, . . . , n; see Simon et al. (2000) or Dhaene et al.

(2002a). A simplified version of it can be found in Theorem 1 of the next section in this paper.

Using the optimal decomposition K∗
i , i = 1, . . . , n, the corresponding super-replicating strategy

for the exotic call option has the least price at time zero among a general class of super-replicating

investment strategies.

For the moment, we assume that the risk-free rate r is deterministic and constant. In Section

3, we relax this assumption and consider the case where interest rates behave stochastically. From

inequality (1) and the discussion above, we find that the optimal super-replicating strategy for an

exotic call option consists of buying at time zero wie
−r(T−Ti) European vanilla call options with

pay-off (Xi−K∗
i )+ at time Ti and holding these options until they expire at time Ti. We exercise

those options with positive pay-offs and invest the eventual pay-offs at that time in the risk-free

account until time T. The time-0 price of this optimal super-replicating strategy is given by

n
∑

i=1

wie
−r(T−Ti)Ci [K

∗
i ] . (2)

The upper bound (2) for the time-0 price of an exotic call as well as the corresponding super-

replicating strategy can be obtained in an infinite market case, meaning that prices Ci [K] of

vanilla call options are available for all strikes K, and in a finite market case, where only a finite

number of vanilla call option prices are observed; see e.g. Hobson et al. (2005) and Chen et al.

(2008). In Linders et al. (2012) it is noticed that in the infinite market case, the cheapest super-

replicating strategy for the exotic call option derived above cannot be improved by adding other

traded derivatives to the financial market, as long as these derivatives are written on a single asset.

Remark that in the finite market case this result does not necessarily hold.

The current time-0 price of a European put option with pay-off (K −Xi)+ at maturity Ti is

denoted by Pi [K]. Assume now that also vanilla put options are traded in the financial market
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and consider the exotic put option with pay-off (K − S)+ , at time T. The inequality

(K − S)+ =

(

K −
n
∑

i=1

wiXi

)

+

≤
n
∑

i=1

wi(Ki −Xi)+, P-a.s., (3)

holds for all (K1, K2, . . . , Kn) satisfying
∑n

i=1 wiKi ≥ K and Ki ≥ 0, i = 1, . . . , n. Similar

to inequality (1), one can derive an ‘optimal’ decomposition K =
∑n

i=1 wiK
∗
i with an explicit

expression for the optimal K∗
i , i = 1, . . . , n. Furthermore, we find from (3) that the optimal

super-replicating strategy for the exotic put consists of buying a portfolio of European vanilla put

options and the time-0 price is given by

n
∑

i=1

wie
−r(T−Ti)Pi [K

∗
i ] . (4)

For more details we refer to Linders et al. (2012).

Examples of options with a pay-off at time T equal to (S −K)+ or (K − S)+ are basket

options and Asian options. In the case of a basket option, we have that Ti = T and the random

variable Xi denotes the price level of stock i at time T , while S is a weighted sum of the stock

price levels at time T. In the case of Asian options, only one asset is involved. The random

variable Xi represents the price level of this asset at time T − i + 1. The weights wi typically

equal 1
n

such that S is the average price of the asset over the last n periods prior to expiration.

1.2 The optimization problem

Hereafter, we always assume that the financial market is arbitrage-free and that there exists a risk-

neutral pricing measure Q, equivalent to the physical measure P, such that the current price of

any pay-off can be represented as the discounted expectation of this pay-off. We further assume

for the moment a continuously compounded constant risk-free interest rate. The no-arbitrage
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condition gives rise to the following expressions for the vanilla option prices:

Ci [K] = e−rTiE[(Xi −K)+], (5)

Pi [K] = e−rTiE[(K −Xi)+]. (6)

In formulae (5) and (6), as well as in the remainder of this section, expectations (distributions)

of functions of (X1, . . . , Xn) have to be understood as expectations (distributions) under the Q-

measure. We will often call them risk-neutral expectations (distributions).

We will discuss and further investigate the optimization problem

min
K1,...,Kn

n
∑

i=1

wiE
[

(Xi −Ki)+
]

, such that

n
∑

i=1

wiKi = K. (7)

Using expression (5), we see that the solutions K∗
1 , K

∗
2 , . . . , K

∗
n to the minimization problem

(7) are related to the cheapest super-replicating strategy for the exotic call option with pay-off

(S −K)+. Taking into account that

E
[

(Ki −Xi)+
]

= E
[

(Xi −Ki)+
]

+K − E [Xi] , for K ≥ 0, (8)

we find that the solutions K∗
1 , K

∗
2 , . . . , K

∗
n to the minimization problem (7) are also solutions to

the minimization problem

min
K1,...,Kn

n
∑

i=1

wiE
[

(Ki −Xi)+
]

, such that

n
∑

i=1

wiKi = K. (9)

From expression (6), we find that the solutions K∗
1 , K

∗
2 , . . . , K

∗
n correspond to the cheapest super-

replicating strategy for an exotic put option with pay-off (K − S)+, which we considered in (3).

From here on, we will solely focus on the optimization problem (7) and, as a result, on the super-

replicating strategy for an exotic call option. In Linders et al. (2012), the authors propose an

efficient algorithm for determining the upper bounds (2) and (4). They also investigate super-

replicating strategies in a unified framework where calls as well as puts are traded.
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The optimization problem (7), which has many applications in finance and insurance, is also

discussed in Cheung et al. (2013). Besides the static super-replicating strategies, other applica-

tions are optimal capital allocations, see e.g. Dhaene, Tsanakas, Valdez and Vanduffel (2012), and

premium calculation from top down, see e.g. Zaks et al. (2006). In Dhaene, Linders, Schoutens

and Vyncke (2012), the super-replicating strategies prove to be useful to derive a model-free and

forward looking index for the option-implied strength of the co-movement of stock prices.

In this paper, we will investigate three issues. The first issue is the (non-)uniqueness of the

optimal solution to (7) and hence to the related static super-replicating strategy. It will be shown

that the solution to this problem is not always unique. In the context of capital allocation, the

non-uniqueness of the solution to (7), using Lagrange optimization techniques, is investigated in

Laeven and Goovaerts (2004).

The second issue that we will investigate is the generalization to a minimization problem with

random weights, namely

min
K1,...,Kn

n
∑

i=1

wiE
[

ζi (Xi −Ki)+
]

, such that

n
∑

i=1

wiKi = K, (10)

where the ζi are non-negative random variables with E[ζi] = 1, i = 1, . . . , n. We further apply

these results to the derivation of static super-replicating strategies in a stochastic interest rate

setting, in this way generalizing the deterministic interest rate setting of the previous papers.

The third issue that we will investigate is the co-existence of no-arbitrage and comonotonic-

ity of underlying prices. In Chen et al. (2008), the price of the optimal static super-replicating

strategy equals the exotic option price when the underlying random variables are comonotonic.

An interesting question arises whether or not the comonotonicity property and the no-arbitrage

property can co-exist, i.e.does there exist a market situation which is consistent with the observed

vanilla option prices and where the price of the exotic option with pay-off (S −K)+ at matu-

rity T equals the upper bound
∑n

i=1 wie
−r(T−Ti)Ci [K

∗
i ]. It will be shown, for example, that for

Asian options, the upper bound is reachable in some cases, but not in general. The problem of the
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multi-asset case, as considered in Dhaene et al. (2013), will also be discussed.

The rest of this paper is organized as follows. In Section 2, the (non-)uniqueness of the optimal

solution to the optimization problem (7), and hence of the optimal super-replicating strategy, is

discussed. In Section 3, we study the generalized optimization problem (10). As an illustration,

we apply the theory to static super-replicating strategies for exotic options in a stochastic interest

rate setting. In Section 4, the co-existence of the no-arbitrage assumption and the comonotonicity

of the underlying prices is investigated. Section 5 concludes the paper.

