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1 Introduction

Several studies document risk management practices in a corporate setting, see for exam-
ple Bodnar et al. (1998), Bartram et al. (2004), Prevost et al. (2000). Survey techniques are
often employed to get insights into why and how firms implement hedging strategies. In
the vast majority of studies, the widespread usage of these hedging policies is confirmed.
In each of the above mentioned surveys, at least 50% of the firms reported that they make
use of some kind of derivatives.
The most popular derivatives are forwards, options and swaps. These instruments can be
used to hedge exposures due to currency, interest rate and other market risks. Swaps are
most frequently used to tackle interest rate risks, followed by forwards and options. Using
these kind of derivatives is surely a first step in successfulrisk management.
However, a second step is formed by using these derivatives in an optimal way. Although
tools like swaps and options are basic building blocks for all sorts of other, more compli-
cated derivatives, they should be used prudently and a firm knowledge of their properties
is needed. These derivatives have a multitude of decision parameters, which necessitates
thoroughly investigating the influence of these parameterson the aims of the hedging
policies and the possibility to achieve these goals.
The literature on risk management is much more silent on how to optimally decide on
these parameters. The present study partly fills this gap. Weconsider the problem of
determining the optimal strike price for a bond put option, which is used to hedge the
interest rate risk of an investment in a bond. In order to measure risk, we focus on both
Value-at-Risk (VaR) and Tail Value-at-Risk (TVaR). Our optimization is constrained by a
maximum hedging budget. Alternatively, our approach can also be used to determine the
minimal budget a firm needs to spend in order to achieve a predetermined absolute risk
level.

The setup of our paper is similar in spirit as Ahn et al. (1999). However, we emphasize
that our paper contributes in several aspects. First of all,our analysis is carried out for an-
other asset class. Whereas Ahn et al. (1999) consider stocks, our focus lies on bonds. The
importance of bonds as an investment tool can hardly be underestimated. As reported in
the European institutional market place overview 2006 of Mercer Investment Consulting
(see MercerAssetAloc (2006)), pension funds in continental Europe invest more than half
of their resources in bonds. This makes fixed income securities an asset class that should
not be neglected. Secondly, Ahn et al. (1999) assume that stock prices are driven by a geo-
metric Brownian motion. Our analysis generalises their results since we only assume that
the price of the asset we consider is driven by a one factor model with an affine structure.
This encompasses the Brownian motion process which is oftenused for stocks, but also
allows for mean reverting processes, which are crucial in interest rate modelling and the
pricing of fixed income securities. Concrete examples of theterm structure models that
are captured by our approach are: Vasicek, one-factor Hull-White and one-factor Heath-
Jarrow-Morton with deterministic volatility. Furthermore, we develop formulas for not
only a zero-coupon bond, but also for a coupon-bearing bond.Finally, as risk measure,
we consider both VaR and TVaR. As stated below, VaR is a very popular risk measure
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but it is not free of criticism. An important drawback of VaR is that it is a risk measure
which ignores what really happens in the tail. Furthermore,it is not a coherent measure,
as precised by Artzner et al. (1999). These two problems are tackled when TVaR is used
as risk measure.

Taking into account the advent of new capital regulations inboth the bank (Basel II) and
the insurance industry (Solvency II), our insights can playa role in implementing a sound
risk management system.

In the next section we introduce the loss function as well as the risk measures that will be
used. In Section 3 we formulate the bond hedging problem, first for a zero-coupon bond
and next for a coupon-bearing bond. We assume a short rate model for the instantaneous
interest rate with an affine term structure. Not only the VaR of the loss function but also
its TVaR is minimized under the budget constraint. We pay special attention to the case
that the zero-coupon bond price is lognormally distributed. In Heyman et al. (2006) we
treat this problem theoretically in a more general framework by only assuming that the
cumulative distribution function of the zero-coupon bond price at a later time instance
before maturity is known.
In Section 4 we illustrate the procedure by hedging a Belgiangovernment bond, and take
into account the possibility of divergence between theoretical option prices and real option
prices.
Section 5 concludes the paper.

2 Loss function and risk measures

Consider a portfolio with valueWt at timet. W0 is then the value or price at which we
buy the portfolio at time zero.WT is the value of the portfolio at timeT . The lossL we
make by buying at time zero and selling at timeT is then given byL = W0 − WT . The
Value-at-Risk of this portfolio is defined as the(1 − α)-quantile of the loss distribution
depending on a time interval with lengthT . A formal definition for theVaRα,T is

Pr[L ≥ VaRα,T ] = α. (1)

In other wordsVaRα,T is the loss of the worst case scenario on the investment at a(1−α)
confidence level at timeT . It is also possible to define theVaRα,T in a more general way

VaRα,T (L) = inf {ℓ ∈ R | Pr(L > ℓ) ≤ α} . (2)

Although frequently used, VaR has attracted some criticisms. First of all, a drawback of
the traditional Value-at-Risk measure is that it does not care about the tail behaviour of
the losses. In other words, by focusing on the VaR at, let’s say a 5% level, we ignore
the potential severity of the losses below that 5% threshold. This means that we have
no information on how bad things can become in a real stress situation. Therefore, the
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important question of ‘how bad is bad’ is left unanswered. Secondly, it is not a coherent
risk measure, as suggested by Artzner et al. (1999). More specifically, it fails to fulfil
the subadditivity requirement which states that a risk measure should always reflect the
advantages of diversifying, that is, a portfolio will risk an amount no more than, and
in some cases less than, the sum of the risks of the constituent positions. It is possible to
provide examples that show that VaR is sometimes in contradiction with this subadditivity
requirement.

Artzner et al. (1999) suggested the use of CVaR (ConditionalValue-at-Risk) as risk mea-
sure, which they describe as a coherent risk measure. CVaR isalso known as TVaR, or
Tail Value-at-Risk and is defined as follows:

TVaRα,T (L) =
1

α

∫ 1

1−α
VaR1−β,T (L)dβ. (3)

This formula boils down to taking the arithmetic average of the quantiles of our loss, from
1− α to 1 on, where we recall thatVaR1−β,T (L) stands for the quantile at the confidence
levelβ, see (1).

