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Abstract
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1 Introduction

Several studies document risk management practices irparete setting, see for exam-
ple Bodnar et al. (1998), Bartram et al. (2004), Prevost ¢28D0). Survey techniques are
often employed to get insights into why and how firms impletfeatdging strategies. In
the vast majority of studies, the widespread usage of thedgihg policies is confirmed.
In each of the above mentioned surveys, at least 50% of the feported that they make
use of some kind of derivatives.

The most popular derivatives are forwards, options and swHpese instruments can be
used to hedge exposures due to currency, interest rate hadmarket risks. Swaps are
most frequently used to tackle interest rate risks, folldwg forwards and options. Using
these kind of derivatives is surely a first step in success&kimanagement.

However, a second step is formed by using these derivativas optimal way. Although
tools like swaps and options are basic building blocks fos@its of other, more compli-
cated derivatives, they should be used prudently and a fiowlauge of their properties
is needed. These derivatives have a multitude of decisicanpeters, which necessitates
thoroughly investigating the influence of these parametarshe aims of the hedging
policies and the possibility to achieve these goals.

The literature on risk management is much more silent on fwoaptimally decide on
these parameters. The present study partly fills this gapcaMsider the problem of
determining the optimal strike price for a bond put optiomiei is used to hedge the
interest rate risk of an investment in a bond. In order to mesassk, we focus on both
Value-at-Risk (VaR) and Tail Value-at-Risk (TVaR). Our iopization is constrained by a
maximum hedging budget. Alternatively, our approach can ak used to determine the
minimal budget a firm needs to spend in order to achieve a fgadmed absolute risk
level.

The setup of our paper is similar in spirit as Ahn et al. (199®)wever, we emphasize
that our paper contributes in several aspects. First obatlanalysis is carried out for an-
other asset class. Whereas Ahn et al. (1999) consider stmakBcus lies on bonds. The
importance of bonds as an investment tool can hardly be estierated. As reported in
the European institutional market place overview 2006 ofddelnvestment Consulting
(see MercerAssetAloc (2006)), pension funds in contirldfwaope invest more than half
of their resources in bonds. This makes fixed income sees@n asset class that should
not be neglected. Secondly, Ahn et al. (1999) assume thek ptices are driven by a geo-
metric Brownian motion. Our analysis generalises theultssince we only assume that
the price of the asset we consider is driven by a one factoeinweith an affine structure.
This encompasses the Brownian motion process which is afted for stocks, but also
allows for mean reverting processes, which are crucialter@st rate modelling and the
pricing of fixed income securities. Concrete examples ofténe structure models that
are captured by our approach are: Vasicek, one-factor White and one-factor Heath-
Jarrow-Morton with deterministic volatility. Furthermesrwe develop formulas for not
only a zero-coupon bond, but also for a coupon-bearing bbimally, as risk measure,
we consider both VaR and TVaR. As stated below, VaR is a vepulao risk measure



but it is not free of criticism. An important drawback of VaRthat it is a risk measure
which ignores what really happens in the tail. Furthermitris,not a coherent measure,
as precised by Artzner et al. (1999). These two problemsaaided when TVaR is used
as risk measure.

Taking into account the advent of new capital regulationisath the bank (Basel Il) and
the insurance industry (Solvency 1), our insights can @agle in implementing a sound
risk management system.

In the next section we introduce the loss function as welhasisk measures that will be
used. In Section 3 we formulate the bond hedging problem féirsa zero-coupon bond
and next for a coupon-bearing bond. We assume a short ratel ioodhe instantaneous
interest rate with an affine term structure. Not only the Vdfhe loss function but also
its TVaR is minimized under the budget constraint. We payigphattention to the case
that the zero-coupon bond price is lognormally distributedHeyman et al. (2006) we
treat this problem theoretically in a more general framdéwmr only assuming that the
cumulative distribution function of the zero-coupon bort® at a later time instance
before maturity is known.

In Section 4 we illustrate the procedure by hedging a Belg@rernment bond, and take
into account the possibility of divergence between thécabbption prices and real option
prices.

Section 5 concludes the paper.

2 Loss function and risk measures

Consider a portfolio with valuéV; at timet. W is then the value or price at which we
buy the portfolio at time zerdd/r is the value of the portfolio at tim&. The lossL we
make by buying at time zero and selling at tiffies then given by, = W, — Wr. The
Value-at-Risk of this portfolio is defined as thie — «)-quantile of the loss distribution
depending on a time interval with length A formal definition for theVaR,, 1 is

Pr[L > VaR, 7| = a. (1)

In other wordsVaR,, r is the loss of the worst case scenario on the investmentlat a)
confidence level at timé'. It is also possible to define théR,, 1 in a more general way

VaRor(L) =inf{{ e R | Pr(L > /) < a}. (2)

Although frequently used, VaR has attracted some critisidfirst of all, a drawback of
the traditional Value-at-Risk measure is that it does no¢ edout the tail behaviour of
the losses. In other words, by focusing on the VaR at, letjsas&% level, we ignore
the potential severity of the losses below that 5% threshbihis means that we have
no information on how bad things can become in a real strésatgn. Therefore, the



important question of ‘how bad is bad’ is left unansweredcddelly, it is not a coherent
risk measure, as suggested by Artzner et al. (1999). Moreifggdly, it fails to fulfil
the subadditivity requirement which states that a risk memshould always reflect the
advantages of diversifying, that is, a portfolio will risk @mount no more than, and
in some cases less than, the sum of the risks of the condtjtositions. It is possible to
provide examples that show that VaR is sometimes in corfiadiwith this subadditivity
requirement.

Artzner et al. (1999) suggested the use of CVaR (Conditivakle-at-Risk) as risk mea-
sure, which they describe as a coherent risk measure. CvVaRdsknown as TVaR, or
Tail Value-at-Risk and is defined as follows:

TVaRor(L) = ~ [ VaRi_pr(L)d5. 3)

o Jl—-a

This formula boils down to taking the arithmetic averagehef quantiles of our loss, from
1 —ato 1 on, where we recall thataR,_s (L) stands for the quantile at the confidence
level 3, see (1).