2 (Non-)uniqueness of the optimal solution

2.1 Basic ideas and the infinite market case

In this section, we consider the optimization problem (7). The non-uniqueness of the optimal

decomposition is proven. Related results can also be found in Cheung et al. (2013). We start with

introducing some notations and a basic theorem deriving a particular solution to (7), which can

be found e.g. in Dhaene et al. (2002a).

For a given probability level p ∈ [0, 1], we denote the quantile of the random variable X by

F−1X (p). As usual, it is defined by

F−1X (p) = inf {x ∈ R | FX(x) ≥ p} , p ∈ [0, 1] ,

with inf ∅ = +∞ by convention. Hereafter we will also need α-mixed inverse distribution func-

tion which is introduced in Dhaene et al. (2002a). Therefore, we first define the inverse distribu-

tion function F−1+X (p) of a random variable X by

F−1+X (p) = sup {x ∈ R | FX(x) ≤ p} , p ∈ [0, 1] ,

with sup ∅ = −∞. The α-mixed inverse distribution function F
−1(α)
X of X is defined as the
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following convex combination:

F
−1(α)
X (p) = αF−1X (p) + (1− α)F−1+X (p), p ∈ (0, 1) , α ∈ [0, 1] . (11)

From this definition, one immediately finds that for any random variable X and for all x with

0 < FX(x) < 1, there exists an αx ∈ [0, 1] such that

F
−1(αx)
X (FX(x)) = x. (12)

A random vector X = (X1, . . . , Xn) is said to be comonotonic if

X
d
=
(

F−1X1
(U) , . . . , F−1Xn

(U)
)

, (13)

where U is a uniform (0, 1) r.v. and ‘
d
= ’ stands for ‘equality in distribution’.

For a general random vector X = (X1, . . . , Xn), we call
(

F−1X1
(U) , . . . , F−1Xn

(U)
)

the comono-

tonic modification of X, corresponding to the uniform r.v. U . Furthermore, for a given set of

non-negative weights which are chosen up-front, the weighted sum of the components of the

comonotonic modification is denoted by Sc:

Sc = w1F
−1
X1

(U) + w2F
−1
X2

(U) + · · ·+ wnF
−1
Xn

(U) . (14)

For an overview of the theory of comonotonicity and its applications in actuarial science and

finance, we refer to Dhaene et al. (2002a). Financial and actuarial applications are described in

Dhaene et al. (2002b). An updated overview of applications of comonotonicity can be found in

Deelstra et al. (2011).

Theorem 1 Assume that K ∈ R and consider the minimization problem

min
K

n
∑

i=1

wiE
[

(Xi −Ki)+
]

, such that

n
∑

i=1

wiKi = K, (15)
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where K = (K1, . . . , Kn) .

1. If F−1+Sc (0) < K < F−1Sc (1), a solution K = (K1, . . . , Kn) to the minimization problem

(15) is given by

Ki = F
−1(α)
Xi

(FSc (K)), i = 1, . . . , n, (16)

while α ∈ [0, 1] follows from

F
−1(α)
Sc (FSc(K)) = K. (17)

2. If K ≤ F−1+Sc (0), a solution K = (K1, . . . , Kn) to the minimization problem (15) is given

by

Ki = F−1+Xi
(0)− ei, (18)

with all ei ≥ 0 and such that
∑n

i=1 wiei = F−1+Sc (0)−K.

3. If K ≥ F−1Sc (1), a solution K = (K1, . . . , Kn) to the minimization problem (15) is given by

Ki = F−1Xi
(1) + fi, (19)

with all fi ≥ 0 and such that
∑n

i=1 wifi = K − F−1Sc (1).

The optimization problem (15) and its solution were considered in Dhaene et al. (2002a).

Dhaene et al. (2003) study this problem in the particular case that the distribution functions FXi
,

i = 1, . . . , n, are strictly increasing. In this case α = 1 and the solution (16) is obviously

unique. A proof of Theorem 1 using Lagrange optimization techniques is given in Laeven and

Goovaerts (2004). In the context of pricing Asian options in a Black-Scholes model, Nielsen

and Sandman (2003) derived a similar upper bound by means of Lagrange optimization. Hobson

et al. (2005) used a Lagrange optimization technique to develop static-arbitrage upper bounds for

basket options.

If F−1+Sc (0) < K < F−1Sc (1), we have that the minimal value of the minimization problem (15)
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is given by

E
[

(Sc −K)+
]

=
n
∑

i=1

wiE

[

(

Xi − F
−1(α)
Xi

(FSc(K))
)

+

]

, (20)

see e.g. Theorem 7 in Dhaene et al. (2002a). In case K ≤ F−1+Sc (0) , the optimal super-replicating

strategy consists of buying for each stock i, a vanilla option with strike Ki ≤ F−1+Xi
(0) . In

practice, these options are not traded, but we can replicate its pay-off; see Linders et al. (2012).

Furthermore, we have in this particular case that

(

n
∑

i=1

wiXi −K

)

+

=
n
∑

i=1

wi (Xi −Ki)+ ,

which shows that the corresponding strategy replicates the pay-off of the exotic call option. Sim-

ilarly, we can derive a replicating strategy for the exotic call option with strike K ≥ F−1Sc (1) .

The following example illustrates that the solution given by (16) is not always the unique

solution to the minimization problem (15).

Example 1 (Non-uniqueness of the optimal super-replicating strategy) Assume that n = 2,

K = 1, w1 = w2 = 1 and Q [Xi = 0] = 1 − Q [Xi = 1] = 1
2

for i = 1, 2. In this case, we have

that Sc d
= 2X1. From (20), we find that the minimum of the constrained minimization problem

(15) is given by

E
[

(Sc − 1)+
]

=
1

2
.

As FSc (1) = 1
2
, we find from (17) that

α =
1

2
.

This leads to the conclusion that the optimal solution (16) is given by

Ki =
1

2
, i = 1, 2,

whereas the constrained minimum of the objective function is given by 1
2
.
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Now, for any couple (K1, 1−K1) with K1 ∈ (0, 1), we find

E
[

(X1 −K1)+
]

+ E
[

(X2 − (1−K1))+
]

=
1

2
(1−K1) +

1

2
(1− (1−K1)) =

1

2
.

We can conclude that any couple (K1, 1−K1) with K1 ∈ (0, 1) is a solution to the optimization

problem and hence, the solution given by (16) is not always the unique solution to the minimiza-

tion problem (15). ∇

The set of all solutions to the constrained optimization problem (15) is derived in the next

theorem.

Theorem 2 For K ∈ R, the set of all solutions K = (K1, . . . , Kn) to the minimization problem

(15) is given by

A =

{

K |
n
∑

i=1

wiKi = K and FXi
(Ki) = FSc(K); i = 1, 2, . . . , n

}

. (21)

Proof. We will give the proof for the bivariate case. A generalization to the n-dimensional case

is straightforward. For i = 1, 2, we introduce the following notation:

K∗
i =



























F−1+Xi
(0)− ei, if K ≤ F−1+Sc (0)

F
−1(α)
Xi

(FSc (K)), if K ∈
(

F−1+Sc (0) , F−1Sc (1)
)

F−1Xi
(1) + fi, if K ≥ F−1Sc (1)

,

where the non-negative constants ei and fi are defined respectively as in (18) and (19), and α is

chosen as in (17).

It follows from Theorem 1 that (K∗
1 , K

∗
2) is a solution of the minimization problem (15). Further-

more, we have that (K∗
1 , K

∗
2) ∈ A. Notice that for any K, the stop-loss premium E

[

(Xi −K)+
]

can be expressed as

E
[

(Xi −K)+
]

=

∫ +∞

K

(1− FXi
(x)) dx. (22)
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(a) We will first prove that in the case K = (K1, K2) ∈ A, we have that K is a solution to the

minimization problem (15).