A closely related risk measure concerns Expected Shortfall(ESF). It is defined as:

ESFα,T (L) = E [(L − VaRα,T (L))+] . (4)

In order to determineTVaRα,T (L), we can also make use of the following equality:

TVaRα,T (L) = VaRα,T (L) +
1

α
ESFα,T (L) (5)

= VaRα,T (L) +
1

α
E [(L − VaRα,T (L))+] . (6)

This formula already makes clear thatTVaRα,T (L) will always be larger thanVaRα,T (L).
If moreover the cumulative distribution function of the loss is continuous, TVaR is also
equal to the Conditional Tail Expectation (CTE) which for the lossL is calculated as:

CTEα,T (L) = E[L | L > VaRα,T (L)].

This is for example the case in the bond hedging problem that we consider in the subse-
quent sections, when bond prices are lognormally distributed.

3 The bond hedging problem

Analogously to Ahn et al. (1999), we assume that we have, at time zero, one zero-coupon
bond with maturityS and we will sell this bond at timeT , which is prior toS. In case of
an increase in interest rates, not hedging can lead to severelosses. Therefore, the company
decides to spend an amountC on hedging. This amount will be used to buy one or part of
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a bond put option with the bond as underlying, so that, in caseof a substantial decrease
in the bond price, the put option can be exercised in order to prevent large losses. The
remaining question now is how to choose the strike price. We will find the optimal strike
prices which minimize VaR and TVaR respectively for a given hedging cost. An alter-
native interpretation of our setup is that it can be used to calculate the minimal hedging
budget the firm has to spend in order to achieve a specified VaR or TVar level, a setup
which was followed in the paper by Miyazaki (2001) in anothersetting.

3.1 Zero-coupon bond

Let us assume that the institution has at date zero an exposure to a bond,P (0, S), with
principalN = 1, which matures at timeS, and that the company has decided to hedge the
bond value by using a percentageh (0 < h < 1) of one put option ZBP(0, T, S, X)with
strike priceX and exercise dateT (with T ≤ S).
Further, we assume a short rate model forr(T ) with anaffineterm structure such that the
zero-coupon bond priceP (T, S) can be written in the form

P (T, S) = A(T, S)e−B(T,S)r(T ), (7)

with parametersA(T, S)(> 0) andB(T, S)(> 0) independent ofr(T ).
This assumption covers a range of commonly used interest rate models such as Vasicek,
one-factor Hull-White and one-factor Heath-Jarrow-Morton with deterministic volatility,
see e.g. Brigo and Mercurio (2001).
In Heyman et al. (2006) we treat this problem theoretically in a more general framework.
We make no assumption onr(T ), we only assume that the cumulative distribution func-
tion of P (T, S) is known.

Analogously as in the paper of Ahn et al. (1999), we can look atthe future value of the
hedged portfolio that is composed of the bondP and the put option ZBP(0, T, S, X) at
timeT as a function of the form

HT = max(hX + (1 − h)P (T, S), P (T, S)).

In a worst case scenario — a case which is of interest to us — theput option finishes
in-the-money. Then the future value of the portfolio equals

HT = (1 − h)P (T, S) + hX.

Taking into account the cost of setting up our hedged portfolio, which is given by the sum
of the bond priceP (0, S) and the costC of the position in the put option, we get for the
value of the loss:

L = P (0, S) + C − ((1 − h)P (T, S) + hX),
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and this under the assumption that the put option finishes in-the-money.
In view of the assumption on the form ofP (T, S), this loss of the portfolio equals a
strictly increasing and continuous functionf of the random variabler(T ):

f(r(T )) := L = P (0, S) + C − ((1 − h)A(T, S)e−B(T,S)r(T ) + hX). (8)

VaR minimization

We first look at the case of determining the optimal strikeX when minimizing the VaR
under a constraint on the hedging cost.

Lemma 1 Under the assumption of an affine term structure such that thezero-coupon
bond priceP (T, S) is given by(7), the Value-at-Risk at anα percent level of a position
H = {P, h, ZBP} consisting of the bondP (T, S) and h put options ZBP on this zero-
coupon bond (which are assumed to be in-the-money at expiration) with a strike priceX
and an expiry dateT is equal to1

VaRα,T (L) = P (0, S) + C − ((1 − h)A(T, S)e
−B(T,S)F−1

r(T )
(1−α)

+ hX), (9)

whereFr(T ) denotes the cumulative distribution function (cdf) ofr(T ) andF−1
r(T ) stands

for the inverse of this cdf and is defined in the usual way:

F−1
r(T )(p) = inf

{

x ∈ R | Fr(T )(x) ≥ p
}

, p ∈ [0, 1] . (10)

PROOF. We start from the general definition (2) of VaR, use definition(8) of the function
f , the fact thatf is strictly increasing and the definition (10) of the inversecdf to obtain
consecutively:

VaRα,T (L) = inf {ℓ ∈ R | Pr(L > ℓ) ≤ α}

= inf {ℓ ∈ R | Pr(f(r(T )) > ℓ) ≤ α}

= inf
{

ℓ ∈ R | Pr(r(T ) > f−1(ℓ)) ≤ α
}

= inf
{

ℓ ∈ R | Pr(r(T ) ≤ f−1(ℓ)) ≥ 1 − α
}

= inf {ℓ ∈ R | Fr(T )(f
−1(ℓ)) ≥ 1 − α}

= f(F−1
r(T )(1 − α)).

Finally, invoking again definition (8) of the functionf we arrive at (9). 2

Similar to the Ahn et al. problem, we would like to minimize the risk of the future value
of the hedged bondHT , given a maximum hedging expenditureC. More precisely, we

1 In case of an unhedged portfolio, takeC = h = 0 in (8) and in (9) to obtain the loss functionL
with correspondingVaRα,T (L).
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consider the minimization problem

min
X,h

P (0, S) + C − ((1 − h)A(T, S)e
−B(T,S)F−1

r(T )
(1−α)

+ hX)

subject to the restrictionsC = hZBP(0, T, S, X) andh ∈ (0, 1).
This is a constrained optimization problem with Lagrange function

L(X, h, λ) = VaRα,T (L) − λ(C − hZBP(0, T, S, X)),

containing one multiplicatorλ. Note that the multiplicators to include the inequalities
0 < h andh < 1 are zero since these constraints are not binding. Taking into account that
the optimal strikeX∗ will differ from zero, we find from the Kuhn-Tucker conditions



























































∂L

∂X
= −h + hλ

∂ZBP
∂X

(0, T, S, X) = 0

∂L

∂h
= −(X − A(T, S)e

−B(T,S)F−1
r(T )

(1−α)
) + λZBP(0, T, S, X) = 0

∂L

∂λ
= C − hZBP(0, T, S, X) = 0

0 < h < 1 and λ > 0

that this optimal strikeX∗ should satisfy the following equation

ZBP(0, T, S, X) − (X − A(T, S)e
−B(T,S)F−1

r(T )
(1−α)

)
∂ZBP
∂X

(0, T, S, X) = 0. (11)

By a change of numeraire, it is well known that the put option price equals the discounted
expectation under theT -forward measure of the payoff:

ZBP(0, T, S, X) = P (0, T )ET [(X − P (T, S))+].