A closely related risk measure concerns Expected ShofE8IF). It is defined as:
ESF,r(L) = E[(L — VaRar(L))4]. 4)

In order to determin&'VaR,, (L), we can also make use of the following equality:

TVaRo (L) = VaRa r(L) + éESFmT(L) 5)
= VaRor(L) + ~ B [(L ~ VaRo.r(L))]. (6)

This formula already makes clear th&VaR,, (L) will always be larger thaWVaR,, 7(L).
If moreover the cumulative distribution function of the $as continuous, TVaR is also
equal to the Conditional Tail Expectation (CTE) which foe flossL is calculated as:

CTE. (L) = E[L | L > VaRo+(L)].

This is for example the case in the bond hedging problem tlkeatamsider in the subse-
guent sections, when bond prices are lognormally distibut

3 The bond hedging problem

Analogously to Ahn et al. (1999), we assume that we haveneg fiero, one zero-coupon
bond with maturityS and we will sell this bond at tim&, which is prior toS. In case of

an increase in interest rates, not hedging can lead to slesses. Therefore, the company
decides to spend an amouribn hedging. This amount will be used to buy one or part of



a bond put option with the bond as underlying, so that, in cdsesubstantial decrease
in the bond price, the put option can be exercised in orderdggnt large losses. The
remaining question now is how to choose the strike price. \lidind the optimal strike
prices which minimize VaR and TVaR respectively for a giveaddging cost. An alter-
native interpretation of our setup is that it can be used loutate the minimal hedging
budget the firm has to spend in order to achieve a specified YaR/ar level, a setup
which was followed in the paper by Miyazaki (2001) in anotbeiting.

3.1 Zero-coupon bond

Let us assume that the institution has at date zero an ex@tsa bond P (0, S), with
principal N = 1, which matures at tim§, and that the company has decided to hedge the
bond value by using a percentagéd < i < 1) of one put option ZBR, T', S, X )with
strike priceX and exercise dat€é (with 7" < S).

Further, we assume a short rate modelf@r) with anaffineterm structure such that the
zero-coupon bond pricB(T, S) can be written in the form

P(T7 S) = 14(,1—‘7 ,S’)Q_B(T»SV)T(T)7 (7)

with parameters\(7’, S)(> 0) and B(T, S)(> 0) independent of (T').

This assumption covers a range of commonly used interestratels such as Vasicek,
one-factor Hull-White and one-factor Heath-Jarrow-Martaith deterministic volatility,
see e.g. Brigo and Mercurio (2001).

In Heyman et al. (2006) we treat this problem theoreticallg more general framework.
We make no assumption ofi7"), we only assume that the cumulative distribution func-
tion of P(T', S) is known.

Analogously as in the paper of Ahn et al. (1999), we can lodthatfuture value of the
hedged portfolio that is composed of the baRdnd the put option ZB@®, T, S, X)) at
time 7" as a function of the form

Hr = max(hX + (1 — h)P(T,S), P(T,95)).

In a worst case scenario — a case which is of interest to us —puheption finishes
in-the-money. Then the future value of the portfolio equals

Hy = (1—h)P(T,S) + hX.

Taking into account the cost of setting up our hedged paeotfathich is given by the sum
of the bond priceP(0, S) and the cosC' of the position in the put option, we get for the
value of the loss:

L=P(0,8)+C—((1—h)P(T,S) + hX),



and this under the assumption that the put option finishéisarmoney.
In view of the assumption on the form @#(7,.S), this loss of the portfolio equals a
strictly increasing and continuous functigrof the random variable(7'):

f(r(T)) == L=P(0,5)+ C — ((1 = h)A(T, S)e BT T) L px). (8)

VaR minimization

We first look at the case of determining the optimal sttlkevhen minimizing the VaR
under a constraint on the hedging cost.

Lemma 1 Under the assumption of an affine term structure such thatéme-coupon
bond priceP (T, S) is given by(7), the Value-at-Risk at an percent level of a position
H = {P, h,ZBP} consisting of the bon@ (7', S) and h put options ZBP on this zero-
coupon bond (which are assumed to be in-the-money at eigijatith a strike priceX
and an expiry datd” is equal to*

VaRor(L) = P(0,S) + C — (1 — AT, S)e PTHEm =0 L px)  (9)

where F,(r) denotes the cumulative distribution function (cdfy¢f') and F;, stands
for the inverse of this cdf and is defined in the usual way:

Fopy(p) = inf {z € R| Fury(z) > p}, pel0,1]. (10)

PROOF. We start from the general definition (2) of VaR, use defini{@)of the function
f, the fact thatf is strictly increasing and the definition (10) of the invecsk to obtain
consecutively:

VaR, (L) =inf{{ e R | Pr(L > ¢) < a}
=inf{{ e R| Pr(f('r(T)) > /() < a}
=inf {¢ € R | Pr(r(T) > f71(0) <}
=inf {¢ € R | Pr(r(T) < ())>1—a}
=inf{{ eR| Fpy(f7'(0)) > 1—a}
= f(Fypy(1 = a)).

