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Introduction

In ”Boundary Crossing Result for Brownian Motion” (1993), Teunen and Goo-
vaerts are interested in the evaluation of the first-passage density of the surplus
to a certain boundary h(t). Since the management of the company can decide
to pay a dividend once the surplus has crossed the boundary, it is interesting to
know the crossing probability IP

(
supto≤t<t1(x(t)− h(t)) ≥ 0

)
, where the sur-

plus x(t) is described by e.g. a Gaussian process.

Using path integrals, Teunen and Goovaerts obtain by the methodology of Kac
some explicit expressions for the probability of Brownian motion crossing a
piecewise linear boundary. Spitefully, this methodology results in complicated
differential equations and involves difficult calculations. In Scheike (1990), the
results were obtained using scaling properties and time inversion for Brownian
motion and there is no need to solve complicated equations.

In a previous paper ”Remarks on the methodology introduced by Goovaerts et
al.” (1992), we have shown how the path integral models are related to stochas-
tic differential equations. Explicit expressions for the crossing probability follow
immediately from the theory of Wiener processes and from Girsanov’s theorem.

In the theory of Brownian motion, see for example Revuz-Yor(1991), the calcu-
lations of such crossing probabilities are standard. In case of a horizontal line
boundary, the problem is known as the ”ruin problem”. The formula which
states that the density of the first-passage time of Brownian motion over the
boundary ψ(t) = Λ + bt is given by

p(t) =
Λ
t3/2

Φ
(
ψ(t)√
t

)
with Φ(y) =

1√
2π
e−y2/2t,

is called the Bachelier-Levy formula, see e.g. Lerche (1986). Indeed, Levy
(1948) refers in ”Processus stochastiques et mouvement Brownien.” to Bache-
lier who has already treated first-passage densities in 1900 in his ”Théorie de la
Spéculation.”

Meanwhile, the list of authors who have worked on first-passage times is too
long to mention them all. Therefore, I will name only some of them.

Keilson (1963) has shown that for one class of processes X(t) the distribution
of the first passage time has an especially simple expression in terms of the
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distribution of X(t). Borovkov (1965) observes one class of processes with in-
dependent increments but the expression remains intractable analytically.
In Robbins and Siegmund (1970) and Lerche (1986), the crossing probability is
obtained for a class of functions h(t) which are the solutions to

f(x, t) ≡
∫ ∞

0

exp(ϑx− 1
2
ϑ2t)F (dϑ) = a,

where F (ϑ) is a positive σ-finite measure and a > 0. Remark that this class
contains no piecewise linear boundaries.
Under mild conditions, Durbin (1971, 1985) obtained an explicit expression for
the first-passage density of a continuous Gaussian process to a general boundary.
However, this expression is too hard to compute so that we have to resort to
numerical methods of solution.
A lot of work has been done on asymptotic estimates, e.g. by Daniels (1974),
Cuzick (1981), Jennen and Lerche (1981).

In the rest of the paper, we will show how to obtain the same results as Teunen
and Goovaerts, but without solving differential equations. By repeated appli-
cations of Girsanov’s theorem, the Markov property and the reflection principle
of Brownian motions - see for example Revuz and Yor (1991) p.105 - the case
of a piecewise linear boundary can be transformed to the known result of the
ruin problem.

In the first section, we will give the reasoning for a line boundary a+bt for finite
and for infinite time. Then, we will extend the result for a boundary consisting
of two lines for infinite and for finite time. Further generalizations proceed in
the same way.

1. A line boundary

We will use a filtered probability space (Ω, (Ft)t≥0, IP ), where Ω denotes the
Wiener space and IP denotes the Wiener measure such that the coordinate pro-
cess (Xt)t≥0 is a Brownian Motion with IP [Xo = 0] = 1. Let IPa denote the
measure such that IPa[X0 = a] = 1 and (Xt)t≥0 is a Brownian motion starting
in a. We suppose that the natural filtration satisfies the usual assumptions.
This means that Fo contains all null sets of F and that the filtration is right
continuous.