– In the case K1 = K∗
1 , we find from w1K1 + w2K2 = K that also K2 = K∗

2 , so that

(K1, K2) is indeed a solution to the minimization problem.

– Let us now consider the case where K1 < K∗
1 , which is illustrated graphically in

Figure 1. Because w1K1 + w2K2 = w1K
∗
1 + w2K

∗
2 , we must have that K2 > K∗

2 .

Using expression (22) for E
[

(X1 −K1)+
]

as well as for E
[

(X1 −K∗
1)+
]

, and noting

that FX1
(x) = FSc(K) for all x ∈ [K1, K

∗
1 ], we find that

E
[

(X1 −K1)+
]

= (K∗
1 −K1) (1− FSc(K)) + E

[

(X1 −K∗
1)+
]

.

Similarly, from FX2
(x) = FSc(K) for all x ∈ [K∗

2 , K2], we find

E
[

(X2 −K2)+
]

= E
[

(X2 −K∗
2)+
]

− (K2 −K∗
2) (1− FSc(K)) .

The requirement w1K1 +w2K2 =K = w1K
∗
1 +w2K

∗
2 implies that w1 (K

∗
1 −K1) =

w2 (K2 −K∗
2). Hence,

w1E
[

(X1 −K1)+
]

+w2E
[

(X2 −K2)+
]

= w1E
[

(X1 −K∗
1)+
]

+w2E
[

(X2 −K∗
2)+
]

.

We can conclude that K = (K1, K2) ∈ A implies that K is a solution to the mini-

mization problem (15).

– In a similar way, one can prove that if K1 > K∗
1 , it holds that (K1, K2) ∈ A implies

that K is a solution to the minimization problem (15).

(b) Next, we will prove that if K = (K1, K2) /∈ A, then K cannot be a solution to the mini-

mization problem (15).

– In the case w1K1 + w2K2 6= K, clearly K cannot be a solution to the minimization
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problem (15).

– For K ∈
(

F−1+Sc (0) , F−1Sc (1)
)

, it holds that FSc (K) ∈ (0, 1). Assume that FX1
(K1) <

FSc(K). This case is illustrated graphically in Figure 2.

We immediately find that K1 < K∗
1 . Taking into account that FX1

(K1) < FSc(K),

we arrive at

E
[

(X1 −K1)+
]

> (K∗
1 −K1) (1− FSc (K)) + E

[

(X1 −K∗
1)+
]

.

Because w1K1 + w2K2 = K = w1K
∗
1 + w2K

∗
2 , it should hold that K2 > K∗

2 . This

leads to FX2
(K2) ≥ FSc(K). Hence, we find

E
[

(X2 −K2)+
]

≥ E
[

(X2 −K∗
2)+
]

− (K2 −K∗
2) (1− FSc(K)) .

From these expressions and w1 (K
∗
1 −K1) = w2 (K2 −K∗

2), we conclude that

w1E
[

(X1 −K1)+
]

+w2E
[

(X2 −K2)+
]

> w1E
[

(X1 −K∗
1)+
]

+w2E
[

(X2 −K∗
2)+
]

,

implying that K with w1K1 + w2K2 = K and FX1
(K1) < FSc(K) cannot be a

solution to the minimization problem (15).

– If K ∈
(

F−1+Sc (0) , F−1Sc (1)
)

, the cases (w1K1 + w2K2 = K and FX1
(K1) >

FSc(K)), ( w1K1 + w2K2 = K and FX2
(K2) < FSc(K)), (w1K1 + w2K2 = K

and FX2
(K2) < FSc(K)) and (w1K1 + w2K2 = K and FX2

(K2) > FSc(K)) can be

proven in a similar way.

– Assume now that K ≤ F−1+Sc (0) . This implies that FSc (K) = 0. If w1K1 +w2K2 =

K, then (K1, K2) /∈ A can only hold if either FX1
(K1) > 0 or FX2

(K2) > 0. Assume

for the moment that FX1
(K1) > 0, so K1 > F−1+X1

(0) . The equalities w1K1 +

w2K2 = K and w1F
−1+
X1

(0) + w2F
−1+
X2

(0) = F−1+Sc (0) imply that K2 < F−1+X2
(0) .
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Figure 1: FX1
(on the left), FX2

on the right), K ∈ A and K1 < K∗
1 .

Then we find that

w1E
[

(X1 −K1)+
]

+ w2E
[

(X2 −K2)+
]

= w1E
[

(X1 −K1)+
]

+ w2E [X2 −K2]

> w1E [X1 −K1] + w2E [X2 −K2]

= E [w1X1 + w2X2]−K

= w1E
[

(X1 −K∗
1)+
]

+ w2E
[

(X2 −K∗
2)+
]

,

which proves that (K1, K2) cannot be an optimal solution.

– The situations where (K ≤ F−1+Sc (0) , w1K1 + w2K2 = K, FX2
(K2) > 0), (K ≥

F−1Sc (1) , w1K1+w2K2 = K, FX1
(K1) < 1) and (K ≥ F−1Sc (1) , w1K1+w2K2 = K,

FX2
(K2) < 1) can be proven in a similar way.

In the remainder of this paper, we always silently assume that F−1+Sc (0) < K < F−1Sc (1),

unless stated otherwise. In this case, the set A in Theorem 1 can also be expressed as

A =

{

K |
n
∑

i=1

wiKi = K and Ki = F
−1(αi)
Xi

(FSc(K)) for some αi ∈ [0, 1] ; i = 1, 2, . . . , n

}

.

(23)
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Figure 2: FX1
(on the left), FX2

(on the right), K /∈ A,w1K1 + w2K2 = K and FX1
(K1) <

FSc(K).

From the expression above we can conclude that the set A reduces to the singleton A =
{(

F−1X1
(FSc (K)), F−1X2

(FSc (K)), . . . , F−1Xn
(FSc (K))

)}

in case all marginal distributions FXi
are

strictly increasing.

Notice that the solution to the minimization problem (15) is unique in the set B defined by

B =

{

K |
n
∑

i=1

wiKi = K and Ki = F
−1(α)
Xi

(FSc(K)) ; i = 1, 2, . . . , n, for some α ∈ [0, 1]

}

.

(24)

We can conclude that the minimization problem (7) does not always have a unique solu-

tion. In the super-replicating context, this means that there is not always a unique optimal super-

replicating strategy in the infinite market case (where European call option prices for all possible

strikes are available), except when all risk-neutral marginal distributions FXi
are strictly increas-

ing.

2.2 The finite market case

In practice, only a finite number of strikes are traded for each underlying. Therefore, we assume

that for asset i, i = 1, 2, . . . , n, at current time 0, European call options with strikes 0 = Ki,0 <

Ki,1 < . . . < Ki,mi
< F−1Xi

(1) and maturity Ti are available in the market. The prices of these
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options are denoted by Ci [Ki,j] , i = 1, 2, . . . , n; j = 0, 1, . . . ,mi. Furthermore, we assume that

F−1Xi
(1) is known and finite. We will denote this ‘maximal value’ of Xi by Ki,mi+1.

When option prices Ci [K] are available for any strike K, we can derive the implied risk-

neutral distribution FXi
of the price of underlying i at time Ti as follows

FXi
(x) = 1 + erTiC ′i [x+] , (25)

where C ′i [x+] denotes the right derivative of Ci in x.