Finally, invoking again definition (8) of the functiohwe arrive at (9). O

Similar to the Ahn et al. problem, we would like to minimizesthsk of the future value
of the hedged bond{,, given a maximum hedging expenditute More precisely, we

1 In case of an unhedged portfolio, take= h = 0 in (8) and in (9) to obtain the loss functidn
with correspondingvaR 7(L).



consider the minimization problem
IE%}E«O,S)ﬁ—Cj——((1——h)A(TESje—BU)QFR;ﬂl—a)+_h)()

subject to the restriction§ = hZBP(0, T, S, X) andh € (0, 1).
This is a constrained optimization problem with Lagrangecfion

L(X,h,\) = VaRa1r(L) — A(C — hZBP(0, T, S, X)),

containing one multiplicatoh. Note that the multiplicators to include the inequalities
0 < handh < 1 are zero since these constraints are not binding. Takingictount that
the optimal strikeX ™ will differ from zero, we find from the Kuhn-Tucker conditien

or 9ZBP
oy = h A (0.7.5,.X) =0

g_}f = (X — AT, §)e PTIn ) 4 \ZBP(0,T, 5, X) = 0
oL

oy = C —hZBP(0.T,5,X) =0

0O<h<l1 and A>0

that this optimal strikeX* should satisfy the following equation

0ZBP

S (0.7.5,X)=0.  (11)

ZBP(0,T,S,X) — (X — A(T, S)efB(T,S)F;(:lF)(l,ah

By a change of numeraire, it is well known that the put optidngpequals the discounted
expectation under thé-forward measure of the payoff:

ZBP(0,T,S, X) = P(0, T)ET[(X — P(T, S)).].

When the cumulative distribution functidf‘gws) of P(T, S) under thisT-forward mea-
sure has bounded variation and the expectali6fP(T', 9)] is finite, then by partial inte-
gration we find

X
ZBP(0,T.5,X) = P(0,T) [ (Fh5)(p) = Dip.

Its first order derivative with respect to the strikeleads immediately to

0ZBP

—ax (OT,5,X) = P(0,T)Fp7.5(X). (12)
This relation between the cdf and the price of the put opt®analogous to a result
derived in a Black&Scholes framework in Breeden and Litagbr (1978). Since the

randomness oP (7', S) is completely due to the randomness-6f’), relation (7) implies



the following connection between their cdfs under Théorward measure (indicated by
the subscript):

(13)

InA(T,S) —InX
FJZ(T,S)(X) =1 _F;A?T) ( ( ) ) )

B(T,S
Hence, (11) is equivalent to
ZBP(0,T,S, X)

_ (X — AT, §)e BTS00y p(o. ) [1 . <lnA(£,(i)S—>lnX>]'

Important remarks

(1) We note that the optimal strike price is independent ef ltedging cost. This
independence implies that for the optimal striké, VaR in (9) is a linear function
of h (or C):

VaRor(L) = P(0, ) — A(T, S)e PT5% oy (1)
+ h(ZBP(0, T, S, X*) + A(T, S)e PT9F rry(1-9) — X",

So, there is a linear trade-off between the hedging expamdédnd the VaR level,
see Figure 1 in the application of Section 4. It is a decregginction since in view
of (12) %88(0, T, S, X*) < 1 and thus according to (11)

X* — A(T, §)e BTS2 5 7BP(0, T, S, X*). (14)

Although the setup of the paper is determining the strikegpwhich minimizes a
certain risk criterion, given a predetermined hedging lauidthis trade-off shows
that the analysis and the resulting optimal strike price @adently also be used
in the case where a firm is fixing a nominal value for the riskecion and seeks
the minimal hedging expenditure needed to achieve thislesdl. It is clear that,

once the optimal strike price is known, we can determine oith lapproaches, the
remaining unknown variable (either VaR, eitldey.

(2) We also note that the optimal strike pri&e is higher than the bond VaR level

A(T, S)e ~B(T.S)F ) (1-0)

This has to be the case since inequality (14) holds with @BP, S, X') being pos-
itive. This result is also quite intuitive since there is rwrm in taking a strike price
which is situated below the bond price you expect in a worse caenario.

When moreover the optimal strike is smaller than the forwarde of the bond, i.e.

X* < P(O7 S)’
P(0,7)

then the time zero price of the put option to buy will be small.



TVaR minimization

In this section, we demonstrate the ease of extending olysasdo the alternative risk
measure TVaR (3) by integratinggR;_ (L), given by (9) witha = 1 — 3, with respect
to ;.

1 r -1
TVaRar(L) = P(0.5) + C — hX — (1 = h)A(T, ) / e PISIE0 @ g3 (15)
1

-«

We again seek to minimize this risk measure, in order to mgerpotential losses. The
procedure for minimizing this TVaR is analogous to the VaRiimization procedure.
The resulting optimal strike pric&* can thus be determined from the implicit equation
below:

1 -1
ZBP(0,T,5,X) — (X — éA(T, S) / e—B<TaS>Fr(T><ﬂ>d5)azj)(o, T,5,X)=0 (16)
1

—a 0X

which is in view of (12)-(13) equivalent to

A(T 1 _
ZBP(0,T, 5, X) = P(0,T)[X — AT, 5) / e BTOED ) g315
1

[0 —a
nA —1In
x [1—Flp (1 (g’(??s)l X)]. (17)

As for the VaR-case the optimal striké" is independent of the hedging castand TVaR
can be plotted as a linear function ©f(or &) representing a trade-off between the cost
and the level of protection.

For the same reason as in the VaR-case, the optimal strikleas to be higher than the

bond TVaR levek A(T, S) [, e BISE 0 ®) g3

Expected shortfall

Substitution of the expressions (9) and (15) for the VaR Bed¥aR in (5) or (6) provides
immediately the value of the expected shortfall of the Ibss
ESF,7(L) = a[TVaR, (L) — VaR, 7(L)]
= (1= WA(T, §)[ac PNt _ |

11—«

1 _



Summary

The implicit equations (11) and (16) to solve for the optirstaike priceX™ in the VaR-
case respectively the TVaR-case, have the same structi@n@ndiffer by the risk mea-
sure level. Hence, we can treat these as one problem whertnduoe the notation RM
for the risk measures VaR and TVaR. Further we put for the imkdneasure level:

A(T, S)e BT -0 if VaR

RMlevel = 1 —1 19
LA(T, S) / “BISED a3 if TVaR. (19)
@ 11—«

Hence, the results that we derived above can be summariZetioass:

Theorem 2 Under the assumption of an affine term structure such thazéne-coupon
bond priceP (T, 5) is given by(7), the constrained minimization problem:

IE%lRﬁme(L) (20)
s.t.C'= hZBP(0,T,5,X)andh € (0,1) (21)
with RM,, (L) given by(9) or (15), has an optimal solutiotX* implicitly given by

0ZBP
0X

ZBP(0,T, S, X) = (X — RMlevel) (0,7, 5, X). (22)

When moreover the cdf é1(7, S) under thel-forward measure has bounded variation
and ET[P(T, S)] is finite, the optimal strikeX * solves:

ZBP(0, 7. 5, X) = (X — RMlevel) P(0,T)[1 — F, (m A(g’(i);) lnX>]. (23)

The corresponding expected shortfall of the loss is given by
ESF,r(L) = (1 — h)a(VaRlevel— TVaRleve).

RMlevel, VaRleveland TVarlevelare defined by respective{$9), (19)a), (19)b).

VaR and TVaR minimization and ESF: lognormal case

When the short rate(T) is a normal random variable, thé(T', S) is lognormally dis-
tributed and we can further elaborate the relations of Téraa2 noting that the assump-
tions are satisfied.

Theorem 3 Assume that under the risk neutral measure — in which we als@gs our
risk measures — the short rat¢7") is normally distributed with meam and variance
s*. ThenP(T, S) in (7)is lognormally distributed with parametef§ 7, S) andX(T', S)?

10



given by
II(T,S) = A(T,S)— B(T,S)m,  X(T,5)* = B(T, S)*s*, (24)
and the optimal solutioX * to the constrained minimization problg@0)-(21) satisfies

ey P08 (X))
O = B0, T)a (X))’ 29)

with
eH(T,S)—}—E(T,S)@*l(a) if VaR
G(® M a)) = : (26)
NN +H3ET82 (P~ (o) — B(T, S))] if TVaR,
where®(-) stands for the cumulative standard normal distributiongl avith
_ 1 P, 5) | X(T,5) _

The corresponding shortfall of the loss equals:

ESF, (L) = (1 — h)e" T [ae T2 @) _ o338 ¢ (71 (o) — (T, 9))].  (28)

PROOF. When the short rate(T') is normally distributed with meam and variance?
then the parametei$ and>:? of the lognormally distributed (7', S) follow immediately
from (7) while for the inverse cdf of(T") we find

Fyp) =m+sd'(p), pel0,1]. (29)

SinceP (T, S) is lognormally distributed, the price at date zero of a Eesopput option
with the zero-coupon bond as the underlying security ank strike priceX and exercise
dateT (T < S5), see for example Brigo and Mercurio (2001), is explicithyokvn:

ZBP(0,T, S, X) = —P(0,8)®(—d{ (X)) + X P(0, T)®(—da( X)), (30)

whered, (X) andd(X) are defined in (27).
Its first order derivative with respect 19 is:

O25P0.1.5,X) = P(0,T)8(~d(X)) (31)
Combining (30) and (31) in (22) will provide the requireduk$25)-(26) when we have
an expression for the RMlevel which is in this lognormal cdsaoted byG(®~!(«)) to
express the dependence®n'(«). For the VaR case we substitute (29) in (19)(a) and use
the propertyd (1 — o) = —®~!(a) to end up with (26)(a).
For the TVaR-expression @f(®~!(«)) we start from the integral in (15) combined with
(29), apply a change of variable, use the properties of theb¢d and invoke the well-
known result ,
/ Mop(2)dz = eévq)(b —\), (32)

—00
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with ¢(-) the probability density function of a standard normal rand@riable:

A(T, S)e=BT:S)m

1 _
- /17 e—B(T,S)SCD 1(ﬂ)d5
A(T, S)e=BI:S)m

o1(a)
_ ) / eB(T’S)SZQO(Z)dZ
« —00

Grvar(® '(a)) =

= lA(T, S)e BTS2 BTS¢ (1 (o) — B(T, S)s).
«

Finally we express the right hand-side in terms of the patarag24) ofP(T, S), leading
to (26)(b). The expected shortfall of the loss equals inlthgsormal case:

ESFor(L) = (1 = h)a[Gvar(27' (@) = Grvar (27 ()]
= (1 — h)A(T, S)e  BTSmy
x [aeP T _ 3BT 29 (071 () — B(T, S)s)]
— (1 — h)e T [qeP 5P _ o35S (07 (o) — (T, 5))).

The expected short fallSF,, (L) could also be computed directly by combining (8) and
(9) in (4). Hereto, we recall (29) and note that

r(T) L m+sZ, 7~ N(0,1),
such that we may write
ESF@,T(L) _ (1 . h)A(T S) —B( TS)mE[( B(T,8)s® Y(a) e—B(T,S)sZ)_‘_]'
Then, apply a Black&Scholes like formula and (24) to arriv€28). O
Remark 1 Itis easily noticed that the case considered in Ahn et aB9) % of the same
form as formula (25) when using a Brownian motion process.

Remark 2  Two factor models like two-factor additive Gaussian mod@h&, two-
factor Hull-White, two-factor Heath-Jarrow-Morton witletkrministic volatilities which
result in lognormally distributed bond prices (see Brigal &tercurio (2001)), are also
applicable in our framework.

3.2 Coupon-bearing bond

We consider now the case of a coupon-bearing bond payingxieistic cash flowg =
lc1, ..., ¢, at maturitiesS = [S4,. .., S,]. LetT < S;. The price of this coupon-bearing
bond inT is expressed as a linear combination (or a portfolio) of z&nepon bonds:

CB(7,S,C) ch (33)

12



As in the previous section, the company wants to hedge iisigo this bond by buying
a percentage of a put option on this bond with stekk@nd maturity?’. In order to deter-
mine the strikeX, the VaR or the TVaR of the hedged portfolio at tifies minimized
under a budget constraint. As in the previous section webeithble to treat the VaR-case
and the TVaR-case together.