When the cumulative distribution functionF T
P (T,S) of P (T, S) under thisT -forward mea-

sure has bounded variation and the expectationET [P (T, S)] is finite, then by partial inte-
gration we find

ZBP(0, T, S, X) = P (0, T )
∫ X

−∞

(F T
P (T,S)(p) − 1)dp.

Its first order derivative with respect to the strikeX leads immediately to

∂ZBP
∂X

(0, T, S, X) = P (0, T )F T
P (T,S)(X). (12)

This relation between the cdf and the price of the put option is analogous to a result
derived in a Black&Scholes framework in Breeden and Litzenberger (1978). Since the
randomness ofP (T, S) is completely due to the randomness ofr(T ), relation (7) implies
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the following connection between their cdfs under theT -forward measure (indicated by
the subscriptT ):

F T
P (T,S)(X) = 1 − F T

r(T )

(

ln A(T, S) − ln X

B(T, S)

)

. (13)

Hence, (11) is equivalent to

ZBP(0, T, S, X)

= (X − A(T, S)e
−B(T,S)F−1

r(T )
(1−α)

)P (0, T )

[

1 − F T
r(T )

(

ln A(T, S) − lnX

B(T, S)

)]

.

Important remarks

(1) We note that the optimal strike price is independent of the hedging costC. This
independence implies that for the optimal strikeX∗, VaR in (9) is a linear function
of h (or C):

VaRα,T (L) =P (0, S) − A(T, S)e
−B(T,S)F−1

r(T )
(1−α)

+ h(ZBP(0, T, S, X∗) + A(T, S)e
−B(T,S)F−1

r(T )
(1−α)

− X∗).

So, there is a linear trade-off between the hedging expenditure and the VaR level,
see Figure 1 in the application of Section 4. It is a decreasing function since in view
of (12) ∂ZBP

∂X
(0, T, S, X∗) < 1 and thus according to (11)

X∗ − A(T, S)e
−B(T,S)F−1

r(T )
(1−α)

> ZBP(0, T, S, X∗). (14)

Although the setup of the paper is determining the strike price which minimizes a
certain risk criterion, given a predetermined hedging budget, this trade-off shows
that the analysis and the resulting optimal strike price canevidently also be used
in the case where a firm is fixing a nominal value for the risk criterion and seeks
the minimal hedging expenditure needed to achieve this risklevel. It is clear that,
once the optimal strike price is known, we can determine, in both approaches, the
remaining unknown variable (either VaR, eitherC).

(2) We also note that the optimal strike priceX∗ is higher than the bond VaR level

A(T, S)e
−B(T,S)F−1

r(T )
(1−α)

.

This has to be the case since inequality (14) holds with ZBP(0, T, S, X) being pos-
itive. This result is also quite intuitive since there is no point in taking a strike price
which is situated below the bond price you expect in a worst case scenario.
When moreover the optimal strike is smaller than the forwardprice of the bond, i.e.

X∗ <
P (0, S)

P (0, T )
,

then the time zero price of the put option to buy will be small.
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TVaR minimization

In this section, we demonstrate the ease of extending our analysis to the alternative risk
measure TVaR (3) by integratingVaR1−β,T (L), given by (9) withα = 1−β, with respect
to β:

TVaRα,T (L) = P (0, S) + C − hX −
1

α
(1 − h)A(T, S)

∫ 1

1−α
e
−B(T,S)F−1

r(T )
(β)

dβ. (15)

We again seek to minimize this risk measure, in order to minimize potential losses. The
procedure for minimizing this TVaR is analogous to the VaR minimization procedure.
The resulting optimal strike priceX∗ can thus be determined from the implicit equation
below:

ZBP(0, T, S, X)− (X −
1

α
A(T, S)

∫ 1

1−α
e
−B(T,S)F−1

r(T )
(β)

dβ)
∂ZBP
∂X

(0, T, S, X) = 0 (16)

which is in view of (12)-(13) equivalent to

ZBP(0, T, S, X) = P (0, T )[X −
A(T, S)

α

∫ 1

1−α
e
−B(T,S)F−1

r(T )
(β)

dβ]×

× [1 − F T
r(T )

(

ln A(T, S) − ln X

B(T, S)

)

]. (17)

As for the VaR-case the optimal strikeX∗ is independent of the hedging costC and TVaR
can be plotted as a linear function ofC (or h) representing a trade-off between the cost
and the level of protection.
For the same reason as in the VaR-case, the optimal strikeX∗ has to be higher than the

bond TVaR level1
α
A(T, S)

∫ 1
1−α e

−B(T,S)F−1
r(T )

(β)
dβ.

Expected shortfall

Substitution of the expressions (9) and (15) for the VaR and the TVaR in (5) or (6) provides
immediately the value of the expected shortfall of the lossL:

ESFα,T (L) = α[TVaRα,T (L) − VaRα,T (L)]

= (1 − h)A(T, S)[αe
−B(T,S)F−1

r(T )
(1−α)

−
∫ 1

1−α
e
−B(T,S)F−1

r(T )
(β)

β]. (18)
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Summary

The implicit equations (11) and (16) to solve for the optimalstrike priceX∗ in the VaR-
case respectively the TVaR-case, have the same structure and only differ by the risk mea-
sure level. Hence, we can treat these as one problem when we introduce the notation RM
for the risk measures VaR and TVaR. Further we put for the bondrisk measure level:

RMlevel =











A(T, S)e
−B(T,S)F−1

r(T )
(1−α) if VaR

1
α
A(T, S)

∫ 1

1−α
e
−B(T,S)F−1

r(T )
(β)

dβ if TVaR.
(19)

Hence, the results that we derived above can be summarized asfollows:

Theorem 2 Under the assumption of an affine term structure such that thezero-coupon
bond priceP (T, S) is given by(7), the constrained minimization problem:

min
X,h

RMα,T (L) (20)

s.t.C = hZBP(0, T, S, X) andh ∈ (0, 1) (21)

with RMα,T (L) given by(9) or (15), has an optimal solutionX∗ implicitly given by

ZBP(0, T, S, X) = (X − RMlevel)
∂ZBP
∂X

(0, T, S, X). (22)

When moreover the cdf ofP (T, S) under theT -forward measure has bounded variation
andET [P (T, S)] is finite, the optimal strikeX∗ solves:

ZBP(0, T, S, X) = (X − RMlevel)P (0, T )[1 − F T
r(T )

(

ln A(T, S) − ln X

B(T, S)

)

]. (23)

The corresponding expected shortfall of the loss is given by

ESFα,T (L) = (1 − h)α(VaRlevel− TVaRlevel).