Because we assumed that there are only a finite number of traded strikes for underlying i,

the call option curve Ci is not fully specified and therefore FXi
is not completely specified. We

circumvent this problem by approximating the partially known convex call option curve Ci by

the piecewise linear convex function C i connecting the observed points (Ki,j, Ci [Ki,j]) , j =

0, 1, . . . ,mi + 1. Obviously, any C i[K] is an upper bound for the corresponding call option price

Ci[K] and both values are identical if K is a traded strike. We can then find the cdf FXi
which

corresponds to the option curve C i from the following relation:

FXi
(x) = 1 + erTiC

′

i[x+]. (26)

The optimal super-replicating strategy for the exotic call option with pay-off (S − K)+ at

time T follows from the minimization problem (15). A possible solution is given in Theorem

1. Taking into account that only partial option data are available, it is not possible to solve the

minimization problem (15). However, we can solve the following minimization problem:

min
K

n
∑

i=1

wiE

[

(

F
−1

Xi
(U)−Ki

)

+

]

, such that

n
∑

i=1

wiKi = K. (27)

Let S
c

denote the comonotonic sum
∑n

i=1 wiF
−1

Xi
(U), then (27) can be solved using Theorem

1. The above-mentioned procedure for coping with the finite market case was firstly proposed in

Hobson et al. (2005). Simplified proofs for their results were presented in Chen et al. (2008). A

16



K CA[K]

0 45.5

40 9.8

45 5.5

50 2.09

55 0.37

60 0.08

65 0.03

K CB[K]

0 35.5

35 5.02

37.5 3.05

40 1.83

42.5 0.97

45 0.29

47.5 0.08

Table 1: Observed vanilla call option prices for asset A (left table) and observed vanilla call

option prices for asset B (right table).

more general set-up as well as a detailed algorithm for determining the solution to the minimiza-

tion problem (27) numerically, is given in Linders et al. (2012). Let us show the non-uniqueness

of the super-replicating strategy in the finite market case through an example.

Example 2 Suppose the European call option prices for asset A and asset B, as listed in Table 1,

can be observed in the market at time zero. Further, suppose that there is a basket option written

on a combination of asset A and B, with weight factors w1 = w2 = 1/2, strike K = 47.5 and

maturity T = 1. The continuously compound yearly interest rate r follows from erT = 1.04. The

pay-off function of the basket call option is given by

(

1

2
X1 +

1

2
X2 − 47.5

)

+

.

From expression (26), we find that for any i = 1, 2 and j = 0, 1, . . . , 6, we have

FXi
(Ki,j) = 1 + erT

Ci [Ki,j+1]− Ci [Ki,j]

Ki,j+1 −Ki,j

.

For any p ∈ (0, 1) , we have that F
−1

Xi
(p) is given by

F
−1

Xi
(p) = Ki,j if FXi

(Ki,j−1) < p ≤ FXi
(Ki,j), j = 0, 1, . . . , 6.
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Let S
c

be equal to w1F
−1

X1
(U) + w2F

−1

X2
(U) . As the couple (50, 40) is an element of the support

of
(

F
−1

X1
(U) , F

−1

X2
(U)
)

, we find that

FS
c (45) = Q

[

F
−1

X1
(U) ≤ 50, F

−1

X2
(U) ≤ 40

]

= 0.6422,

see Lemma 5 in Linders et al. (2012). Furthermore, we can verify that

F
−1

X1
(FS

c (45)) = 50 and F
−1+

X1
(FS

c (45)) = 55,

F
−1

X2
(FS

c (45)) = 40 and F
−1+

X2
(FS

c (45)) = 42.5.

Using these equalities, we can check that there exists a value α ∈ (0, 1) such that

w1F
−1(α)

X1
(FS

c (45)) + w2F
−1(α)

X2
(FS

c (45)) = 47.5.

We find that α = 1/3 and FS
c (K) = FS

c (45). The optimal strike prices are K1 = 53.3333 and

K2 = 41.6667. The precision for K1 and K2 is to the 4th decimal point. Since we are considering

the finite market case, the price of the optimal strategy at time zero is

w1C1 [K
∗
1 ] + w2C2 [K

∗
2 ] =w1

(

αC1

[

F
−1

X1
(FS

c (K))
]

+ (1− α)C1

[

F
−1+

X1
(FS

c (K))
])

+ w2

(

αC2

[

F
−1

X2
(FS

c (K))
]

+ (1− α)C2

[

F
−1+

X2
(FS

c (K))
])

=
1

2

(

1

3
· 2.09 +

2

3
· 0.37

)

+
1

2

(

1

3
· 1.83 +

2

3
· 0.97

)

=1.1.

Given FS
c(K) = 0.6422, we can also have that F

−1(α1)
X1

(FS
c(K)) ∈ [52.5, 55], when α1 ∈

[

0, 1
2

]

and F
−1(α2)
X2

(FS
c(K)) = 95 − F

−1(α1)
X1

(FS
c(K)) , when α2 = 1 − 2α1. Hence, from (23) and

chosing α1 = 1
6

and α2 = 2
3
, it follows that (K1, K2) = (54.1667, 40.8333) is a solution to the

constrained minimization problem (27) as well. The price of this optimal choice at time zero
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equals 1.1. Indeed,

1

2

(

1

6
· 2.09 +

5

6
· 0.37

)

+
1

2

(

2

3
· 1.83 +

1

3
· 0.97

)

= 1.1.

In the next section, we consider a generalization of the optimization problem (15) which can

be applied to determine super-replicating strategies in a stochastic interest rate setting.

3 A generalized constrained minimization problem

In Hobson et al. (2005) and Chen et al. (2008), the discussion above was carried out in a deter-

ministic interest rate setting. The generalization to the stochastic interest rate world requires the

study of the optimization problem (10) under the Q-measure, which we repeat here:

min
K1,...,Kn

n
∑

i=1

wiE
[

ζi (Xi −Ki)+
]

, such that

n
∑

i=1

wiKi = K, (28)

where the ζi are non-negative random variables with E[ζi] = 1, i = 1, . . . , n. When all ζi are

identical to 1, the problem reduces to the one in the previous section.

3.1 Derivation of the optimal solution

The optimization problem (28) is considered in Dhaene, Tsanakas, Valdez and Vanduffel (2012)

where an optimal allocation problem is studied and a particular set of optimal allocations Ki,

i = 1, . . . , n, is derived. Here, we restate the results of that paper, give an alternative proof of the

claim in Lemma 3 and characterize the complete solution set in (38).

The solution to the general optimization problem (28) is expressed in terms of functions F
(ζi)
Xi

,

which are defined as follows:

F
(ζi)
Xi

(x) = E[ζi I{Xi ≤ x}] = E[ζi | Xi ≤ x] FXi
(x), i = 1, . . . , n. (29)
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Each function F
(ζi)
Xi

defines a proper distribution function and we call this distribution function the

ζi-weighted distribution of Xi. More information can be found in Rao (1997), Furman and Zitikis

(2008) and the references therein. The corresponding decumulative distribution function is given

by

1− F
(ζi)
Xi

(x) = E [ζi I{Xi > x}] = E[ζi | Xi > x] (1− FXi
(x)) , i = 1, . . . , n. (30)

A sufficient condition for F
(ζi)
Xi

to be continuous is that FXi
is continuous. A sufficient condition

for F
(ζi)
Xi

to be strictly increasing is that FXi
is strictly increasing and Q [ζi > 0] = 1.

The following lemma will play an important role to derive the set of solutions to (28). Here we

give an alternative proof based on a change of measures, a method which is well-known in finance

and also used in a dynamic setting when the Radon-Nikodym derivative is strictly positive; see

e.g. Geman et al. (1995).

Lemma 3 Let U be a random variable which is uniformly distributed on the unit interval (0, 1)

of some probability space, then it holds that

E
[

ζi (Xi −Ki)+
]

= EPr

[(

(

F
(ζi)
Xi

)−1

(U)−Ki

)

+

]

, i = 1, . . . , n, (31)

where the super index Pr is the probability measure in that probability space.