We first have a look at the value of a put option on a couponkibgdrond as well as at
the structure of the loss function.

The prices of the zero-coupon bonB§T, S;), given by (7), all depend on the same short
rater(7"). EachP(T, S;) equals a strictly decreasing and continuous function ofaore
the same random variabt¢T’), i.e. for all:

P(T,S;) = A(T, S;)e  BTSIrD) .= g,(1(T)). (34)

Hence the vectofP (7, 5,), ...,P(T, S,)) is comonotonic, see Kaas et al. (2000), and a
European option on a coupon-bearing bond can be expligiteg by means of Jamshid-
ian’s decomposition, which was originally derived in Jardsm (1989) in case of a Va-
sicek interest rate model. In fact a European option on a@odgearing bond decom-
poses into a portfolio of options on the individual zero4qgon bonds in the portfolio,
which gives in case of a put with maturifyand strikeX:

CBP(0,7,S,C, X) = ch-ZBP(O,T, Si, Xi), (35)

i=1

with X; = g;(rx) satisfying > ¢X; = X. (36)

i=1

Thusry is the value of the short rate at tirfiefor which the coupon-bearing bond price
equals the strike.

Repeating the reasoning of Section 3.1 we may concludertlaivorst case scenario the
loss of the hedged portfolio at tin¥e composed of the coupon-bearing bond (33) and the
put option (35) equals a strictly increasing functipof the random variable(7'):

L =CB(0,5,C)+C — Z:clgz )+ hX) = f(r(T)), (37)
with g;(r(7)) defined in (34).

VaR and TVaR minimization

The VaR of this loss that we want to minimize under the congls® < h < 1 and
C = hCBP(0,T,S,C, X), is analogously to (9) given by

VaRor(L) = CB(0,S,C) + C — hX — Zczgz )(1—a). (38)
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By integrating this relation (38), after replacingoy 1 — 3, with respect tg? between the
integration bound$ — « and1, we find for the TVaR of the loss:

TVaR,r(L) =CB(0,S,C) + C — hX —é 1- ch/ g:(F (5))d5 (39)

Also here we note the similarity in the expressions for te& measures (RM) VaR and
TVaR which could be collected in one expression:

RM,+(L) = CB(0,5,C) + C — hX — (1 - )Y e:Gu(F b, (1—a))  (40)

i=1

gilFigh (1 = @) = A(T, Sp)e” P00t if VaR
= | (41)
[ amdy@)is = SR [ EESEEDas it TVaR.

(0] o

We now want to solve the constrained optimization problem

I)I}i}ILl RM, r(L) subjectedto C'=hCBP0,7,S,C,X), 0<h<1.

From the Kuhn-Tucker conditions we find that the optimalkstprice X* satisfies the
following equation:

BP
CBP(0,7,S,C, X) — [X — ch i 1—04))]8;:)( (0,7,5,C,X)=0. (42)

Rewriting this equation in terms of the put options on thevitial zero-coupon bonds
cfr. (35) leads to the following equivalent set of equations

" " 0ZBP 0X,;

;CZZBP(O’T’ Si, Xi) =[X — ZCZ i T(T (1—a) ch X, (0,7, S“X)ﬁX
(43)

i=1

" 0X;

Z e = 1. (45)

The first equation simplifies by noting th&2F (0, 7', S, X;) is independent of and by
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using (45). Indeed, plug (36) in (12)-(13) while recallirgg{:

0ZBP _ r (WA S) —InX;
= (0,7,S:, X;) = P(0,T)[1 — Flypy ( B(T, S;) >]

= P(0,T)[1 — Fp(rx)] (46)

" 9ZBP X, . " 9X;
;Cia—){i(o,T, SZ,XZ)a—X = P(O,T)[l Fr(T)(TX)] izzlcz 0X

(45)
2 P(0,T)[1 = Flpy (rx)].
Thus in order to find the optimal strik€* we proceed as follows:

Step 1 Solve the following equation, which is equivalent to (48, #:

ZCZ‘ZBP(Oa T, Si, 9i(rx))
i=1

= P(0,T)[1 = Fyi(rx)] D_ cilgi(rx) — Gi(F7 (1 = a))]. (47)

i=1

Step 2 Substitute the solutioriy in (44):
X = cgilry) =Y G AT, Sp)e BT, (48)
=1 =1

Remark In all cases, the optimal strike price is independent of #dging cost and one
can look at the trade-off between the hedging expendituldlam RM level, cfr. Section
3.1.

We summarize these results in the following theorem.

Theorem 4 Under the assumption of an affine term structure model softrall : the
zero-coupon bond pric& (T, S;) is given by(34) and assuming for all that the cdf of
P(T, S;) under theT-forward measure has bounded variation and th&t[P(T, S;)] is
finite, the hedging problem for a coupon bof33):

rgl(i}rLl RM,, 7 (L) (49)
s.t.C' = hCBP(0,7,S,X)andh € (0,1) (50)

with RM,, (L) defined by40)-(41), has an optimal solutiotX * given by(47)-(48).

VaR and TVaR minimization and ESF: lognormal case

We consider the special case thét’) is a normal random variable cfr. (29) such that the
zero-coupon bond priceB(7T', S;) are lognormally distributed with parametdi$T’, S;)
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andX(T, S;)? given by (24) forS = S;. Then the put option prices ZB®, T, S;, g;(x))
in relation (47) are given by (30)-(27), whi@i(F;(})(l — «)) is defined by (26) for
S = S; and will be denoted~;(®~"(a)). The factor P(0, T)[1 — EJp)(rx)] in (47)
equals according to (46) the first order derivative of the gqution prices, which is in
the lognormal case given by (31):

P(0,T)[1 = Fp)(rx)] = P(0,T)®(—da(gi(rx))), foranyi.