RMlevel, VaRlevelandTVarlevelare defined by respectively(19), (19)(a), (19)(b).

VaR and TVaR minimization and ESF: lognormal case

When the short rater(T ) is a normal random variable, thenP (T, S) is lognormally dis-
tributed and we can further elaborate the relations of Theorem 2 noting that the assump-
tions are satisfied.

Theorem 3 Assume that under the risk neutral measure — in which we also express our
risk measures — the short rater(T ) is normally distributed with meanm and variance
s2. ThenP (T, S) in (7) is lognormally distributed with parametersΠ(T, S) andΣ(T, S)2
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given by

Π(T, S) = ln A(T, S) − B(T, S)m, Σ(T, S)2 = B(T, S)2s2, (24)

and the optimal solutionX∗ to the constrained minimization problem(20)-(21)satisfies

G(Φ−1(α)) =
P (0, S)Φ(−d1(X))

P (0, T )Φ(−d2(X))
, (25)

with

G(Φ−1(α)) =











eΠ(T,S)+Σ(T,S)Φ−1(α) if VaR

eΠ(T,S)+ 1
2
Σ(T,S)2Φ(Φ−1(α) − Σ(T, S))] if TVaR,

(26)

whereΦ(·) stands for the cumulative standard normal distribution, and with

d1(X) =
1

Σ(T, S)
log(

P (0, S)

XP (0, T )
) +

Σ(T, S)

2
, d2(X) = d1(X) − Σ(T, S). (27)

The corresponding shortfall of the loss equals:

ESFα,T (L) = (1 − h)eΠ(T,S)[αeΣ(T,S)Φ−1(α) − e
1
2
Σ(T,S)2Φ(Φ−1(α) − Σ(T, S))]. (28)

PROOF. When the short rater(T ) is normally distributed with meanm and variances2

then the parametersΠ andΣ2 of the lognormally distributedP (T, S) follow immediately
from (7) while for the inverse cdf ofr(T ) we find

F−1
r(T )(p) = m + sΦ−1(p), p ∈ [0, 1]. (29)

SinceP (T, S) is lognormally distributed, the price at date zero of a European put option
with the zero-coupon bond as the underlying security and with strike priceX and exercise
dateT (T ≤ S), see for example Brigo and Mercurio (2001), is explicitly known:

ZBP(0, T, S, X) = −P (0, S)Φ(−d1(X)) + XP (0, T )Φ(−d2(X)), (30)

whered1(X) andd2(X) are defined in (27).
Its first order derivative with respect toX is:

∂ZBP
∂X

(0, T, S, X) = P (0, T )Φ(−d2(X)). (31)

Combining (30) and (31) in (22) will provide the required result (25)-(26) when we have
an expression for the RMlevel which is in this lognormal casedenoted byG(Φ−1(α)) to
express the dependence onΦ−1(α). For the VaR case we substitute (29) in (19)(a) and use
the propertyΦ−1(1 − α) = −Φ−1(α) to end up with (26)(a).
For the TVaR-expression ofG(Φ−1(α)) we start from the integral in (15) combined with
(29), apply a change of variable, use the properties of the cdf Φ(·) and invoke the well-
known result

∫ b

−∞

eλzϕ(z)dz = e
1
2
λ2

Φ(b − λ), (32)
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with ϕ(·) the probability density function of a standard normal random variable:

GTVaR(Φ−1(α)) =
A(T, S)e−B(T,S)m

α

∫ 1

1−α
e−B(T,S)sΦ−1(β)dβ

=
A(T, S)e−B(T,S)m

α

∫ Φ−1(α)

−∞

eB(T,S)szϕ(z)dz

=
1

α
A(T, S)e−B(T,S)m+ 1

2
B(T,S)2s2

Φ(Φ−1(α) − B(T, S)s).

Finally we express the right hand-side in terms of the parameters (24) ofP (T, S), leading
to (26)(b). The expected shortfall of the loss equals in thislognormal case:

ESFα,T (L) = (1 − h)α[GVaR(Φ−1(α)) − GTVaR(Φ−1(α))]

= (1 − h)A(T, S)e−B(T,S)m×

× [αeB(T,S)sΦ−1(α) − e
1
2
B(T,S)2s2

Φ(Φ−1(α) − B(T, S)s)]

= (1 − h)eΠ(T,S)[αeΣ(T,S)Φ−1(α) − e
1
2
Σ(T,S)2Φ(Φ−1(α) − Σ(T, S))].

The expected short fallESFα,T (L) could also be computed directly by combining (8) and
(9) in (4). Hereto, we recall (29) and note that

r(T )
d
= m + sZ, Z ∼ N(0, 1),

such that we may write

ESFα,T (L) = (1 − h)A(T, S)e−B(T,S)mE[(eB(T,S)sΦ−1(α) − e−B(T,S)sZ)+].

Then, apply a Black&Scholes like formula and (24) to arrive at (28). 2

Remark 1 It is easily noticed that the case considered in Ahn et al. (1999) is of the same
form as formula (25) when using a Brownian motion process.

Remark 2 Two factor models like two-factor additive Gaussian model G2++, two-
factor Hull-White, two-factor Heath-Jarrow-Morton with deterministic volatilities which
result in lognormally distributed bond prices (see Brigo and Mercurio (2001)), are also
applicable in our framework.