Proof. This lemma follows by the theorem of Radon-Nikodym. E[·] is calculated based on

the probability space (Ω,F ,Q). One can interpret ζi as a Radon-Nikodym derivative since

Q [ζi > 0] = 1 and E[ζi] = 1. Let us denote Qi such that

Qi [A] = E[ζi IA] i = 1, . . . , n, (32)

for all A ∈ F . Then,

E
[

ζi (Xi −Ki)+
]

= EQi

[

(Xi −Ki)+
]

, i = 1, . . . , n, (33)
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where we now need to find the law of Xi under Qi.

Denoting Xi ∼ FXi
under Q, according to (29) and (32), we find that

Qi [Xi ≤ x] = E[ζi I{Xi ≤ x}] = F
(ζi)
Xi

(x), i = 1, . . . , n. (34)

Since with U a uniformly distributed random variable under Pr, we have that

F
(ζi)
Xi

(x) = Pr
[

U ≤ F
(ζi)
Xi

(x)
]

= Pr

[

(

F
(ζi)
Xi

)−1

(U) ≤ x

]

, i = 1, . . . , n, (35)

from which we conclude that Xi has the same law under Qi as
(

F
(ζi)
Xi

)−1

(U) under Pr. There-

fore, it holds that

EQi

[

(Xi −Ki)+
]

= EPr

[(

(

F
(ζi)
Xi

)−1

(U)−Ki

)

+

]

, i = 1, . . . , n. (36)

Combining this result with (33) we arrive at the stated result.

Note that when U exists on the probability space (Ω,F ,Q), Pr equals Q and the superscript

can be omitted in Equation (31). We should emphasize that it is possible that U does not exist on

(Ω,F ,Q), see Dhaene and Kukush (2011).

For notational simplicity, we assume that U exists on (Ω,F ,Q) from here on.

A solution to the generalized optimization problem (28) is derived in the following theorem.

Theorem 4 Let S
c

be the comonotonic sum defined by

S
c
=

n
∑

i=1

wi

(

F
(ζi)
Xi

)−1

(U) ,

where the random variable U is uniformly distributed on the unit interval (0, 1). In the case

F−1+
S
c (0) < K < F−1

S
c (1), the optimization problem (28) has the following solution:

Ki =
(

F
(ζi)
Xi

)−1(α)

(FS
c(K)), i = 1, . . . , n, (37)
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where α ∈ [0, 1] follows from

F
−1(α)

S
c (FS

c(K)) = K.

Proof. From Lemma 3, we find that the optimization problem (28) can be rewritten as

min
K1,...,Kn

n
∑

i=1

wiE

[(

(

F
(ζi)
Xi

)−1

(U)−Ki

)

+

]

, such that

n
∑

i=1

wiKi = K.

The stated result follows then by applying Theorem 1.

Note that it is straightforward to extend Theorem 4 to include the case where

K /∈
(

F−1+
S
c (0), F−1

S
c (1)

)

. It should also be noted that the non-uniqueness of the optimal solution

holds in this general setting as well. According to Theorem 2, the set of all solutions K =

(K1, . . . , Kn) to the minimization problem (28) is given by

A =

{

K |
n
∑

i=1

wiKi = K and F
(ζi)
Xi

(Ki) = FS
c(K); i = 1, 2, . . . , n

}

, (38)

or, equivalently,

A =











K |
∑n

i=1 wiKi = K and Ki =
(

F
(ζi)
Xi

)−1(αi)

(FS
c(K))

for some αi ∈ [0, 1] ; i = 1, 2, . . . , n











.

If Q [ζi > 0] = 1, i = 1, . . . , n, and the distributions F
(ζi)
Xi

are strictly increasing, the optimal

allocations (37) reduce to

Ki =
(

F
(ζi)
Xi

)−1

(FS
c(K)), i = 1, . . . , n.

3.2 Application to a stochastic interest rate setting

In this section we generalize the problem of finding static super-replicating strategies for a class

of exotic options from the deterministic interest rate setting to the stochastic interest rate world.
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We recall that expectations are taken with respect to the pricing measure Q, unless explicitly

stated otherwise.

3.2.1 Interest rate process and zero-coupon bond

Consider an adapted interest rate process {R (t) | t ≥ 0} defined on a filtered probability space

(Ω,F , {Ft}0≤t≤T ,P) . The corresponding discount process {D (t) | t ≥ 0} is given by

D(t) = e−
∫ t

0
R(u)du.

Obviously D(0) = 1. Assume that there are no arbitrage opportunities and that the market prices

of all derivatives involved are given by expectations of discounted pay-offs under the pricing

measure Q. Further, consider a zero-coupon bond that pays 1 unit of currency at maturity T . The

value of this bond at time t ∈ [0, T ] is denoted by P (t, T ) and can be expressed as

P (t, T ) =
1

D(t)
E[D(T ) | Ft]. (39)

In particular P (T, T ) = 1 and P (0, T ) = E[D(T )]. The current time zero prices of the European

vanilla call options available in the market are given by

Ci [K] = E
[

D(Ti) (Xi −K)+
]

, i = 1, . . . , n. (40)

In the following sections, we will first study two classical examples of exotic options, namely

basket and Asian options, in the stochastic interest rate environment. Afterwards, we will de-

rive the optimal strategy in the framework (1) and apply similar techniques to some other exotic

products with more complex pay-offs.
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3.2.2 Basket option case

For a basket option, S stands for
n
∑

i=1

wiXi =
n
∑

i=1

wiSi(T ), where Si (T ) denotes the price level of

stock i at time T. Inequality (1) provides

(

n
∑

i=1

wiSi(T )−K

)

+

≤
n
∑

i=1

wi(Si(T )−Ki)+ (41)

when
∑n

i=1 wiKi ≤ K and Ki ≥ 0, i = 1, . . . , n.

The right-hand side of inequality (41) can be interpreted as the pay-off at time T of a strategy

consisting of buying at time zero a number of wi European options with pay-off (Si (T ) −Ki)+

at time T, i = 1, . . . , n, holding these options until they expire at time T and exercising the ones

with positive pay-offs. Since the pay-off of such a strategy dominates the pay-off of the exotic

option according to inequality (41), it is a super-replicating strategy. The price of this strategy at

time zero is given by
∑n

i=1 wiCi [Ki]. From (40), we have that

n
∑

i=1

wiCi [Ki] =
n
∑

i=1

wiE[D(T )(Si(T )−Ki)+]. (42)

By taking for each i, i = 1, . . . , n, ζ = ζi =
D(T )
P (0,T )

, we can write (42) as

n
∑

i=1

wiE [D(T )(Si(T )−Ki)+] = P (0, T )
n
∑

i=1

wiE
[

ζ (Si(T )−Ki)+
]

.

Then the optimal strikes, Ki, i = 1, . . . , n corresponding to the cheapest super-replicating strat-

egy follow from the corresponding optimization problem (28) under the Q-measure.
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3.2.3 Asian option case

Now we take
n
∑

i=1

wiXi =
n
∑

i=1

wiS(Ti), where S(Ti) denotes the price level of a stock or index at

time Ti. Similarly to the basket option case, we have that

(

n
∑

i=1

wiS(Ti)−K

)

+

≤
n
∑

i=1

wi(S(Ti)−Ki)+ (43)

holds when
∑n

i=1 wiKi ≤ K and Ki ≥ 0, i = 1, . . . , n.

The right-hand side of inequality (43) can be interpreted as the pay-off at time T of a strategy

of buying at time zero wi exchange options with pay-off (S(Ti)P (Ti, T )−KiP (Ti, T ))+ at

time Ti, holding these options until they expire at time Ti, i = 1, . . . , n, exercising the ones with

positive pay-offs and investing the pay-offs for the period [Ti, T ] by buying S(Ti) − Ki zero-

coupon bonds at a price P (Ti, T ). We introduce CS(Ti)P (Ti,T ) [KiP (Ti, T )] to denote the price at

time zero of an exchange option with maturity Ti and pay-off (S(Ti)P (Ti, T )−KiP (Ti, T ))+ at

time Ti.