In this section, we are interested in finding an expression for

IP

(
sup

0≤t≤T
(Bt − bt) ≥ a

)
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where (Bt)t≥0 denotes a Brownian motion.
Let us define the stopping time τ = inf{t | Bt = a+ bt}. Then,

IP

(
sup

0≤t≤T
(Bt − bt) ≥ a

)
= IP (τ < T )

Since
(
e2bBt−2b2t

)
t≥0

is a martingale, we obtain the equality

∫
{τ<T}

e2bBT−2b2T dIP =
∫
{τ<T}

e2bBτ−2b2τdIP

By the definition of the stopping time τ , the right hand side equals e2baIP (τ < T ).
Consequently,

IP (τ < T ) = e−2ba

∫
{τ<T}

e2bBT−2b2T dIP (1)

By Girsanov’s theorem, (Bt − bt)t≥0 is a Brownian motion under the measure
IQ defined by dIQ

dIP = ebBT−b2T/2. We rewrite the crossing probability and apply
Girsanov’s theorem:

IP (τ < T ) = e−2ba

∫
{sup0≤t≤T (Bt−bt)≥a}

ebBT−b2T/2eb(BT−bT )e−b2T/2dIP

= e−2ba

∫
{ST =sup0≤t≤T Bt≥a}

ebBT e−b2T/2dIP

Thanks to the reflection principle, we know the density of the pair (Bt, St) where
St = supu≤tBu. For a > 0, we have to consider two possibilities (see Revuz-Yor,
p.105):{

IP [St > a,Bt < x] = IP2a[Bt < x] = IP [Bt < x− 2a] for x ≤ a
IP [St > a,Bt > x] = IP [Bt > x] for x > a

Thus, we have to divide our integral into two parts:

IP (τ < T ) = e−2ba

∫ a

−∞
ebx−b2T/2fBT

(x− 2a)dx+ e−2ba

∫ ∞

a

ebx−b2T/2fBT
(x)dx

where fBT
(x) denotes the density of BT , namely fBT

(x) = 1√
2πT

e−
x2
2T . We

will rewrite the equality as a combination of the normal cumulative distribution
function Φ(u) =

∫ u

−∞
e−y2/2
√

2π
dy.

IP (τ < T ) = e−2ba

(∫ a

−∞
ebx−b2T/2 e

− 1
2T (x−2a)2

√
2πT

dx+
∫ ∞

a

ebx−b2T/2 e
− x2

2T

√
2πT

dx

)
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= e−2ba

∫ a

−∞

1√
2πT

e−
1

2T (x−2a−bT )2e2badx+e−2ba

∫ ∞

a

1√
2πT

e−
1

2T (x−bT )2dx

=
∫ −a−bT√

T

−∞

1√
2π
e−y2/2dy + e−2ba

∫ ∞

a−bT√
T

1√
2π
e−y2/2dy

= Φ(
−a− bT√

T
) + e−2baΦ(−a− bT√

T
)

= 1− Φ(
a√
T

+ b
√
T ) + e−2baΦ(b

√
T − a√

T
)

Thus, for a > 0, the crossing probability for the boundary a+ bt is given by:

IP

(
sup

0≤t≤T
(Bt − bt) ≥ a

)
= 1− Φ(

a√
T

+ b
√
T ) + e−2baΦ(b

√
T − a√

T
)

For a ≤ 0, this probability equals 1.
For T →∞, we immediately obtain the following result:

IP

(
sup

0≤t≤∞
(Bt − bt) ≥ a

)
= e−2ba

for a, b > 0. If a ≤ 0 or b ≤ 0 the probability is 1.

2. Boundary consisting of two lines in infinite time

Let h(t) be the boundary of the form{
h(t) = a1 + b1t for t < T
h(t) = a2 + b2t for T ≤ t

We want to derive an explicit expression for the crossing probability:

IP

(
sup

0≤t<∞
(Bt − h(t)) ≥ 0

)
(2)

Again, let us define a stopping time

τ = inf{t | t < T Xt = a1 + b1t, t ≥ T Xt = a2 + b2t}

so that

IP

(
sup

0≤t<∞
(Bt − h(t)) ≥ 0

)
= IP (τ <∞)

Trivially,
IP (τ <∞) = IP (τ ≤ T ) + IP (τ > T, τ <∞)
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Let us first have a look at the first probability on the right hand side.

IP (τ ≤ T ) = IP

(
( sup
0≤t≤T

(Bt − b1t) ≥ a1) or BT ≥ min(a1 + b1T, a2 + b2T )
)

Let us denote the minimum of a1 + b1T and a2 + b2T by k, then

IP (τ ≤ T ) = IP (BT ≥ k) + IP

(
sup

0≤t≤T
(Bt − b1t) ≥ a1 and BT ≤ k

)
Since IP (BT ≥ k) = 1− Φ( k√

T
), it remains to have a look at the second proba-

bility:

IP

(
( sup
0≤t≤T

(Bt − b1t) ≥ a1) and BT ≤ k

)
=

∫
{sup0≤t≤T (Bt−b1t)≥a1,BT−b1T≤k−b1T}

eb1BT−b21T/2e−b1(BT−b1T )e−b21T/2dIP

By Girsanov’s theorem, (Bt − b1t)t≥0 is a Brownian motion under the measure
IQ defined by dIQ

dIP = eb1BT−b21T/2. If we apply Girsanov’s theorem, we find:∫
{sup0≤t≤T Bt≥a1,BT≤k−b1T}

e−b1BT e−b21T/2dIP

Noticing that k − b1T ≤ a1, we can use the reflection principle for a1 > 0 and
repeat the reasoning of the first section:∫ k−b1T

−∞
e−b1x−b21T/2fBT

(x− 2a1)dx

=
∫ k−b1T

−∞
e−b1x−b21T/2 1√

2πT
e−

1
2T (x−2a1)

2
dx

=
1√
2πT

∫ k−b1T

−∞
e−

1
2T (x+b1T−2a1)

2
e−2a1b1dx

=
e−2a1b1

√
2π

∫ k−2a1√
T

−∞
e−y2/2dy

= e−2a1b1Φ
(
k − 2a1√

T

)
Thus, summarizing, we have shown that:

IP (τ ≤ T ) = 1− Φ(
k√
T

) + e−2a1b1Φ
(
k − 2a1√

T

)

5



It remains to calculate the probability IP (τ > T, τ < ∞). First, we remark
that this equals IE [IP (τ > T, τ <∞ | FT )]. We notice that for τ > T , τ can be
rewritten as τ = T + σ ◦ ϑT with ϑ the shiftoperator and σ a stopping time,
namely σ = inf{s | Xs ≥ a2 + b2(s + T )}. We now apply the strong Markov
property:

IP (τ > T, τ <∞) =
∫
{τ>T}

IPBT
[σ <∞]

If we define a new stopping time σ′ = inf{s | Xs ≥ a2 + b2(s + T ) −XT }, the
process starts at 0:

IP (τ > T, τ <∞) =
∫
{τ>T}

IPo[σ′ <∞]

As we have shown in section 1, there exists an explicit expression for IPo[σ′ <∞],
namely for b2 > 0: IPo[σ′ <∞] = e−2(a2+b2T−BT )b2 . We substitute this expres-
sion in the last equation:

IP (τ > T, τ <∞) = e−2a2b2

∫
{τ>T}

e2b2(BT−b2T )

= e−2a2b2

∫
{sup0≤t≤T (Bt−b1t)≤a1,BT−2b2T≤k−2b2T}

e2b2(BT−b2T )

By Girsanov’s theorem, (Bt−2b2t)t≥0 is a Brownian motion under the measure
IQ defined by dIQ

dIP = e2b2BT−2b22T . If we apply Girsanov’s theorem, we find:

IP (τ > T, τ <∞) = e−2a2b2IP

[
sup

0≤t≤T
(Bt − b1t+ 2b2t) ≤ a1, BT ≤ k − 2b2T

]
= e−2a2b2 (1− IP [BT ≥ k − 2b2T ])

− e−2a2b2IP

[
sup

0≤t≤T
(Bt + (2b2 − b1)t) ≥ a1, BT ≤ k − 2b2T

]
= e−2a2b2Φ

(
k√
T
− 2b2

√
T

)
− e−2a2b2IP

[
sup

0≤t≤T
(Bt + (2b2 − b1)t) ≥ a1, BT + (2b2 − b1)T ≤ k − b1T

]
Let us have a look at the last term:

e−2a2b2IP

[
sup

0≤t≤T
(Bt + (2b2 − b1)t) ≥ a,BT + (2b2 − b1)T ≤ k − b1T

]
= e−2a2b2

∫
A

e−(2b2−b1)BT−(2b2−b1)
2T/2e(2b2−b1)(BT +(2b2−b1)T )−(2b2−b1)

2T/2

where A denotes {sup0≤t≤T (Bt +(2b2−b1)t) ≥ a1, BT +(2b2−b1)T ≤ k−b1T}.
By Girsanov’s theorem, (Bt + (2b2 − b1)t)t≥0 is a Brownian motion under the
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measure IQ defined by dIQ
dIP = e−(2b2−b1)BT−(2b2−b1)

2T/2. If we apply Girsanov’s
theorem, we find that the probability equals:

e−2a2b2

∫
{sup0≤t≤T Bt≥a1,BT≤k−b1T}

e(2b2−b1)BT−(2b2−b1)
2T/2

By an application of the reflection principle, we find for a1 > 0:

e−2a2b2

∫ k−b1T

−∞
e(2b2−b1)x−(2b2−b1)