This implies thatly(g;(rx)) is independent of.
Thus the optimal striké&™* can be found as follows:

Step 1 Solve the following equation fafy:
il P(0, S)B(~dy(3:(7x)) + PO, T)ilrx)@(~da((rx)

1

K
n

— P(0,T)®(~da(g1(rx))) Y_cilgi(rx) — Gi(@7(a))] = 0. (51)

i=1
Step 2 Substitute the solutioriy in (48).

The expected shortfall in case of a coupon bearing bond igedkin a similar way as for
the zero-coupon bond:

ESF, 1 (L)
= oz[TVaRa,T — VaRa7T]

" NE-L (g T Nl
=3 GA(T, S)ae TSIy 1-a) _ / " BISIE 3 (8) 51
i=1 !

= (1= 1) Y GA(T, 5)e 50 x
1=1
x [aeBTS)s27 @) _ o3 BTS)** ¢ (o1 (o) — B(T, S;)s)]

— (1= 1)) e ae PSS (0 () - S(T )]

i=1

The expected short faliSF,, (L) can also be computed directly by combining (37) and
(38) in relation (4) and by invoking comonotonicity propest(see Kaas et al. (2000)) for
calculating a stop-loss premium of a comonotonic sum. Thgies thateSF, (L) is in
fact a linear combination of the expressions in the righdside of (18) withS replaced

by S;fori=1,...,n.

We derived formula (11), (16) and formula (47) combined w#8) to calculate the opti-
mal strike price for the hedging problems under considanatn all cases, the specifica-
tion of an interest rate model is necessary. Until now, thienapation has been achieved
with the most important modelling assumption that the bomcepP (7, S) has the form

16



(7) such that the term structure is affine. We also looked giegial case that the bond
price P(T, S) is lognormally distributed. We did not yet form concreteiéfsl on how the
(instantaneous) interest rate will move. By forming theekelfs, or in other words, by
specifying a model for the evolution of the interest rate,alg® get explicit expressions
for the bond and bond option prices, which then enables usteyiine the (theoretically)
optimal strike price.

In the next section, we will define and explain the speciftcatf the model for the
evolution of the instantaneous interest rate.

4 Application

4.1 The Hull-White model

There exists a whole literature concerning interest rateleiso For a comprehensive
overview we refer for example to Brigo and Mercurio (20019r Bur analysis, we fo-
cus on the Hull-White one-factor model, first discussed inl ldnd White (1990). We
choose this model because it is still an often used model am&ial institutions for risk
management purposes, (see Brigo and Mercurio (2001)). Tam reasons explain this
popularity. First of all, it is a model that allows closedrfosolutions for bond and plain
vanilla European option pricing. So, since there are exdacing formulas, there is no
need to run time consuming simulations. But of course, ifrtiael lacks credibility,
fast but wrong price computations do not offer any benefit. tBat is where the second
big advantage of the Hull-White model comes from since itceads in fitting a given
term structure by having (at least) one time-dependenthpetex. Therefore, today’s bond
prices can be perfectly matched. It belongs to the class oébed no-arbitrage interest
rate models. This means that, in contrast to equilibrium et®¢such as Vasicek, Cox-
Ingersoll-Ross), no-arbitrage models succeed in fittingvargterm structure, and thus
can match today’s bond prices perfectly.

An often cited critique is that applying the model sometimesailts in a negative interest
rate, but with up-to-date calibrated parameters which aeel dor a rather short period, it
can be proved that the probability of obtaining negativenest rates is very small.

Hull and White (1990) assume that the instantaneous intextesfollows a mean reverting
process also known as an Ornstein-Uhlenbeck process:

dr(t) = (6(t) —v(t)r(t))dt + o(t)dZ(t) (52)

for a standard Brownian motiof(¢) under the risk-neutral measuég and with time
dependent parametet§), v(t), ando(t). The parameted(t)/~(t) is the time dependent
long-term average level of the spot interest rate aroundwtit) moves;y(¢) controls the
mean-reversion speed andt) is the volatility function. By making the mean reversion
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level 6 time dependent, a perfect fit with a given term structure @adhieved, and in

this way arbitrage can be avoided. In our analysis, we widke and o constant, and

thus time-independent. According to Brigo and MercurioQ(2) this is desirable when
an exact calibration to an initial term structure is wanfigds perfect fit then occurs when
0(t) satisfies the following condition:

2
0(t) = FtM(O,t) + VFM(O,t) + ;r_<1 _ 6727’&)7
7

where, FM (0, t) denotes the instantaneous forward rate observed in theetnamktime
zero with maturityt.

It can be shown (see Hull and White (1990)) that the expextadind variance of the
stochastic variable(t) are:

Elrt)] =m(t) =r0)e " + a(t) — a(0)e ™" (53)
Var[r(t)] = s*(t) = %(1 — e, (54)

with the expression(t) calculated as follows:

a(t) = FM(0,1) + "; (1 _76_%)2.

Based on these results, Hull and White developed an analgxpression for the price
of a zero-coupon bond with maturity date

P(t,S) = A(t,S)e BESr M) (55)
where
1 — (51
B(t,S) = ——— (56)
Y
PYM(0,5) pr.s)r(04)—22 (1—e—2)B2(t,9)
A(t, S) = WG 4y ) (57)

with P the bond price observed in the market. Sinde, S) and B(t, S) are indepen-
dent ofr(¢), the distribution of a bond price at any given time must bentognal with
parameter$l and 22

(¢, S) = In A(t, S) — B(t, S)m(t), Y(t,S)* = B(t, 5)*s*(t), (58)

with m(t) ands?(¢) given by (53) and (54).
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4.2 Calibration of the Hull-White model

Until now, we theoretically discussed the issue of minimgzthe VaR and TVaR of our
investment. If the firm wants to pursue this minimizatioroiptractice, it needs credible
parameters for the interest rate model it uses. Focusinguiticplar on the Hull-White
model that we discussed above, we need to have parametesafy ando. The process
to obtain these parameters is calibration. The most comnaynta calibrate the Hull-
White model is by using interest rate options, such as saaptr caps. The goal of the
calibration is to find the model parameters that minimizerthative difference between
the market prices of these interest rate options and thegnbtained by applying our
model.