As the pay-off of the exchange option indicates, the buyer of the option has the right to obtain

at time Ti the difference between ‘the value of the stock times a zero-coupon bond with maturity

T ’ and ‘the strike Ki times a zero-coupon bond with maturity T ’. Also, since the pay-off of the

strategy dominates the pay-off of the exotic option according to inequality (43), we have found a

super-replicating strategy. The price of this strategy is
n
∑

i=1

wiCS(Ti)P (Ti,T ) [KiP (Ti, T )] .

The time-0 price of the derivative which pays (S(Ti)−Ki)+ at time T is equal to

E
[

D(T ) (S(Ti)−Ki)+
]

. Such a contract can be hedged by investing at time t = 0 in a deriva-

tive which pays (S(Ti)P (Ti, T )−KiP (Ti, T ))+ at time Ti, and investing the eventual pay-off

at time Ti in zero-coupon bonds until time T . The price of this hedging strategy is given by

CS(Ti)P (Ti,T ) [KiP (Ti, T )] and must be equal to the price of the derivative, which is

E
[

D(T ) (S(Ti)−Ki)+
]

. We then find that

n
∑

i=1

wiCS(Ti)P (Ti,T ) [KiP (Ti, T )] =
n
∑

i=1

wiE
[

D(T ) (S(Ti)−Ki)+
]

. (44)
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Similarly as for the basket option case, we take for each i, i = 1, . . . , n, ζ = ζi =
D(T )
P (0,T )

and

we write (44) as

n
∑

i=1

wiE [D(T )(S(Ti)−Ki)+] = P (0, T )
n
∑

i=1

wiE
[

ζ (S(Ti)−Ki)+
]

.

Then the optimal strikes, Ki, i = 1, . . . , n, follow from the corresponding optimization problem

(28) under the Q-measure.

In a deterministic interest rate setting, the bond price P (Ti, T ) is known at time 0 and

as a result we can buy the optimal super-hedging portfolio for an Asian option with payoff

(
∑n

i=1 wiS(Ti)−K)
+

by investing in vanilla call options with expiration dates Ti, i = 1, 2, . . . , n.

When interest rates behave in a stochastic way, P (Ti, T ) is not known at time 0 and the optimal

portfolio consists of exchange options with prices CS(Ti)P (Ti,T ) [KiP (Ti, T )] , i = 1, 2, . . . , n. In

Chen et al. (2008), it is assumed that we can only invest in a deterministic number of vanilla calls

which expire at Ti, i = 1, 2, . . . , n in order to construct a super-hedging portfolio. Constructing

the optimal, model-free, static super-replicating portfolio in a stochastic interest rate setting, how-

ever, requires a market where derivatives with payoff (S(Ti)P (Ti, T )−KiP (Ti, T ))+ at time Ti

are traded. This means that in a stochastic interest rate setting, the minimal price may not be

attainable in the class of all super-replicating strategies which consist of only vanilla call options.

3.2.4 Floating strike Asian option

The optimization method described above can also be applied to other derivatives with more

complex pay-offs. A first option that we consider is a floating strike Asian option.

The pay-off of the floating strike Asian option, as discussed in Vanmaele et al. (2006), is given by

(

n
∑

i=1

wiS(T − i+ 1)− βS(T )

)

+

= S(T )

(

n
∑

i=1

wi

S(T − i+ 1)

S(T )
− β

)

+
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with S (T ) > 0 and β a positive percentage and wi =
1
n

, i = 1, . . . , n. Further we have that

(

n
∑

i=1

wiS(T − i+ 1)− βS(T )

)

+

≤
n
∑

i=1

wi(S(T − i+ 1)− S(T )Ki)+

=
n
∑

i=1

wiKi

(

S(T − i+ 1)

Ki

− S(T )

)

+

(45)

with
∑n

i=1 wiKi ≤ β and Ki ≥ 0, i = 1, . . . , n. The right-hand side of inequality (45) can be

interpreted as the pay-off at time T of a strategy consisting of buying at time zero wiKi forward

start put options with pay-off
(

S(T−i+1)
Ki

− S(T )
)

+
at time T , i = 1, . . . , n, holding these options

until they expire at time T and exercising the ones with positive pay-offs.

A forward start put option with pay-off
(

S(T−i+1)
Ki

− S (T )
)

+
is a vanilla put option, but with a

variable strike given by a percentage of S(T − i + 1) which is only known from T − i + 1 on.

For more information about forward start options we refer to Weber and Wystup (2009).

Since the pay-offs of these strategies dominate the pay-off of the exotic option according to

the inequality (45), they are super-replicating strategies. The prices of these strategies are

n
∑

i=1

wiE[D(T )(S(T − i+ 1)− S(T )Ki)+]

=
n
∑

i=1

wiE

[

D(T )S(T )

(

S(T − i+ 1)

S(T )
−Ki

)

+

]

.

Because {D(t)S(t), t ≥ 0} is a martingale under Q, it suffices to take ζi = D(T )S(T )
S(0)

for all

i = 1, . . . , n. The optimal Ki, i = 1, . . . , n, satisfying
∑n

i=1 wiKi ≤ β, which lead to the least

price among these strategies can then be determined via the procedure explained in Section 3.1.

3.2.5 Option struck in foreign currency

As another example of more complex derivatives, we consider options struck in foreign currency

(see e.g. Musiela and Rutkowski (2005) p.176), with the underlying Sf either a weighted average

of different asset prices or a weighted average of asset prices at different dates and the strike
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Kf also expressed in the foreign currency. Denote the exchange rate process by {Q (t) , t ≥ 0}.

Hereafter, we will only consider the case where Sf is a weighted average of different asset prices.

Denote Sf for
∑n

i=1 wiS
f
i (T ) with Sf

i (T ) the equity price of asset i in the foreign currency

and wi, i = 1, . . . , n, the positive weight factors. The pay-off at time T in the domestic currency

of a foreign basket call struck in foreign currency equals Q (T ) (Sf −Kf )+.

Further we have that

(

Sf −Kf
)

+
=

(

n
∑

i=1

wiS
f
i (T )−Kf

)

+

≤
n

∑

i=1

wi

(

Sf
i (T )−Kf

i

)

+

with
∑n

i=1 wiK
f
i ≤ Kf and Kf

i ≥ 0, i = 1, . . . , n, and since Q (T ) > 0,

Q (T )
(

Sf −Kf
)

+
≤

n
∑

i=1

wiQ (T )
(

Sf
i (T )−Kf

i

)

+
. (46)

The right-hand side of inequality (46) can be interpreted as the pay-off at time T of a strategy

consisting of buying in the domestic currency at time zero wi foreign call options struck in foreign

currency with pay-off (Sf
i (T ) − Kf

i )+ at time T , i = 1, . . . , n, holding these options until they

expire at time T and exercising the ones with positive pay-offs. These strategies super-replicate

the foreign basket call struck in foreign currency and exchanged into the domestic currency. Their

prices under the domestic martingale measure are given by

n
∑

i=1

wiE

[

D(T )Q (T )
(

Sf
i (T )−Kf

i

)

+

]

.

If we take ζi =
D(T )Q(T )

E[D(T )Q(T )]
, i = 1, . . . , n, the optimal Kf

i , i = 1, . . . , n, leading to the least price

among these strategies can be determined via the optimization procedure explained in Section

3.1.

We note that the stochastic factors ζi = ζ , i = 1, . . . , n, define a change of measure as in the proof

of Lemma 3. For the example of the basket option and the Asian option ζ defines the T -forward

measure while for the floating strike Asian option it defines the martingale measure associated
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with the numeraire S.

4 Is the optimal solution consistent with no-arbitrage?

The price of the optimal static super-replicating strategy in Hobson et al. (2005) and Chen et al.