2T/2fBT
(x− 2a1)dx

= e−2a2b2

∫ k−b1T

−∞
e(2b2−b1)x−(2b2−b1)

2T/2 1√
2πT

e−
1

2T (x−2a1)
2
dx

= e−2a2b2−2a1b1+4a1b2

∫ k−b1T

−∞

1√
2πT

e−
1

2T (x−(2b2−b1)T−2a1)
2
dx

= e−2a2b2−2a1b1+4a1b2Φ
(

k√
T
− 2b2

√
T − 2a1√

T

)
For a1 > 0 and b2 > 0, the crossing probability (2) equals:

IP

(
sup

0≤t<∞
(Bt − h(t)) ≥ 0

)
= 1− Φ(

k√
T

) + e−2a1b1Φ(
k − 2a1√

T
) + e−2a2b2Φ(

k√
T
− 2b2

√
T )

− e−2a2b2−2a1b1+4a1b2Φ
(

k√
T
− 2b2

√
T − 2a1√

T

)
If a1 ≤ 0 or b2 ≤ 0, then the probability is 1.

3. Boundary consisting of two lines in finite time

In finite time the boundary is of the form:{
h(t) = a1 + b1t for t < T
h(t) = a2 + b2t for T ≤ t ≤ Ts

If we define the stopping time

τ = inf{t | t < T Bt = a1 + b1t, T ≤ t ≤ Ts Bt = a2 + b2t}

the crossing probability can be rewritten:

IP

(
sup

0≤t<Ts

(Bt − h(t)) ≥ 0
)

= IP (τ < Ts)
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Trivially,

IP (τ < Ts) = 1− IP (τ > Ts)
= 1− IP (τ > T )IP (τ > Ts | τ > T )

By the strong Markov property and the results in section 1 and 2, we find that
for a1, a2 > 0

IP

(
sup

0≤t<∞
(Bt − h(t)) ≥ 0

)
= 1−

∫ k

−∞

e−y2/2

√
2π

(
1− e−

2a1
T (a1+b1T−y)

)
.

{
Φ
(
a2 + b2(Ts − T )− y√

Ts − T

)
− e−2a2b2Φ

(
a2 + b2(Ts − T )− y√

Ts − T
− 2a2√

Ts − T

)}
If a1 ≤ 0 or a2 ≤ 0, then the probability is 1.

Conclusion

In the present contribution, we show that an expression for the first-passage den-
sity of the surplus to a linear upper boundary can be found by repeated appli-
cations of Girsanov’s theorem, the Markov property and the reflection property
of Brownian motion. We obtained the same results as Teunen and Goovaerts,
but we do not need to solve complicated differential equations. Remark that
also in Scheike (1990) these boundary crossing result for the Brownian motion
are obtained by straightforward calculations, namely by using scaling properties
and time inversion for Brownian motion.
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Zusammenfassung
Einige Bemerkungen zu ’Boundary Crossing Result for the Brownian Motion.’

In Scheike (1990) wurde für die Brownsche Bewegung ein allgemeines Ergeb-
nis über die Randüberschreitung erzielt. M. Teunen und M. Goovaerts er-
reichen dieses Resultats mit hilfe von Pad-Integralen. Für den Überschuss
eines Versicherungsportfolios wird ein Brownscher Prozess betracht, welcher eine
vorgegebene obere Schranke nicht überschreiten soll. Anderfalls müss z.B. eine
Dividende gezahlt werden. Diese Schranke wird stückweise linear angenommen.
In der vorliegenden Arbeit wird eine direkte Herleitung dieses Resultats angegeben.
Wir müssen keine schwierigen Differentialgleichungen auflösen. Wir wenden
standardisierte Methoden an: den Satz von Girsanov, die Eigenschaft von Markov
und das Reflexion-Prinzip; siehe z.B. Revuz-Yor (1991).

Summary

In Scheike (1990) a general boundary crossing result for the Brownian motion
is obtained. Using path integrals, M. Teunen and M. Goovaerts obtained this
result and some generalisations by the methodology of Kac. A Brownian motion
process for the surplus of an insurance portfolio is considered which may not
cross a given upper boundary. This boundary can be a piecewise linear one
consisting of one or more lines.
In the present contribution, we show that these results can be found by a
straightforward derivation. We do not need to solve differential equations but
use several applications of Girsanov’s theorem, the Markov property and the
reflection property of Brownian motion. The exercise consists in recognizing
the Bachelier-Levy formula, transformed by Girsanov’s formula. Remark that
these methods are standard; see for example Revuz-Yor (1991).
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