3.2 Coupon-bearing bond

We consider now the case of a coupon-bearing bond paying deterministic cash flowsC =
[c1, . . . , cn] at maturitiesS = [S1, . . . , Sn]. Let T ≤ S1. The price of this coupon-bearing
bond inT is expressed as a linear combination (or a portfolio) of zero-coupon bonds:

CB(T,S, C) =
n
∑

i=1

ciP (T, Si). (33)
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As in the previous section, the company wants to hedge its position in this bond by buying
a percentage of a put option on this bond with strikeX and maturityT . In order to deter-
mine the strikeX, the VaR or the TVaR of the hedged portfolio at timeT is minimized
under a budget constraint. As in the previous section we willbe able to treat the VaR-case
and the TVaR-case together.

We first have a look at the value of a put option on a coupon-bearing bond as well as at
the structure of the loss function.
The prices of the zero-coupon bondsP (T, Si), given by (7), all depend on the same short
rater(T ). EachP (T, Si) equals a strictly decreasing and continuous function of oneand
the same random variabler(T ), i.e. for all i

P (T, Si) = A(T, Si)e
−B(T,Si)r(T ) := gi(r(T )). (34)

Hence the vector(P (T, S1), . . . ,P (T, Sn)) is comonotonic, see Kaas et al. (2000), and a
European option on a coupon-bearing bond can be explicitly priced by means of Jamshid-
ian’s decomposition, which was originally derived in Jamshidian (1989) in case of a Va-
sicek interest rate model. In fact a European option on a coupon-bearing bond decom-
poses into a portfolio of options on the individual zero-coupon bonds in the portfolio,
which gives in case of a put with maturityT and strikeX:

CBP(0, T,S, C, X) =
n
∑

i=1

ciZBP(0, T, Si, Xi), (35)

with Xi = gi(rX) satisfying
n
∑

i=1

ciXi = X. (36)

ThusrX is the value of the short rate at timeT for which the coupon-bearing bond price
equals the strike.

Repeating the reasoning of Section 3.1 we may conclude that in a worst case scenario the
loss of the hedged portfolio at timeT composed of the coupon-bearing bond (33) and the
put option (35) equals a strictly increasing functionf of the random variabler(T ):

L = CB(0,S, C) + C − ((1 − h)
n
∑

i=1

cigi(r(T )) + hX) := f(r(T )), (37)

with gi(r(T )) defined in (34).

VaR and TVaR minimization

The VaR of this loss that we want to minimize under the constraints 0 < h < 1 and
C = hCBP(0, T,S, C, X), is analogously to (9) given by

VaRα,T (L) = CB(0,S, C) + C − hX − (1 − h)
n
∑

i=1

cigi(F
−1
r(T ))(1 − α). (38)
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By integrating this relation (38), after replacingα by 1−β, with respect toβ between the
integration bounds1 − α and1, we find for the TVaR of the loss:

TVaRα,T (L) = CB(0,S, C) + C − hX −
1

α
((1 − h)

n
∑

i=1

ci

∫ 1

1−α
gi(F

−1
r(T )(β))dβ. (39)

Also here we note the similarity in the expressions for the risk measures (RM) VaR and
TVaR which could be collected in one expression:

RMα,T (L) = CB(0,S, C) + C − hX − (1 − h)
n
∑

i=1

ciGi(F
−1
r(T )(1 − α)) (40)

with

Gi(F
−1
r(T )(1 − α))

=



















gi(F
−1
r(T )(1 − α)) = A(T, Si)e

−B(T,Si)F
−1
r(T )

(1−α) if VaR

1

α

∫ 1

1−α
gi(F

−1
r(T )(β))dβ =

A(T, Si)

α

∫ 1

1−α
e
−B(T,Si)F

−1
r(T )

(β)
dβ if TVaR.

(41)

We now want to solve the constrained optimization problem

min
X,h

RMα,T (L) subjected to C = hCBP(0, T,S, C, X), 0 < h < 1.

From the Kuhn-Tucker conditions we find that the optimal strike priceX∗ satisfies the
following equation:

CBP(0, T,S, C, X) − [X −
n
∑

i=1

ciGi(F
−1
r(T )(1 − α))]

∂CBP
∂X

(0, T,S, C, X) = 0. (42)

Rewriting this equation in terms of the put options on the individual zero-coupon bonds
cfr. (35) leads to the following equivalent set of equations:

n
∑

i=1

ciZBP(0, T, Si, Xi) = [X −
n
∑

i=1

ciGi(F
−1
r(T )(1 − α))]

n
∑

i=1

ci

∂ZBP
∂Xi

(0, T, Si, Xi)
∂Xi

∂X

(43)
n
∑

i=1

ciXi = X (44)

n
∑

i=1

ci

∂Xi

∂X
= 1. (45)

The first equation simplifies by noting that∂ZBP
∂Xi

(0, T, Si, Xi) is independent ofi and by
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using (45). Indeed, plug (36) in (12)-(13) while recalling (34):

∂ZBP
∂Xi

(0, T, Si, Xi) = P (0, T )[1 − F T
r(T )

(

lnA(T, Si) − ln Xi

B(T, Si)

)

]

= P (0, T )[1 − F T
r(T )(rX)] (46)

⇒
n
∑

i=1

ci

∂ZBP
∂Xi

(0, T, Si, Xi)
∂Xi

∂X
= P (0, T )[1 − F T

r(T )(rX)]
n
∑

i=1

ci

∂Xi

∂X
(45)
= P (0, T )[1 − F T

r(T )(rX)].

Thus in order to find the optimal strikeX∗ we proceed as follows:

Step 1 Solve the following equation, which is equivalent to (43), for rX :

n
∑

i=1

ciZBP(0, T, Si, gi(rX))

= P (0, T )[1 − F T
r(T )(rX)]

n
∑

i=1

ci[gi(rX) − Gi(F
−1
r(T )(1 − α))]. (47)

Step 2 Substitute the solutionr∗X in (44):

X∗ =
n
∑

i=1

cigi(r
∗

X) =
n
∑

i=1

ciA(T, Si)e
−B(T,Si)r

∗

X . (48)

Remark In all cases, the optimal strike price is independent of the hedging cost and one
can look at the trade-off between the hedging expenditure and the RM level, cfr. Section
3.1.

We summarize these results in the following theorem.

Theorem 4 Under the assumption of an affine term structure model so thatfor all i the
zero-coupon bond priceP (T, Si) is given by(34) and assuming for alli that the cdf of
P (T, Si) under theT -forward measure has bounded variation and thatET [P (T, Si)] is
finite, the hedging problem for a coupon bond(33):

min
X,h

RMα,T (L) (49)

s.t.C = hCBP(0, T, S, X) andh ∈ (0, 1) (50)

with RMα,T (L) defined by(40)-(41), has an optimal solutionX∗ given by(47)-(48).