(2008) is an upper bound for the exotic option price. It is reached when the underlying random

variables are comonotonic. Hereafter, we assume the existence of an equivalent martingale mea-

sure, which is ‘essentially’ equal to the no-arbitrage condition, and we investigate the question

whether the comonotonicity property can co-exist with the existence of this equivalent martingale

measure. If yes, the price of the strategy is a reachable upper bound of the exotic option. If not,

it is an unreachable upper bound. Two situations have to be investigated. Firstly, different assets

are comonotonic. Secondly, prices of one asset at different time points are comonotonic. These

two situations correspond to the basket option case and the Asian option case respectively.

4.1 Several underlying assets

In Dhaene et al. (2013) the following reasoning is made to show that the comonotonicity property

cannot co-exist with the martingale property in certain situations.

Let S1 (t) and S2 (t) denote the prices of two underlying assets at time t, t = 0, 1, 2, . . . , T .

For simplicity, the risk-free interest rate r is assumed to be zero. Further, consider an increasing

function f : (0,+∞) → (0,+∞). When S2 (t) = f (S1 (t)), the random variables S1 (t) and

S2 (t) are comonotonic for each time point t. For time t1 < t2, according to the martingale

property, we have that

E [Sl (t2) | Sl (t1)] = Sl (t1) , l = 1, 2.

Now suppose f is a strictly convex function. If the conditional distribution of S1 (t2) , given

S1 (t1) is not degenerate, according to the strict convexity of f and Jensen’s inequality, we can
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get

f (S1 (t1)) = E[f(S1 (t2)) | S1 (t1)] > f (E [S1 (t2) | S1 (t1)]) = f (S1 (t1)) ,

and thus

f (S1 (t1)) > f (S1 (t1)) .

This is a contradiction. Therefore, the comonotonicity property cannot co-exist with the mar-

tingale property in this situation. Notice that if f is linear, the comonotonicity property and the

martingale property might co-exist.

4.2 A single underlying asset

4.2.1 Some definitions

In order to investigate the co-existence of the comonotonicity property and the martingale prop-

erty for one underlying asset case, we extend some definitions from Dhaene et al. (2002a) to the

notion of strict comonotonicity.

Definition 5 A subset A ⊆ Rn is called a support of an n-dimensional random vector X =

(X1, . . . , Xn) if P [X ∈ A] = 1 holds true.

An n-vector (x1, x2, . . . , xn) will be denoted by x. For two n-vectors x and y, the notation

x ≤ y will be used for the componentwise order which is defined by xi ≤ yi for all i = 1, 2, . . . , n

and the notation x < y will be used for the componentwise order which is defined by xi < yi for

all i = 1, 2, . . . , n.

Definition 6 The set A ⊆ Rn is said to be comonotonic if for any x and y in A, either x ≤ y or

y ≤ x holds. The set A is said to be strictly comonotonic if for any x and y (different from x) in

A, either x < y or y < x holds.
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Figure 3: Comonotonic support (left panel) for a couple (X1, X2) and a strict comonotonic sup-

port (right panel) for a couple (X1, X2) .

Definition 7 A random vector X = (X1, . . . , Xn) is said to be comonotonic if it has a comono-

tonic support. It is said to be strictly comonotonic if it has a strictly comonotonic support.

Combining the definitions above, it holds that a random vector X is comonotonic if there exists

a comonotonic set A ⊆ Rn such that P [X ∈ A] = 1. A strictly comonotonic X means that there

exists a strictly comonotonic set A ⊆ Rn such that P [X ∈ A] = 1. Definition 7 is illustrated in

Figure 3. In this figure, we show the support of a comonotonic and a strict comonotonic random

couple. A possible comonotonic situation which is not strictly comonotonic is illustrated in the

left panel of Figure 3. An example of a strictly comonotonic support is shown in the right panel

of the same figure. Obviously horizontal and vertical line segments are not allowed for strict

comonotonicity.

In the following lemma, we show that comonotonicity and strict comonotonicity of a random

vector X are equivalent when the marginals are continuous.

Lemma 8 Consider a random vector X = (X1, . . . , Xn) with continuous marginal cdf’s FXi
,
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i = 1, 2, . . . n. Then we have that

X is comonotonic ⇔ X is strictly comonotonic.

Proof. The proof of the ‘converse’ part is trivial.

In order to prove the ‘direct’ part, assume that X is comonotonic. A support for the random

vector X is given by

support [X] =
{(

F−1X1
(p) , F−1X2

(p) , . . . , F−1Xn
(p)
)

| 0 < p < 1
}

.

We can take any x, y ∈ support[X] . Then there exist values p1, p2 ∈ (0, 1) such that x =
(

F−1X1
(p1) , F

−1
X2

(p1) , . . . , F
−1
Xn

(p1)
)

and y =
(

F−1X1
(p2) , F

−1
X2

(p2) , . . . , F
−1
Xn

(p2)
)

. If p1 = p2,

we obviously have that x = y. Let us now consider the situation where p1 < p2. We will show

that this implies that x < y must hold. As F−1Xi
is non-decreasing, we have that x ≤ y. Because

FXi
is continuous on (0, 1), we have that F−1Xi

is strictly increasing on (0, 1) which implies that

F−1Xi
(p1) = F−1Xi

(p2) can only be satisfied when p1 = p2. We conclude that x < y must hold.

Similarly, starting from p1 > p2 it follows that x > y, from which we conclude that X is strictly

comonotonic.

The assumption that the marginal cdf’s must be continuous is not too restrictive. In case

the dynamics of the stock price process {S (t) | 0 ≤ t ≤ T} are described by the Black-Scholes

model (or Variance Gamma, Heston,. . . ), the cdf FS(t) of the price S (t), t > 0, is continuous.

In the following section we investigate the martingale property and the (strict) comonotonicity

property of the random vector X .

4.2.2 (Strict) comonotonicity and martingale property

Theorem 9 For prices S (ti) of a given asset at times ti, i = 1, 2, . . . , n with t1 < t2 < . . . < tn,

denote S = (S (t1) , . . . , S (tn)). If S is a strictly comonotonic vector and the martingale property
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holds, then for i < j, we have that S (ti) and S (tj) are related through the linear relationship

S (tj) = S (ti)e
r(tj−ti) almost surely.

Proof. If S is strictly comonotonic, we have that (S (ti) , S (tj)) is strictly comonotonic for

any i < j. Since (S (ti) , S (tj)) is a strictly comonotonic vector, (S (ti) , S (tj)) has a strictly

comonotonic support.

Similar to X1 and X2 in the right panel of Figure 3, S (ti) and S (tj) are paired in such a way

that, if S (ti) is given, there exists a corresponding S (tj) or in another form

E[S (tj) | S (ti)] = S (tj) almost surely.

Also, according to the martingale property, we have

E[S (tj) | S (ti)] = S (ti) er(tj−ti).

We conclude that

S (tj) = S (ti) er(tj−ti), a.s. (47)

Note that under the assumptions of Theorem 9 the stock price process evolves as a risk free

asset.

A natural question is what happens when the assumption of strict comonotonicity is relaxed

to comonotonicity? In Remark 10 below, we show by an example that when S is a comonotonic,

but not a strictly comonotonic vector, the comonotonicity property and the martingale property

can co-exist without the linear relationship (47).

Remark 10 (A counter example) Let us assume that r = 0 without loss of generality, which

means er(tj−ti) = 1. Furthermore, suppose that the possible outcomes of S are (1, 0.5), (1, 1.5),

(3, 2.5) and (3, 3.5) with probability 0.25 for each outcome under the equivalent martingale mea-
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sure. The martingale property

E[S (tj) | S (ti)] = S (ti) er(tj−ti) = S (ti)

holds in this case. Indeed, we find that

E[S (tj) | S (ti) = 1] = 1,

and

E[S (tj) | S (ti) = 3] = 3.