Suppose we havé/ market prices of swaptions or caps, then we searchythad o
such that the sum of squared errors between the market anel pracks are minimized.

Formally,
&L smode} — market 2
S J Z; ( market ) '

Interest rate caps are instruments that provide the hofdigsrtection against a specified
interest rate (e.g. the three month EURIBQR,) rising above a specified level (the cap
rate, R )). Suppose a company issued a floating rate note with as neferate the three
month EURIBOR. When EURIBOR rises above the cap rate, a p#&y/generated such
that the net payment of the holder only equals the cap rate.d@p consists of a series
of caplets. These caplets can be seen as call options onfénenee rate. The maturity
of the underlying floating interest rate of these call opgiequals the tenor, which is the
time period between two resets of the reference rate. Inagg,ahis is three months, or
0.25 year.

If in our case, at time,,, the three month EURIBOR rises above the cap rate, the dll wi
be exercised, which leads to a payoff at time; (0.25 year later) that can be used to
compensate the increased interest payment on the floatmgate. Formally, the payoff
at timet;_; equals (see Hull (2003)):

max(0.25(R; — R¢),0).
This is equivalent to a payoff at tintg of

max(0.25(R;, — R¢),0)
14+ 0.25R,,

(1 1+0.25Rc 0)
max S — .
1+025R,’

This is the payoff of a put option with strikie expiring att;, on a zero-coupon bond with
principal1+-0.25 R, maturing at; ;. This means that each individual caplet corresponds

This can be restated as:
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here comes Table 1

Table 1: Overview cap data

to a put option on a zero-coupon bond. Thus, a cap can be vatugdum of zero-coupon
bond put options. Since these put options can be valued trsengull-White model, this
offers us a way to fit our model to the market data. The mark&t d& have used are
to be found in Table 1 where cap maturities are listed, aloitly tlve volatility quotes of
these caps and the cap rate. The data are obtained on 11 8@&ikkhd have as reference
rate EURIBOR. Note that the volatility quotes have the tiadal humped relation with
respect to the maturity of the cap: the volatility reachespgeak at the year cap and
then decreases steadily as the maturity increases. Alththeycap rate can be freely
determined, it is most common to put it equal to the swap @ta swap having the same
payment dates as the cap. The volatility quotes that areigedvare based on Black’s
model. This means that we first have to use Black’s formulav&bming bond options in
order to arrive at the prices of the caps. These prices amrshothe fourth column.
Now we still have to calculate the model prices. Therefore,use, for each caplet, the
following formula:

ZBP(0,T, S, X,N) = —NP(0,8)®(—d: (X)) + XP(0, T)®(—ds(X)),  (59)

As strike priceX we takel, and as principalN we takel 4+ 0.25R¢. P(0,7) andP(0, S)
can be read from the term structure.

Taking the sum of all the caplets in a given cap, we get an sspe for which we need
to seek the parameters that, globally, make the best fit. @hlgration procedure results
in the following parameter values:

v = 0.31621 o = 0.011631.

4.3 VaR and TVaR minimization

Supposing we have gone through this calibration procedoeenext step in our hedging
programme would then be to provide this protection to outfpbo. This can basically
be achieved in two ways: first of all, by buying a put optionsecondly, by replicating
this option. In the first approach, we are also facing two ibdgses: either we buy the
put option at a regulated exchange market, either we buyet the counter (OTC). If
options are bought as protection against interest rateitiskmost common to buy them
OTC. Genuine bond options are only available at a restrictedber of exchanges. Fur-
thermore, at these exchanges, trading in bond options &llystery thin. The second
approach, replicating the option synthetically, involgeste some follow up and adjust-
ment in positions, and can entail a considerable amounan$action costs. Therefore, it
is not unreasonable to consider the OTC market as the ortievossibility for a firm
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to buy protection. A major advantage of buying over the ceurg that we can com-
pletely tailor the option to our needs. What is of utter intpace to the firm is that the
option can be bought at any desired strike. This opposes/iadpoptions on an exchange
market, where options can only be bought at predetermimie girices. A source of un-
certainty is the discrepancy between the theoretical ogiticces that were calculated and
the option price that has to be paid over the counter. Thexgefioe firm could perform the
optimization procedure using the prices of the financidituigon. However, this restricts
the possible calculation methods to using formula (42). ddrabination of (51) and (48)
cannot be used since this requires the knowledgk ahdd,, which we clearly not have,
since we only have the price of the option. So, it is necesganse formula (42). The
difference in optimal strike price in both approaches is lmpieical question and will be
dealt with in this part.

For our numerical illustration, we suppose the firm has an GbOOLO (which stands
for Obligation lineair/lineaire Obligatie) are debt instnents issued by the Belgian gov-
ernment, and as such, believed to be risk-free. OLOs haved éaupon. The OLO we
consider was issued on 28 Sept 2000 and will mature on 28 ®41& 30 the maturity
is 10 years, i.eS = 10. It pays a yearly coupon of 5.75 %, on 28 Sept of each year, i.e.
¢; = 0.0575 for all 7. As there are no traded options for this kind of bond, we hayeo-
tect by buying OTC options. Therefore, we got OTC prices frfmancial institution.
The date on which these data were delivered, is 30 Sept 200% nfeans that the bond
then has a remaining maturity of 4.99 years, and coupongwifiaid out at5; = 0.99,

Sy = 1.99, 53 = 2.99, S, = 3.99 and S; = 4.99. At that particular date, 30 Sept 2005,
the bond had a market price of 1.1393. We received the opticegfor a wide range
of strikes: going from a strike price of 1.05 to a strike of991with steps of 0.001. The
option maturity is exactly one year, i./€.= 1.