VaR and TVaR minimization and ESF: lognormal case

We consider the special case thatr(T ) is a normal random variable cfr. (29) such that the
zero-coupon bond pricesP (T, Si) are lognormally distributed with parametersΠ(T, Si)
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andΣ(T, Si)
2 given by (24) forS = Si. Then the put option prices ZBP(0, T, Si, gi(rX))

in relation (47) are given by (30)-(27), whileGi(F
−1
r(T )(1 − α)) is defined by (26) for

S = Si and will be denotedGi(Φ
−1(α)). The factorP (0, T )[1 − F T

r(T )(rX)] in (47)
equals according to (46) the first order derivative of the putoption prices, which is in
the lognormal case given by (31):

P (0, T )[1 − F T
r(T )(rX)] = P (0, T )Φ(−d2(gi(rX))), for anyi.

This implies thatd2(gi(rX)) is independent ofi.
Thus the optimal strikeX∗ can be found as follows:

Step 1 Solve the following equation forrX :

n
∑

i=1

ci[−P (0, Si)Φ(−d1(gi(rX))) + P (0, T )gi(rX)Φ(−d2(gi(rX)))]

− P (0, T )Φ(−d2(g1(rX)))
n
∑

i=1

ci[gi(rX) − Gi(Φ
−1(α))] = 0. (51)

Step 2 Substitute the solutionr∗X in (48).

The expected shortfall in case of a coupon bearing bond is derived in a similar way as for
the zero-coupon bond:

ESFα,T (L)

= α[TVaRα,T − VaRα,T ]

=
n
∑

i=1

ciA(T, Si)[αe
−B(T,Si)F

−1
r(T )

(1−α)
−
∫ 1

1−α
e
−B(T,Si)F

−1
r(T )

(β)
β]

= (1 − h)
n
∑

i=1

ciA(T, Si)e
−B(T,Si)m×

× [αeB(T,Si)sΦ−1(α) − e
1
2
B(T,Si)2s2

Φ(Φ−1(α) − B(T, Si)s)]

= (1 − h)
n
∑

i=1

cie
Π(T,Si)[αeΣ(T,Si)Φ−1(α) − e

1
2
Σ(T,Si)2Φ(Φ−1(α) − Σ(T, Si))].

The expected short fallESFα,T (L) can also be computed directly by combining (37) and
(38) in relation (4) and by invoking comonotonicity properties (see Kaas et al. (2000)) for
calculating a stop-loss premium of a comonotonic sum. This implies thatESFα,T (L) is in
fact a linear combination of the expressions in the right hand side of (18) withS replaced
by Si for i = 1, . . . , n.

We derived formula (11), (16) and formula (47) combined with(48) to calculate the opti-
mal strike price for the hedging problems under consideration. In all cases, the specifica-
tion of an interest rate model is necessary. Until now, the optimization has been achieved
with the most important modelling assumption that the bond price P (T, S) has the form
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(7) such that the term structure is affine. We also looked at a special case that the bond
priceP (T, S) is lognormally distributed. We did not yet form concrete beliefs on how the
(instantaneous) interest rate will move. By forming these beliefs, or in other words, by
specifying a model for the evolution of the interest rate, wealso get explicit expressions
for the bond and bond option prices, which then enables us to determine the (theoretically)
optimal strike price.

In the next section, we will define and explain the specification of the model for the
evolution of the instantaneous interest rate.

4 Application

4.1 The Hull-White model

There exists a whole literature concerning interest rate models. For a comprehensive
overview we refer for example to Brigo and Mercurio (2001). For our analysis, we fo-
cus on the Hull-White one-factor model, first discussed in Hull and White (1990). We
choose this model because it is still an often used model in financial institutions for risk
management purposes, (see Brigo and Mercurio (2001)). Two main reasons explain this
popularity. First of all, it is a model that allows closed form solutions for bond and plain
vanilla European option pricing. So, since there are exact pricing formulas, there is no
need to run time consuming simulations. But of course, if themodel lacks credibility,
fast but wrong price computations do not offer any benefit. But that is where the second
big advantage of the Hull-White model comes from since it succeeds in fitting a given
term structure by having (at least) one time-dependent parameter. Therefore, today’s bond
prices can be perfectly matched. It belongs to the class of socalled no-arbitrage interest
rate models. This means that, in contrast to equilibrium models (such as Vasicek, Cox-
Ingersoll-Ross), no-arbitrage models succeed in fitting a given term structure, and thus
can match today’s bond prices perfectly.
An often cited critique is that applying the model sometimesresults in a negative interest
rate, but with up-to-date calibrated parameters which are used for a rather short period, it
can be proved that the probability of obtaining negative interest rates is very small.

Hull and White (1990) assume that the instantaneous interest rate follows a mean reverting
process also known as an Ornstein-Uhlenbeck process:

dr(t) = (θ(t) − γ(t)r(t))dt + σ(t)dZ(t) (52)

for a standard Brownian motionZ(t) under the risk-neutral measureQ, and with time
dependent parametersθ(t), γ(t), andσ(t). The parameterθ(t)/γ(t) is the time dependent
long-term average level of the spot interest rate around whichr(t) moves,γ(t) controls the
mean-reversion speed andσ(t) is the volatility function. By making the mean reversion
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level θ time dependent, a perfect fit with a given term structure can be achieved, and in
this way arbitrage can be avoided. In our analysis, we will keep γ andσ constant, and
thus time-independent. According to Brigo and Mercurio (2001), this is desirable when
an exact calibration to an initial term structure is wanted.This perfect fit then occurs when
θ(t) satisfies the following condition:

θ(t) = F M
t (0, t) + γF M(0, t) +

σ2

2γ
(1 − e−2γt),

where,F M(0, t) denotes the instantaneous forward rate observed in the market on time
zero with maturityt.

It can be shown (see Hull and White (1990)) that the expectation and variance of the
stochastic variabler(t) are:

E [r(t)] = m(t) = r(0)e−γt + a(t) − a(0)e−γt (53)

Var [r(t)] = s2(t) =
σ2

2γ
(1 − e−2γt), (54)

with the expressiona(t) calculated as follows:

a(t) = F M(0, t) +
σ2

2

(

1 − e−γt

γ

)2

.