In addition, it is easy to see that S has a comonotonic but not strictly comonotonic support, so

S is a comonotonic vector. As a result, the comonotonicity property and the martingale property

can co-exist without the linear relationship (47).

4.2.3 The Black-Scholes model and option price curve

We can take a further look at the situation where the stock price process {S (t) | 0 ≤ t ≤ T} is

described by a stochastic process with continuous cdf’s FS(t) for all t > 0. Let us concentrate

on the Black-Scholes model. Suppose that the prices S(ti) and S(tj) at time ti and tj with

0 < ti < tj ≤ T are comonotonic. Since FS(t) is continuous, by Lemma 8 we have that S(ti) and

S(tj) are strictly comonotonic. Therefore the vector (S (ti) , S (tj)) has a strictly comonotonic

support A with

A =
{(

F−1
S(ti)

(p) , F−1
S(tj)

(p)
)

| 0 < p < 1
}

.

This means that knowing S(ti) implies knowing S(tj) and vice versa. However in the Black-

Scholes model, one price is not fully determined by the other due to independent log increments.

We can conclude that comonotonicity cannot hold in this particular stock price model: there is

an inconsistency between the Black-Scholes model and the comonotonicity assumption of S (ti)

and S (tj).
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Let us continue with the assumptions above that (S (ti) , S (tj)) is comonotonic and FS(t) is

continuous for all t > 0. In addition we assume that the martingale property holds. Then from

Lemma 8 and Theorem 9 we conclude that comonotonicity of the vector (S (ti) , S (tj)) can only

co-exist with the martingale property if the linear relationship (47) holds.

Clearly, in the Black-Scholes model the martingale property holds but (47) is not valid, implying

that the vector (S (ti) , S (tj)) cannot be strictly comonotonic. The conflict between comono-

tonicity and the Black-Scholes model is then due to the continuity of the cdf’s FS(t).

From here on, we relax the condition that the cdf’s FS(t) are continuous and only assume that

the vector (S (ti) , S (tj)) is strictly comonotonic and that the martingale property holds.

By applying Theorem 9, we derive a relation similar to the relationship (47) but now between the

cdf’s of S (ti) and S (tj):

FS(ti) (s) = FS(tj)

(

ser(tj−ti)
)

.

Using expression (12), this relation can be rewritten as

F
−1(αi,j)

S(tj)

(

FS(ti) (s)
)

= ser(tj−ti), (48)

for some αi,j ∈ [0, 1] .

In the next theorem, we prove that under the assumptions of Theorem 9, namely strict comono-

tonicity of (S (t1) , . . . , S (tn)) and the martingale property, options with maturity tj can be de-

termined using the option curve with maturity ti, i 6= j. The price of a European call option on

the stock S, with strike K and maturity T is denoted by C [K,T ].

Theorem 11 Let us denote S = (S (t1) , . . . , S (tn)) with S (ti) being the price of the underlying

asset at time ti, i = 1, 2, . . . , n with t1 < t2 < . . . < tn . If S is a strictly comonotonic vector and

the martingale property holds, then

C [K, tj] = C
[

e−r(tj−ti)K, ti
]

, i, j = 1, 2, . . . , n. (49)
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Proof. If S is a strictly comonotonic vector, then we find that for any i 6= j, (S (ti) , S (tj)) is

also strictly comonotonic.

Take any i ∈ {1, 2, . . . , n}. Then by the martingale property we can invoke relation (47) of

Theorem 9 leading to the following equalities for any i 6= j and any K:

C[K, tj] = e−rtjE
[

(S(tj)−K)+
]

(47)
= e−rtjE

[

(

S(ti)e
r(tj−ti) −K

)

+

]

= e−rtiE
[

(

S(ti)− e−r(tj−ti)K
)

+

]

= C[e−r(tj−ti)K, ti],

which proves the result.

Relation (49) puts a restriction on the option price surface, which for given prices may not

be satisfied in practice. In these situations, we have to conclude that S cannot be a comonotonic

vector.

In case the vector S is strictly comonotonic and the martingale property holds, we can use

(47) of Theorem 9 to write the price of an Asian option with maturity T and strike K as follows,

and for any i ∈ {1, 2, . . . , n}:

e−rTE

[(∑n

k=1 S (tk)

n
−K

)

+

]

=
e−rT

n
E

[(

S (ti)
n

∑

k=1

er(tk−ti) − nK

)

+

]

,

which results in

e−rTE

[(∑n

k=1 S (tk)

n
−K

)

+

]

=
e−rT

n
ciE

[(

S (ti)−
nK

ci

)

+

]

,

where ci =
∑n

k=1 e
r(tk−ti). So we find that the price of an Asian option in an arbitrage-free market

can be calculated in this strictly comonotonic setting by using only the price of a European call

option which expires at ti. The behavior of the asset S at time ti determines the behavior of the

asset S at the other time points j 6= i.
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Note that in Albrecher et al. (2008) it is already shown that in case the vector S = (S (t1) , . . . , S (tn))

has continuous marginals, comonotonicity of S together with the martingale property implies that

(48) must hold with αi,j = 1. In Theorem 9 we derived a linear relationship which has to hold and

this is stronger than the conclusion regarding cdf’s. Additionally Theorem 9 only requires that

(S (ti) , S (tj)) is strictly comonotonic and hence compared to the conclusion in Albrecher et al.

(2008), no continuity of FS(t) is required. We further notice that Albrecher et al. (2008) derived

relation (49) in another way for the situation where the marginals S (ti) have continuous cdf’s.

4.3 Discussion

For basket options, the pay-off is determined by the weighted sum of several underlying assets

prices at maturity time T . As it is shown in Section 4.1, for the case with several underlying

assets, there is a contradiction between the martingale property and the comonotonicity property

at each time point t = 0, 1, 2, . . . , T . However, when we study the comonotonicity property for

the underlying assets of basket options, we do not require that S2 (t) = f(S1 (t)) for an increasing

and strictly convex function f . Instead, only comonotonicity of (S1 (t) , S2 (t)) is assumed. So

we cannot conclude from Section 4.1 that there is a contradiction between the comonotonicity

property and the martingale property for the basket options case and a further study is needed.

For Asian options, the pay-off is determined by the weighted sum of the underlying price

over some pre-set period of time. According to Section 4.2, when there is only one underlying

asset, we know that the co-existence of the strict comonotonicity property and the martingale

property implies the linear relationship (47) of Theorem 9 and the restriction (49) of Theorem 11

on the European call option price surface. However, it is also possible that there is a contradiction

between them, as e.g. in the Black-Scholes model. When the comonotonicity property contradicts

the martingale property, comonotonic underlying random variables are impossible in the market.

In this case, the price of the optimal static super-replicating strategies as an upper bound may not

be reached by the Asian option price, since it can only be reached by the Asian option price when

the underlying random variables are comonotonic.
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5 Conclusion

In this paper, we investigated an optimization problem related to super-replicating strategies for

European-type call options written on a weighted sum S = w1X1 + · · · + wnXn of asset prices.

Firstly, we proved that in general, the optimal solution is non-unique. This observation is use-

ful since it allows some flexibility to compose the optimal super-replicating strategies in a real

market situation, which often has some constraints in trading. Secondly, a generalized optimiza-

tion problem with random weights has been studied. Using these results, we derived optimal

static super-replicating strategies for different kind of options in a stochastic interest rate setting.

Thirdly, the co-existence of the comonotonicity property and the martingale property was studied.

We have seen that in the case of a single underlying asset they can co-exist, for instance as it was

shown in Remark 10. However if the price vector of the underlying asset is strictly comonotonic,

a linear relationship of the underlying prices has to hold and therefore the comonotonicity prop-

erty and the martingale property can lead to a contradiction. So for Asian options e.g., the price

of the optimal static super-replicating strategies may be strictly larger than the Asian option price.
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