This means that the maturity of the option lies between tisédind second coupon pay-
ment, whereas when deriving optimal strike price, we sup@dbat the option matured
before the first coupon payment. This problem can easily ieddy reducing our
coupon payment vector to the last four observations.

We now havehree methods of computing the optimal strike price.

(1) The first method is solving equation (51) and substituim(48).

(2) The second method still uses the theoretical optiorepribut solves equation (42)
and approximates the first derivative of the option pricehwéspect to the strike
price by the difference quotient of the changes in the ogtioces to the changes in
the strike price.

(3) The third is equivalent to the second approach, but usesption prices received
from the financial institution.

Using a 5% confidence level, the bond VaR level for a holdingopleof one year (in other
words, a worst case expectation of the evolution of the baiepis 1.0716. Using this
number, we can calculate the optimal strike price intttiee different methods. Note that
VaR has to be calculated under the true probability meaSimee we have calibrated our
interest rate model using option prices, the parametershiaared are under the risk-
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neutral measure. So, in order to know the parameters undérud probability measure,
we would need to estimate the market price of risk. Howeveuite often done (see
Stanton (1997)), we assumed the market price of risk to e zer

(1) The first method results in an optimal strike price of B®8
(2) The second method yields an optimum which is very cloghiso 1.084.
(3) The last method finds as an optimum a slightly higher stpilice: 1.087.

In all three cases, the optimum is situated above the VaR déviee bond as predicted by
the theory. The close correspondence between the first twlooche is evident, since the
difference can only be attributed to approximation errarghe second method. Although
not dramatic, we observe a difference between the first twidlamlast method. The third
method is resulting in an option that is a bit more in the money

Using a 1% confidence level, a comparable picture emergeshdind VaRr level of course
is lower this time, namely 1.0561. This results in lower oyl strike prices: in the first
method, we obtain an optimal strike price of 1.0649. The sdanethod shows an opti-
mum of 1.065. The third method again shows a higher optimhimtime the strike price
amounts to 1.068.

For both confidence levels the results are summarized ireTabl

here comes Table 2

Table 2: Optimal strike prices for one and five percent configelevels, for different
calculation methods.

As stated earlier, the firm that wishes to hedge its exposurew facing a linear trade-off
between VaR and hedging expenditure. This is illustratdeigmire 1. On this graph, the
firm can clearly see the consequence of choosing a particatiging cost. Alternatively,
it can read the hedging cost required to obtain a certaireption, expressed in VaR terms.
Note that the hedging cost is restricted to the rajige.003171], with the left hand side
of the range corresponding to no hedging, and the right hialeccsrresponding to buying
an entire put option (at the OTC price) at the optimal strikegy(so,h = 1). No hedging
leads to a VaR of 0.0677. Buying an entire option at the ogdtstrike price reduces the
VaR to 0.0557. It is clear that the exact position a firm takesletermined by both the
budget and the risk aversion or appetite of the firm, which amnot judge. Furthermore,
it makes economic sense to execute the hedge since we oltisartbe hedging cost is
smaller than the reduction in VaR you get by hedging.

Conclusions are comparable when performing a TVaR minitiwaaOf course, the bond
TVaR level lies below the VaR level. For the 5% level, it isusited at 1.0621. The first
method results in an optimum of 1.0717. The second method 1ifi¥ 2 as optimal strike
price, and the third method (taking into account the OTCg®jgroduces an optimum
of 1.075. Again we observe the difference between the firstrivethods and the third
method.
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here comes figure 1

Fig. 1: VaR in function of the hedging expenditure

For the 1% level, the bond TVaR is 1.0485. The optimum in thst finethod is now at
1.0537. The second method results in an optimum of 1.056dXkie OTC prices, an
optimal strike price is reached at a level of 1.059.

We can thus conclude that, based on OTC prices, the optimsituaged slightly higher
than the optimum reached under theoretical prices. Thislasion is robust for different
risk criteria and different confidence levels.

5 Conclusions

We provided a method for minimizing the risk of a position ith@nd (zero-coupon or
coupon-bearing) by buying (a percentage of) a bond put npfiaking into account a
budget constraint, we determine the optimal strike pridectvminimizes a Value-at-Risk
or Tail-Value-at-Risk criterion. Alternatively, our aggach can be used when a nominal
risk level is fixed, and the minimal hedging budget to fulfisthriterion is desired. From
the class of short rate models which result in lognormalsgrdduted future bond prices,
we have selected the Hull-White one-factor model for arsthation of our optimization.
This Hull-White model is calibrated to a set of cap pricesprder to obtain credible
parameters for the process. We illustrated our strategngues investment asset a Belgian
government bond, on which we want to buy protection. We dated the optimal strike
price of the bond option that we use, both with theoreticall-Mthite prices, and with
real market prices. The results are comforting in the sematethe optimal strike prices
in both approaches show a close correspondence. The stitkebased on real prices is
only slightly higher than the one based on theoretical grice

Further research possibilities are mainly situated in tivedations. First of all, we can
consider other instruments to hedge our investment. Theofuaeswaption to hedge a
swap is very widespread in the financial industry. It showddbssible to determine the
optimal swap rate to hedge the swap. The second directiooecos the interest rate
models that can be used in our analysis. It is often statédwiioafactor models are better
suited to capture interest rate behaviour. Such a modelotdrenused here to hedge an
investment in a coupon-bearing bond. The reason is thatamskidian decomposition
cannot be applied. An alternative could be the comonottynapproach of Dhaene et al.
(2002a) and Dhaene et al. (2002b), which results in a loneugper bound for the bond
put option. As an alternative for a two-factor model, a mawigth a jump component can
be considered. Johannes (2004) finds evidence for the iamp@of adding a jump term
to interest rate models. The use of jump models, howevegsaiew pricing and hedging
issues.
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