Based on these results, Hull and White developed an analytical expression for the price
of a zero-coupon bond with maturity dateS

P (t, S) = A(t, S)e−B(t,S)r(t), (55)

where

B(t, S) =
1 − e−γ(S−t)

γ
, (56)

A(t, S) =
P M(0, S)

P M(0, t)
eB(t,S)F M (0,t)−σ2

4γ
(1−e−2γt)B2(t,S), (57)

with P M the bond price observed in the market. SinceA(t, S) andB(t, S) are indepen-
dent ofr(t), the distribution of a bond price at any given time must be lognormal with
parametersΠ andΣ

2:

Π(t, S) = ln A(t, S) − B(t, S)m(t), Σ(t, S)2 = B(t, S)2s2(t), (58)

with m(t) ands2(t) given by (53) and (54).
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4.2 Calibration of the Hull-White model

Until now, we theoretically discussed the issue of minimizing the VaR and TVaR of our
investment. If the firm wants to pursue this minimization into practice, it needs credible
parameters for the interest rate model it uses. Focusing in particular on the Hull-White
model that we discussed above, we need to have parameter values forγ andσ. The process
to obtain these parameters is calibration. The most common way to calibrate the Hull-
White model is by using interest rate options, such as swaptions or caps. The goal of the
calibration is to find the model parameters that minimize therelative difference between
the market prices of these interest rate options and the prices obtained by applying our
model.

Suppose we haveM market prices of swaptions or caps, then we search theγ andσ
such that the sum of squared errors between the market and model prices are minimized.
Formally,

min
γ,σ

√

√

√

√

M
∑

i=1

(modeli − marketi
marketi

)2

.

Interest rate caps are instruments that provide the holder of it protection against a specified
interest rate (e.g. the three month EURIBOR,RL) rising above a specified level (the cap
rate,RC)). Suppose a company issued a floating rate note with as reference rate the three
month EURIBOR. When EURIBOR rises above the cap rate, a payoff is generated such
that the net payment of the holder only equals the cap rate. One cap consists of a series
of caplets. These caplets can be seen as call options on the reference rate. The maturity
of the underlying floating interest rate of these call options equals the tenor, which is the
time period between two resets of the reference rate. In our case, this is three months, or
0.25 year.

If in our case, at timetk, the three month EURIBOR rises above the cap rate, the call will
be exercised, which leads to a payoff at timetk+1 (0.25 year later) that can be used to
compensate the increased interest payment on the floating rate note. Formally, the payoff
at timetk+1 equals (see Hull (2003)):

max(0.25(RL − RC), 0).

This is equivalent to a payoff at timetk of

max(0.25(RL − RC), 0)

1 + 0.25RL

.

This can be restated as:

max
(

1 −
1 + 0.25RC

1 + 0.25RL

, 0
)

.

This is the payoff of a put option with strike1, expiring attk, on a zero-coupon bond with
principal1+0.25RC , maturing attk+1. This means that each individual caplet corresponds
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here comes Table 1

Table 1: Overview cap data

to a put option on a zero-coupon bond. Thus, a cap can be valuedas a sum of zero-coupon
bond put options. Since these put options can be valued usingthe Hull-White model, this
offers us a way to fit our model to the market data. The market data we have used are
to be found in Table 1 where cap maturities are listed, along with the volatility quotes of
these caps and the cap rate. The data are obtained on 11 April 2005 and have as reference
rate EURIBOR. Note that the volatility quotes have the traditional humped relation with
respect to the maturity of the cap: the volatility reaches its peak at the2 year cap and
then decreases steadily as the maturity increases. Although the cap rate can be freely
determined, it is most common to put it equal to the swap rate for a swap having the same
payment dates as the cap. The volatility quotes that are provided are based on Black’s
model. This means that we first have to use Black’s formula forvaluing bond options in
order to arrive at the prices of the caps. These prices are shown in the fourth column.
Now we still have to calculate the model prices. Therefore, we use, for each caplet, the
following formula:

ZBP(0, T, S, X, N) = −NP (0, S)Φ(−d1(X)) + XP (0, T )Φ(−d2(X)), (59)

As strike priceX we take1, and as principalN we take1+0.25RC . P (0, T ) andP (0, S)
can be read from the term structure.

Taking the sum of all the caplets in a given cap, we get an expression for which we need
to seek the parameters that, globally, make the best fit. The calibration procedure results
in the following parameter values:

γ = 0.31621 σ = 0.011631.

4.3 VaR and TVaR minimization

Supposing we have gone through this calibration procedure,the next step in our hedging
programme would then be to provide this protection to our portfolio. This can basically
be achieved in two ways: first of all, by buying a put option, orsecondly, by replicating
this option. In the first approach, we are also facing two possibilities: either we buy the
put option at a regulated exchange market, either we buy it over the counter (OTC). If
options are bought as protection against interest rate risk, it is most common to buy them
OTC. Genuine bond options are only available at a restrictednumber of exchanges. Fur-
thermore, at these exchanges, trading in bond options is usually very thin. The second
approach, replicating the option synthetically, involvesquite some follow up and adjust-
ment in positions, and can entail a considerable amount of transaction costs. Therefore, it
is not unreasonable to consider the OTC market as the only viable possibility for a firm
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to buy protection. A major advantage of buying over the counter is that we can com-
pletely tailor the option to our needs. What is of utter importance to the firm is that the
option can be bought at any desired strike. This opposes to buying options on an exchange
market, where options can only be bought at predetermined strike prices. A source of un-
certainty is the discrepancy between the theoretical option prices that were calculated and
the option price that has to be paid over the counter. Therefore, the firm could perform the
optimization procedure using the prices of the financial institution. However, this restricts
the possible calculation methods to using formula (42). Thecombination of (51) and (48)
cannot be used since this requires the knowledge ofd1 andd2, which we clearly not have,
since we only have the price of the option. So, it is necessaryto use formula (42). The
difference in optimal strike price in both approaches is an empirical question and will be
dealt with in this part.

For our numerical illustration, we suppose the firm has an OLO35. OLO (which stands
for Obligation lineair/lineaire Obligatie) are debt instruments issued by the Belgian gov-
ernment, and as such, believed to be risk-free. OLOs have a fixed coupon. The OLO we
consider was issued on 28 Sept 2000 and will mature on 28 Sept 2010, so the maturity
is 10 years, i.e.S = 10. It pays a yearly coupon of 5.75 %, on 28 Sept of each year, i.e.
ci = 0.0575 for all i. As there are no traded options for this kind of bond, we have to pro-
tect by buying OTC options. Therefore, we got OTC prices froma financial institution.
The date on which these data were delivered, is 30 Sept 2005. This means that the bond
then has a remaining maturity of 4.99 years, and coupons willbe paid out atS1 = 0.99,
S2 = 1.99, S3 = 2.99, S4 = 3.99 andS5 = 4.99. At that particular date, 30 Sept 2005,
the bond had a market price of 1.1393. We received the option prices for a wide range
of strikes: going from a strike price of 1.05 to a strike of 1.199, with steps of 0.001. The
option maturity is exactly one year, i.e.T = 1.
This means that the maturity of the option lies between the first and second coupon pay-
ment, whereas when deriving optimal strike price, we supposed that the option matured
before the first coupon payment. This problem can easily be solved by reducing our
coupon payment vector to the last four observations.
We now havethree methods of computing the optimal strike price.

(1) The first method is solving equation (51) and substituting in (48).
(2) The second method still uses the theoretical option prices, but solves equation (42)

and approximates the first derivative of the option price with respect to the strike
price by the difference quotient of the changes in the optionprices to the changes in
the strike price.

(3) The third is equivalent to the second approach, but uses the option prices received
from the financial institution.

Using a 5% confidence level, the bond VaR level for a holding period of one year (in other
words, a worst case expectation of the evolution of the bond price) is 1.0716. Using this
number, we can calculate the optimal strike price in thethree different methods. Note that
VaR has to be calculated under the true probability measure.Since we have calibrated our
interest rate model using option prices, the parameters we obtained are under the risk-
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neutral measure. So, in order to know the parameters under the true probability measure,
we would need to estimate the market price of risk. However, as quite often done (see
Stanton (1997)), we assumed the market price of risk to be zero.

(1) The first method results in an optimal strike price of 1.0833.
(2) The second method yields an optimum which is very close tothis: 1.084.
(3) The last method finds as an optimum a slightly higher strike price: 1.087.

In all three cases, the optimum is situated above the VaR level of the bond as predicted by
the theory. The close correspondence between the first two methods is evident, since the
difference can only be attributed to approximation errors in the second method. Although
not dramatic, we observe a difference between the first two and the last method. The third
method is resulting in an option that is a bit more in the money.

Using a 1% confidence level, a comparable picture emerges. The bond VaR level of course
is lower this time, namely 1.0561. This results in lower optimal strike prices: in the first
method, we obtain an optimal strike price of 1.0649. The second method shows an opti-
mum of 1.065. The third method again shows a higher optimum, this time the strike price
amounts to 1.068.

For both confidence levels the results are summarized in Table 2:

here comes Table 2

Table 2: Optimal strike prices for one and five percent confidence levels, for different
calculation methods.

As stated earlier, the firm that wishes to hedge its exposure is now facing a linear trade-off
between VaR and hedging expenditure. This is illustrated inFigure 1. On this graph, the
firm can clearly see the consequence of choosing a particularhedging cost. Alternatively,
it can read the hedging cost required to obtain a certain protection, expressed in VaR terms.
Note that the hedging cost is restricted to the range[0, 0.003171], with the left hand side
of the range corresponding to no hedging, and the right hand side corresponding to buying
an entire put option (at the OTC price) at the optimal strike price (so,h = 1). No hedging
leads to a VaR of 0.0677. Buying an entire option at the optimal strike price reduces the
VaR to 0.0557. It is clear that the exact position a firm takes,is determined by both the
budget and the risk aversion or appetite of the firm, which we cannot judge. Furthermore,
it makes economic sense to execute the hedge since we observethat the hedging cost is
smaller than the reduction in VaR you get by hedging.

Conclusions are comparable when performing a TVaR minimization. Of course, the bond
TVaR level lies below the VaR level. For the 5% level, it is situated at 1.0621. The first
method results in an optimum of 1.0717. The second method finds 1.072 as optimal strike
price, and the third method (taking into account the OTC prices) produces an optimum
of 1.075. Again we observe the difference between the first two methods and the third
method.
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here comes figure 1

Fig. 1: VaR in function of the hedging expenditureC

For the 1% level, the bond TVaR is 1.0485. The optimum in the first method is now at
1.0537. The second method results in an optimum of 1.056. Using the OTC prices, an
optimal strike price is reached at a level of 1.059.

We can thus conclude that, based on OTC prices, the optimum issituated slightly higher
than the optimum reached under theoretical prices. This conclusion is robust for different
risk criteria and different confidence levels.

5 Conclusions

We provided a method for minimizing the risk of a position in abond (zero-coupon or
coupon-bearing) by buying (a percentage of) a bond put option. Taking into account a
budget constraint, we determine the optimal strike price, which minimizes a Value-at-Risk
or Tail-Value-at-Risk criterion. Alternatively, our approach can be used when a nominal
risk level is fixed, and the minimal hedging budget to fulfil this criterion is desired. From
the class of short rate models which result in lognormally distributed future bond prices,
we have selected the Hull-White one-factor model for an illustration of our optimization.
This Hull-White model is calibrated to a set of cap prices, inorder to obtain credible
parameters for the process. We illustrated our strategy using as investment asset a Belgian
government bond, on which we want to buy protection. We calculated the optimal strike
price of the bond option that we use, both with theoretical Hull-White prices, and with
real market prices. The results are comforting in the sense that the optimal strike prices
in both approaches show a close correspondence. The strike price based on real prices is
only slightly higher than the one based on theoretical prices.
Further research possibilities are mainly situated in two directions. First of all, we can
consider other instruments to hedge our investment. The useof a swaption to hedge a
swap is very widespread in the financial industry. It should be possible to determine the
optimal swap rate to hedge the swap. The second direction concerns the interest rate
models that can be used in our analysis. It is often stated that two-factor models are better
suited to capture interest rate behaviour. Such a model cannot be used here to hedge an
investment in a coupon-bearing bond. The reason is that the Jamshidian decomposition
cannot be applied. An alternative could be the comonotonicity approach of Dhaene et al.
(2002a) and Dhaene et al. (2002b), which results in a lower and upper bound for the bond
put option. As an alternative for a two-factor model, a modelwith a jump component can
be considered. Johannes (2004) finds evidence for the importance of adding a jump term
to interest rate models. The use of jump models, however, raises new pricing and hedging
issues.
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